Davide Morgante - INFN Sezione di Milano

davide.morgante@mi.infn.it

Spindly M5s

Based on 2309.11362 - A. Amariti, S. Mancani, DM, N. Petri, A. Segati

Istituto Nazionale di Fisica Nucleare

What we did: consider the B3W 4d model coming from wrapping M5branes on Riemann surface and compactify to 2d on a Spindle. Find the central charge of the theory to then match it to the sugra calculation

Outline General introduction Field Theory The gravity dual

Outline

General introduction

- Spindle geometry $WCP_{[n_N,n_S]}^1$: Twist and anti-twist
- The M5 world-volume theory: $6d \mathcal{N} = (2,0) A_{N-1} \text{ SCFT}$
- Wrapping M5s on Riemann surfaces and T_N blocks
- The B3W model

Field Theory

The gravity dual

$_{s_{i}}$: Twist and anti-twist y: $6d \ \mathcal{N} = (2,0) \ A_{N-1} \ \text{SCFT}$ surfaces and T_{N} blocks

General introduction • Spindle geometry $\mathbb{WCP}^{1}_{[n_{N},n_{S}]}$: Twist and anti-twist

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor (∂_{μ} R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu}$

- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez 4d SCFT from M5-branes on

$$(+\omega_{\mu})\epsilon = 0$$
, couple to background
 $+\omega_{\mu} + A_{\mu}\epsilon = 0 \implies \epsilon$ constant

General introduction • Spindle geometry $WCP_{[n_N,n_S]}^1$: Twist and anti-twist

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor (∂_{μ} R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu}$

- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez 4d SCFT from M5-branes on

$$(+\omega_{\mu})\epsilon = 0$$
, couple to background
 $+\omega_{\mu} + A_{\mu}\epsilon = 0 \implies \epsilon$ constant

General introduction • Spindle geometry $WCP_{[n_N,n_S]}^1$: Twist and anti-twist

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor (∂_{μ} R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu}$

- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez 4d SCFT from M5-branes on

$$(\omega_{\mu} + \omega_{\mu})\epsilon = 0$$
, couple to background
+ $(\omega_{\mu} + A_{\mu})\epsilon = 0 \implies \epsilon$ constant

• Spindle geometry $\mathbb{WCP}^{1}_{[n_{N},n_{S}]}$: Twist and anti-twist

background

$$\frac{1}{2\pi}\int_{\Sigma_g} F$$

Condition $A_{\mu} = -\omega_{\mu}$ equivalent to choosing right flux for R-symmetry

$F^{R} = 2(g - 1)$

• Spindle geometry $WCP_{[n_N,n_S]}^1$: Twist and anti-twist

More general solutions Σ is not compact manifold, but orbifold. The spindle is one such geometry where SUSY is preserved [Ferrero et al. '21, Ferrero et al. '22, ...]

Spindle: topologically S^2 with conical deficit angles at poles

• Spindle geometry $WCP_{[n_N,n_S]}^1$: Twist and anti-twist

More general solutions Σ is not compact manifold, but orbifold. The spindle is one such geometry where SUSY is preserved [Ferrero et al. '21, Ferrero et al. '22, ...]

Spindle: topologically S^2 with conical deficit

General introduction • Spindle geometry $\mathbb{WCP}^{1}_{[n_{N},n_{S}]}$: Twist and anti-twist

 $2\pi \left(1 - \frac{1}{n_{N,S}}\right)$

- Twist

Anti-twist

SUSY preserved also in non-trivial way

• The M5 world-volume theory: $6d \mathcal{N} = (2,0) A_{N-1} \text{ SCFT}$

known lagrangian formulation

From D = 11 SO(5) normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5).$

The world-volume theory of an M5-brane is a $6d \mathcal{N} = (2,0)$ SCFT. No

By stacking M5-branes we get $6d \mathcal{N} = (2,0) A_N$ SCFT [Strominger '95]

• The M5 world-volume theory: $6d \mathcal{N} = (2,0) A_{N-1}$ SCFT

known lagrangian formulation

From D = 11 SO(5) normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5).$

The world-volume theory of an M5-brane is a $6d \mathcal{N} = (2,0)$ SCFT. No

By stacking M5-branes we get $6d \mathcal{N} = (2,0) A_N$ SCFT [Strominger '95]

