Davide Morgante - INFN Sezione di Milano

davide.morgante@mi.infn.it

Spindly M5s

Based on [2309.11362](https://arxiv.org/abs/2309.11362) - A. Amariti, S. Mancani, DM, N. Petri, A. Segati

Istituto Nazionale di Fisica Nucleare

What we did: consider the B3W 4*d* model coming from wrapping M5branes on Riemann surface and compactify to $2d$ on a Spindle. Find the central charge of the theory to then match it to the sugra calculation

Outline The gravity dual Field Theory General introduction

Outline

Field Theory

General introduction

The gravity dual

• The M5 world-volume theory: $6d$ $\mathcal{N} = (2,0)$ A_{N-1} SCFT

- Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$
-
- Wrapping M5s on Riemann surfaces and T_N blocks
- The B3W model
- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez 4d SCFT from M5-branes on

General introduction • Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor
$$
(\partial_{\mu} + \omega_{\mu})\epsilon = 0
$$
, couple to background
R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu} + \omega_{\mu} + A_{\mu})\epsilon = 0 \implies \epsilon$ constant

- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez $4d$ SCFT from M5-branes on

General introduction • Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor
$$
(\partial_{\mu} + \omega_{\mu})\epsilon = 0
$$
, couple to background
R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu} + \omega_{\mu} + A_{\mu})\epsilon = 0 \implies \epsilon$ constant

- Important insights into strongly coupled SCFT by realizing them as RG
- Foundational work Maldacena & Nunez $4d$ SCFT from M5-branes on

General introduction • Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

fixed points of compactification of higher-dimensional QFTs

Riemann surface $\Sigma_g \implies$ SUSY preserved by topological twist

No covariantly constant spinor
$$
(\partial_{\mu} + \omega_{\mu})\epsilon = 0
$$
, couple to background
R-symmetry $A_{\mu} = -\omega_{\mu}$, then $(\partial_{\mu} + \omega_{\mu} + A_{\mu})\epsilon = 0 \implies \epsilon$ constant

• Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

 $\textsf{Condition}\ A_\mu = -\ \omega_\mu$ equivalent to choosing right flux for R-symmetry background

$$
\frac{1}{2\pi}\int_{\Sigma_{g}}I
$$

$F^R = 2(g - 1)$

• Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

More general solutions Σ is not compact manifold, but *orbifold*. The spindle is one such geometry where SUSY is preserved [Ferrero et al. '21, Ferrero et al. '22, …]

Spindle: topologically $S²$ with conical deficit angles at poles *S*2

• Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

More general solutions Σ is not compact manifold, but *orbifold*. The spindle is one such geometry where SUSY is preserved [Ferrero et al. '21, Ferrero et al. '22, …]

Spindle: topologically $S²$ with conical deficit

• Spindle geometry $\mathbb{WCP}^1_{[n_N,n_S]}$: Twist and anti-twist $[n_N, n_S]$

SUSY preserved also in non-trivial way

• Twist

• The M5 world-volume theory: $6d$ $\mathcal{N} = (2,0)$ A_{N-1} SCFT

known lagrangian formulation

From $D = 11$ $SO(5)$ normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5)$.

The world-volume theory of an M5-brane is a $6d$ $\mathcal{N}=(2,0)$ SCFT. No

By stacking M5-branes we get 6*d* $\mathcal{N} = (2,0) A_N$ SCFT [Strominger '95]

• The M5 world-volume theory: $6d$ $\mathcal{N} = (2,0)$ A_{N-1} SCFT

known lagrangian formulation

From $D = 11$ $SO(5)$ normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5)$.

The world-volume theory of an M5-brane is a $6d$ $\mathcal{N}=(2,0)$ SCFT. No

By stacking M5-branes we get $6d \mathcal{N} = (2,0) A_N$ SCFT [Strominger '95]

• The M5 world-volume theory: $6d$ $\mathcal{N} = (2,0)$ A_{N-1} SCFT

known lagrangian formulation

From $D = 11$ $SO(5)$ normal bundle to M5 couples to R-symmetry $Sp(2) \simeq SO(5)$.

The world-volume theory of an M5-brane is a $6d$ $\mathcal{N}=(2,0)$ SCFT. No

By stacking M5-branes we get $6d \mathcal{