• The M5 world-volume theory: $6d \mathcal{N} = (2,0) A_{N-1} \text{ SCFT}$

known lagrangian formulation

From D = 11 SO(5) normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5).$

The world-volume theory of an M5-brane is a $6d \mathcal{N} = (2,0)$ SCFT. No

By stacking M5-branes we get $6d \mathcal{N} = (2,0) A_N \text{ SCFT}$ [Strominger '95]

- Wrapping M5s on Riemann surfaces and T_N blocks
- Take M5 wrap on S^1 with radius R_e

$$\int d^5x \frac{1}{g_5^2} \text{tr}F \wedge \star F + \dots \implies g_5^2 \propto R_6$$

Compactify

$$\int dx_5 \int d^4x \frac{1}{g_5^2} \text{tr}F \wedge \star F + \dots \implies g_5^{-2} dx_5 = g_4^{-2} \implies \frac{1}{g_4^2} \sim \frac{R_5}{R_6}$$

$$_6 \implies 5d \ \mathcal{N} = 2 \ \text{SYM}$$

- Wrapping M5s on Riemann surfaces and T_N blocks
- Take M5 wrap on S^1 with radius R_e

$$\int d^5x \frac{1}{g_5^2} \text{tr}F \wedge \star F + \dots \implies g_5^2 \propto R_6$$

Compactify

y on another
$$S^1$$
 with radius $R_5 \implies 4d \ \mathcal{N} = 4$ SYM
$$\int dx_5 \int d^4x \frac{1}{g_5^2} \text{tr}F \wedge \star F + \dots \implies g_5^{-2} dx_5 = g_4^{-2} \implies \frac{1}{g_4^2} \sim \frac{R_5}{R_6}$$

$$_{6} \implies 5d \ \mathcal{N} = 2 \ \text{SYM}$$

We can generalize for any (punctured) Riemann surfaces $\Sigma_{g,n}$: class-S theories [Gaiotto '09]

Compactify in opposite order $\implies 4d \mathcal{N} = 4$ SYM w/ $g_4^{-2} \sim R_6/R_5$

This is S-duality!

- Wrapping M5s on Riemann surfaces and T_N blocks
- Upshot: M5 wrapped on $T^2 \implies 4d \mathcal{N} = 4$ SYM w/ $g_A^{-2} \sim R_5/R_6$
- Compactify in opposite order $\implies 4d \mathcal{N} = 4$ SYM w/ $g_A^{-2} \sim R_6/R_5$

theories [Gaiotto '09]

This is S-duality!

We can generalize for any (punctured) Riemann surfaces $\Sigma_{g,n}$: class-S

• Wrapping M5s on Riemann surfaces and T_N blocks

Any Riemann surface can be decomposed into pair of pants

- T_N block : $\mathcal{N} = 2$ SCFTs with $SU(2) \times U(1)_R \times SU(N)^3$ global symmetry as world-volume theories of stack of M5 on three-punctured sphere.

• Wrapping M5s on Riemann surfaces and T_N blocks

Gluing T_N blocks is gauging some SU(N): higher genus Riemann surfaces

S-class: gluing with $\mathcal{N} = 2$ vector multiplet

General introduction The B3W model

Up to now, compactification on Riemann surface. Generalization to twisting, aka preserve SUSY

wrapping branes on calibrated cycles on CYs. Calibration needed for

The B3W model

Further generalization [Bah, Beem, Bobev, Wecht '12]:

The B3W model

Further generalization [Bah, Beem, Bobev, Wecht '12]:

IR dynamics of branes wrapped on this geometry depend on choice of this rank-2 vector bundle

General introduction The B3W model

Reduce structure group from SU(2) to U(1) CY_3 decomposable $\mathscr{L}_1 \oplus K_{C_o} \mathscr{L}_2 \to C_g$ $c_1(\mathcal{L}_1) = p, c_1(\mathcal{L}_2) = q, p + q = 2g - 2$ Manifest $U(1)^2$ isometry

$\mathbb{C}^2 \hookrightarrow \mathcal{L}_1 \oplus \mathcal{L}_2$ π

General introduction The B3W model

$q = 0 \text{ or } p = 0 \implies X = \mathbb{C} \times T^*C_g, \ \mathcal{N} = 2 \text{ MN theories}$ $q = p, \mathcal{N} = 1$ Sicilian gauge theories [Benini, Tachiwaka, Wecht '09]

$c_1(\mathscr{L}_1) = p, c_1(\mathscr{L}_2) = q, p + q = 2g - 2$

The B3W model

 $\mathcal{N} = 1,2$ vector multiplets \implies choice of p, q

General p, q can be constructed from opportune gluing of $2(g - 1) T_N$ blocks to form a Riemann surface with no punctures. Gluing with both

Outline

General introduction

Field Theory

- The anomaly polynomial of an M5-brane
- Stacking the branes
- Wrapping the branes
- Two-dimensional central charge

The gravity dual

Field Theory • The anomaly polynomial of an M5-brane

Supersymmetric $\mathcal{N} = (2,0)$ abelian tensor multiplet in 6d:

- Two-form with self-dual field strength
- 5 scalars
- 4 real Weyl fermions

Field Theory

• The anomaly polynomial of an M5-brane

Four components chiral spinors

$$I_D = \frac{1}{2} \operatorname{ch} S(N) \hat{A}(TW)$$

Self-dual chiral two-form $\frac{1}{5760} \left(16p_1(TW)^2 - 112p_2(TW)\right)$

Field Theory • The anomaly polynomial of an M5-brane

Four components chiral spinors

$$I_D = \frac{1}{2} \operatorname{ch} S(N) \hat{A}(TW)$$

Sections of rank-four spinor bundle constructed from the normal bundle N using the spinor rep

SO(5) is the remaining isometry from M-theory after M5 defect insertion

Field Theory

• The anomaly polynomial of an M5-brane

Four components chiral spinors

$$I_D = \frac{1}{2} \operatorname{ch} S(N) \hat{A}(TW)$$

 $\hat{A}(TW)$ is the Dirac genus of TW, index of the Dirac operator on it

$$= 1 - \frac{p_1(TW)}{24} + \frac{7p_1(TW)^2 - 4p_2(TW)}{5760}$$

Field Theory

• The anomaly polynomial of an M5-brane

Four components chiral spinors

Field TheoryThe anomaly polynomial of an M5-brane

Propagates on brane world-volume W, does not see normal bundle

Self-dual chiral two-form

$$\frac{16}{0} \left((16p_1(TW)^2 - 112p_2(TW)) \right)$$

Anomaly polynomial for A_N case

$$W - p_2(TW) + \frac{1}{4}(p_1(TW) - p_1(NW))^2 + \frac{N^3 - N}{24}p_2(NW)$$

Spinors+Three-form CS term

[Witten '96; Harvey, Minasian, Moore '98; Intriligator '00; Yi '01; ...]

• Wrapping the branes

• Wrapping the branes

• Wrapping the branes

[Bah, Beem, Bobev, Wecht '12]

$$= \int_{C_g} I_8 \sim \sum_{i,j,k=1,2} A_{ijk} c_1(F_i) c_1(F_j) c_1(F_k)$$

Where A_{ijk} abelian anomalies of 4d theory

$$A_{RRR} = (g-1)N^3 \qquad A_{RRF} = -\frac{1}{3}(g-1)zN^3$$
$$A_{RFF} = -\frac{1}{3}(g-1)zN^3 \qquad A_{FFF} = (g-1)zN^3$$

Additional abelian symmetry from azimuthal rotation on spindle

[Amariti, Mancani, DM, Petri, Segati '23]

[Amariti, Mancani, DM, Petri, Segati '23]

Fix magnetic fluxes

$$\int c_1(F_R) = [\rho_R]_N^S = \frac{p_R}{n_N n_S}$$
$$\int c_1(F_F) = [\rho_F]_N^S = \frac{p_F}{n_N n_S}$$

Preserve SUSY by R-symmetry (anti-)twist

 ρ_R

[Amariti, Mancani, DM, Petri, Segati '23]

Flavour flux fixed up to arbitrary constant

$$P_R(y_N) = \frac{(-1)^{t_N}}{n_N}$$
 $\rho_R(y_S) = \frac{(-1)^{t_S+1}}{n_S}$

Where $t_N = 0, 1$. Twist $t_S = t_N$, anti-twist $t_{S} = t_{N} + 1$

[Amariti, Mancani, DM, Petri, Segati '23]

Central charge in large-N from anomaly polynomial and allow mixing

$R^{\text{trial}}(x,\epsilon) = R + xF + \epsilon J$

$$c_R(\epsilon, x) = \frac{6I_4(\epsilon, x)}{c_1(F_R)^2}$$

C-extremization!

[Amariti, Mancani, DM, Petri, Segati '23]

Central charge in large-N from anomaly polynomial and allow mixing

$$R^{\text{trial}}(x,\epsilon) = R + xF + \epsilon J$$
$$c_R(\epsilon, x) = \frac{6I_4(\epsilon, x)}{c_1(F_R)^2}$$

C-extremization!

$$(g-1)N^{3}\left(4p_{F}^{2}-\left(n_{N}+n_{S}\right)^{2}\right)\left(2zp_{F}+\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\right)\left(\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\left(16zp_{F}+\left(z^{2}+3\right)\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\right)+4\left(3z^{2}+1\right)p_{F}^{2}\right)\right)$$

$$\frac{2n_{N}n_{S}\left(8p_{F}^{2}\left(-2n_{N}n_{S}+3z^{2}n_{S}^{2}+3z^{2}n_{N}^{2}\right)-32zp_{F}^{3}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)+8zp_{F}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\left(3n_{N}^{2}-2n_{N}n_{S}+3n_{S}^{2}\right)-48z^{2}p_{F}^{4}+\left(n_{N}+n_{S}\right)^{2}\left(-2\left(z^{2}+2\right)n_{N}n_{S}+\left(z^{2}+4\right)n_{S}^{2}+\left(z^{2}+4\right)n_{N}^{2}\right)\right)$$

$$(g-1)N^{3}\left(\left(n_{S}-n_{N}\right)^{2}-4p_{F}^{2}\right)\left(2zp_{F}+(-1)^{t_{N}}\left(n_{N}-n_{S}\right)\right)\left((-1)^{t_{N}}\left(n_{N}-n_{S}\right)\left(16zp_{F}+\left(z^{2}+3\right)(-1)^{t_{N}}\left(n_{N}-n_{S}\right)\right)+4\left(3z^{2}+1\right)p_{F}^{2}\right)\right)$$

$$2n_{N}n_{S}\left(8p_{F}^{2}\left(2n_{N}n_{S}+3z^{2}n_{S}^{2}+3z^{2}n_{N}^{2}\right)+32zp_{F}^{3}(-1)^{t_{N}}\left(n_{S}-n_{N}\right)-8zp_{F}(-1)^{t_{N}}\left(n_{S}-n_{N}\right)\left(3n_{N}^{2}+2n_{N}n_{S}+3n_{S}^{2}\right)-48z^{2}p_{F}^{4}+\left(n_{S}-n_{N}\right)^{2}\left(2\left(z^{2}+2\right)n_{N}n_{S}+\left(z^{2}+4\right)n_{S}^{2}+\left(z^{2}+4\right)n_{N}^{2}\right)\right)$$

N.B.
$$z = \frac{p-q}{p+q}$$

Twist

nti-twist

$$(g-1)N^{3}\left(4p_{F}^{2}-\left(n_{N}+n_{S}\right)^{2}\right)\left(2zp_{F}+\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\right)\left(\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\left(16zp_{F}+\left(z^{2}+3\right)\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\right)+4\left(3z^{2}+1\right)p_{F}^{2}\right)\right)$$

$$2n_{N}n_{S}\left(8p_{F}^{2}\left(-2n_{N}n_{S}+3z^{2}n_{S}^{2}+3z^{2}n_{N}^{2}\right)-32zp_{F}^{3}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)+8zp_{F}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\left(3n_{N}^{2}-2n_{N}n_{S}+3n_{S}^{2}\right)-48z^{2}p_{F}^{4}+\left(n_{N}+n_{S}\right)^{2}\left(-2\left(z^{2}+2\right)n_{N}n_{S}+\left(z^{2}+4\right)n_{S}^{2}+\left(z^{2}+4\right)n_{N}^{2}\right)\right)$$

$$(g-1)N^{3}\left(\left(n_{S}-n_{N}\right)^{2}-4p_{F}^{2}\right)\left(2zp_{F}+(-1)^{t_{N}}\left(n_{N}-n_{S}\right)\right)\left((-1)^{t_{N}}\left(n_{N}-n_{S}\right)\left(16zp_{F}+\left(z^{2}+3\right)(-1)^{t_{N}}\left(n_{N}-n_{S}\right)\right)+4\left(3z^{2}+1\right)p_{F}^{2}\right)\right) \\ -\frac{2n_{N}n_{S}\left(8p_{F}^{2}\left(2n_{N}n_{S}+3z^{2}n_{S}^{2}+3z^{2}n_{N}^{2}\right)+32zp_{F}^{3}\left(-1\right)^{t_{N}}\left(n_{S}-n_{N}\right)-8zp_{F}\left(-1\right)^{t_{N}}\left(n_{S}-n_{N}\right)\left(3n_{N}^{2}+2n_{N}n_{S}+3n_{S}^{2}\right)-48z^{2}p_{F}^{4}+\left(n_{S}-n_{N}\right)^{2}\left(2\left(z^{2}+2\right)n_{N}n_{S}+\left(z^{2}+4\right)n_{S}^{2}+\left(z^{2}+4\right)n_{N}^{2}\right)\right)}$$

N.B.
$$z = \frac{p-q}{p+q}$$

Twist

Anti-twist

Outline

General introduction The boundary

The bulk

- Consistent AdS₅ truncation with hypermultiplets
- Down to $AdS_3 \times WCP^1_{[n_N, n_S]}$
- Numerical solutions

Central charge from the poles and matching with field theory

Consistent AdS₅ truncation with hypermultiplets

Petrini, Waldram '21]

- One hypermultiplet
- Two vector multiples

Starting point: consistent 5d truncation from D = 11 of [Cassani, Josse,

Gauge group $U(1) \times \mathbb{R}$

Consistent AdS₅ truncation with hypermultiplets

Ansatz
$$ds_{11}^2 = e^{2\Delta} ds_{AdS_5}^2 + ds_6^2 \sqrt{2}$$

second factor is squashed four-sp

- warped product $AdS_5 \times_w M_6$ where phere fibered over Riemann surface C_{g}
- Dependence of metric on factors p, q introduced before & scalar curvature k of C_g
- Generalizes $\mathcal{N} = 1,2$ twistings of MN [Maldacena, Nunez '00]

Consistent AdS₅ truncation with hypermultiplets

Further truncation: $\theta_1 = \theta_2 = 0$

Vector multiplet: two real scalars Σ, ϕ parametrize $M_V = \mathbb{R}_+ \times SO(1,1)$ Hypermultiplet: four scalars φ , Ξ , θ_1 , θ_2 parametrize $M_H = \frac{SU(2,1)}{SU(2) \times U(1)}$

Introduce superpotential $W = \frac{\Sigma^3((\mathbf{k}e^{2\varphi} + 4)\cosh\phi - \mathbf{z}\mathbf{k}e^{2\varphi}\sinh\phi) + e^{2\varphi}}{W}$

 $4\Sigma^2$

Consistent AdS₅ truncation with hypermultiplets

Further truncation: $\theta_1 = \theta_2 = 0$

Vector multiplet: two real scalars Σ, ϕ parametrize $M_V = \mathbb{R}_+ \times SO(1,1)$ Hypermultiplet: four scalars φ , Ξ , θ_1 , θ_2 parametrize $M_H = \frac{SU(2,1)}{SU(2) \times U(1)}$ Introduce superpotential $W = \frac{\Sigma^3((\mathbf{k}e^{2\varphi} + 4)\cosh\phi - \mathbf{z}\mathbf{k}e^{2\varphi}\sinh\phi) + e^{2\varphi}}{\Phi^2}$ $1\nabla^2$

Consistent AdS₅ truncation with hypermultiplets

Vector multiplet: two real scalars Σ

Hypermultiplet: four scalars φ, Ξ, θ

Further truncation: $\theta_1 = \theta_2 = 0$

Introduce superpotential $W = -\frac{\Sigma^3}{2}$

E,
$$\phi$$
 parametrize $M_V = \mathbb{R}_+ \times \text{SO}(1,1)$
 θ_1, θ_2 parametrize $M_H = \frac{\text{SU}(2,1)}{\text{SU}(2) \times \text{U}(1)}$

$$\frac{((\mathbf{k}e^{2\varphi} + 4)\cosh\phi - \mathbf{z}\mathbf{k}e^{2\varphi}\sinh\phi) + e}{4\Sigma^2}$$

The gravity side • Down to $AdS_3 \times WCP_{[n_N, n_S]}^1$

Ansatz $ds^2 = e^{2V(y)} ds^2_{AdS_3} + f(y)^2 dy^2 + h(y)^2 dz^2$ where (y, z) are coordinates on Spindle: $z \sim z + 2\pi$ and $y \in [y_N, y_S]$

Gauge fields: $A^{(I)} = a^{(I)}(y)dz$ where I = 1,2

Assume: $\Sigma(y), \phi(y), \phi(y)$ and $\Xi = \Xi \cdot z$

The gravity side
• Down to
$$AdS_3 \times WCP^1_{[n_N, n_S]}$$

$$e^a = e^V \bar{e}^a, \qquad e^3$$

Field strength becomes

Orthonormal frame of reference [Arav, Gauntlett, Roberts, Rosen '22]

$^{3} = f dy, \qquad e^{4} = h dz$

 $fhF_{34}^{(I)} = \partial_y a^{(I)}$

The gravity side
• Down to
$$AdS_3 \times WCP^1_{[n_N, n_S]}$$

Then

Constants
n, Maxwell's equations are

$$\frac{2e^{3V}}{3\Sigma^2} \Big[(\cosh 2\phi - \mathbf{z} \sinh 2\phi) F_{34}^{(1)} + (\mathbf{z} \cosh 2\phi - \sinh 2\phi) F_{34}^{(2)} \Big] = \mathscr{C}_1$$

$$\frac{2e^{3V}}{3\Sigma^2} \Big[\mathbf{z} \mathbf{k} \Sigma^6 F_{34}^{(0)} - (\cosh 2\phi + \mathbf{z} \sinh 2\phi) F_{34}^{(1)} + (\mathbf{z} \cosh 2\phi + \sinh 2\phi) F_{34}^{(2)} \Big] = \mathscr{C}_2$$

$$\partial_y \Big(\frac{1}{3} e^{3V} \Sigma^4 F_{34}^{(0)} \Big) = \frac{1}{4} e^{4\psi + 3V} g f h^{-1} D_z \Xi$$

The gravity side • Down to $AdS_3 \times WCP^1_{[n_N, n_S]}$

Killing spinor $\epsilon = \psi \otimes \chi$ with ψ on AdS₃ and χ on Spindle, where $\nabla_m \psi = -\frac{\kappa}{2} \Gamma_m \psi$ and

 $\chi = e^{\frac{V}{2}}$

$$\frac{\sqrt{2}}{2}e^{isz}\left(\frac{\sin\frac{\xi}{2}}{\cos\frac{\xi}{2}}\right)$$

BPS equations

 $\xi' - 2f(gW\cos\xi + \kappa e^{-V}) = 0$ $V' - \frac{2}{3} fgW \sin \xi = 0$ $\Sigma' + \frac{2}{3} fg \,\Sigma^2 \sin \xi \,\partial_{\Sigma} W = 0$ $\phi' + 2fg\sin\xi\,\partial_{\phi}W = 0$ $\varphi' + \frac{fg}{\sin \xi} \partial_{\varphi} W = 0$

 $h' - \frac{2fh}{3\sin\xi} (gW(1 + 2\cos^2\xi) + 3\kappa e^{-V}\cot\xi) = 0,$

Central charge from the poles and matching with field theory

'23; Amariti, Petri, Segati '23]

• $\varphi(y)$ finite at poles: $\partial_{\varphi}W|_{N,S} = 0$

Combine two conserved charges as

$$Q_{1}|_{N,S} = \mathscr{C}_{1}|_{N,S} = \frac{4}{3}e^{2V|_{N,S}} \left(\frac{\kappa(\sinh(\phi|_{N,S}) - \mathbf{z}\cosh(\phi|_{N,S}))}{\Sigma|_{N,S}} - \mathbf{z}ge^{V|_{N,S}}\cos(\xi|_{N,S}) \right)$$
$$Q_{2}|_{N,S} = \mathscr{C}_{1}|_{N,S} - \mathscr{C}_{2}|_{N,S} = \frac{4\kappa e^{2V|_{N,S}}}{3\Sigma|_{N,S}} \left(2\sinh(\phi|_{N,S}) - \mathbf{z}\mathbf{k}\Sigma|_{N,S}^{3} \right).$$

Conditions at poles are enough [Arav, Gauntlett, Roberts, Rosen '22; Suh

$$0 \implies \mathbf{k}\Sigma^{3}|_{N,S} + \frac{1}{\cosh\phi|_{N,S} - \mathbf{z}\sinh\phi|_{N,S}} = 0$$

Central charge from the poles and matching with field theory

$$(I) |_{N}^{S} \qquad \mathcal{J}^{(I)} \equiv -ke^{V} \cos \xi h^{I}$$

$$\frac{1}{2}(n_{S}(-1)^{t_{N}}+n_{N}(-1)^{t_{S}})$$
$$=0$$

Central charge from the poles and matching with field theory

Three equations before fix boundary conditions for V, h, ϕ, Σ

Central charge

 $e^{V(y)}f(y)h(y) = -\frac{k}{2\kappa} \left(e^{3V(y)}\cos\xi(y)\right)'$ Very important!!

$$= \frac{3}{2G_5} \Delta z \int_{y_n}^{y_s} e^{V(y)} |f(y)h(y)| \, \mathrm{d}y$$

We found analytic solution by restricting to graviton sector only for antitwist case with $\mathbf{k} = -1$ and generic z matching [Ferrero et al. '21; Ferrero, Gauntlett, Sparks '22]. Graviton sector fixes p_F

Central charge from the poles and matching with field theory

Central charges match with the FT ones! Both for twist and anti-twist

Gauntlett, Sparks '22]. Graviton sector fixes p_F

Central charge from the poles and matching with field theory

Central charges match with the FT ones! Both for twist and anti-twist

We found analytic solution by restricting to graviton sector only for antitwist case with $\mathbf{k} = -1$ and generic z matching [Ferrero et al. '21; Ferrero,

• Numerical solutions For generic p_F (consistent with quantization) we find numerical solution by integrating BPS eqns. [Arav, Gauntlett, Roberts, Rosen '22; Suh '23; Amariti, Petri, Segati '23]

Still only solutions for $\mathbf{k} = -1$ and anti-twist

\imath_S	n_N	p_F	\mathbf{Z}	$arphi_S$	$arphi_N$	Δy
1	3	0	2	-0.285076	-0.274493	1.83241
1	7	-1	2	-0.172372	-0.170589	2.39707
1	3	0	3	-0.555814	-0.542721	1.82303
1	5	-1	3	-0.300428	-0.300346	2.16012
1	9	3	$\frac{1}{3}$	0.463989	0.363277	2.57446
1	5	0	$\frac{1}{3}$	0.126802	0.124497	2.16392
1	7	2	$\frac{1}{2}$	0.484886	0.347516	2.3322
3	7	0	$\frac{1}{2}$	0.104192	0.103447	1.74866

Thank you

Backup slides

Field Theory

Couple of details on 2d anomaly polynomial

Central charge of trial R-symmetry, many U(1)s

$$c_R^{\text{trial}}(t) = 3 \left(A_{RR} + 2 \sum_{i_7}^{N} \right)$$

Gravitational anomalies Anomaly polynomial in 2d is $I_4 = \frac{c_R}{6}c_1(F_R)^2 \left(-\frac{c_R - c_L}{24}p_1(TW_2)\right)$ In terms of 2d mixed anomalies $I_4 = \frac{1}{2}A_{ij}c_1(F_i)c_1(F_j) - \frac{k}{24}p_1(TW_2)$

 $\sum_{i \neq R} t_i A_{iR} + \sum_{i,j \neq R} t_i t_j A_{ij}$

Field Theory

• Couple of details on 2d anomaly polynomial

In our case only $U(1)_F$ and $U(1)_I$, so mixing is

$$c_R(x,\epsilon) = 3(A_{RR} + 2\epsilon A_{RJ} + 2\epsilon A_{RJ})$$

where the anomalies are suitably normalized

- $2xA_{RF} + x^2\epsilon A_{FF} + \epsilon^2 A_{II} + 2x\epsilon A_{FI})$

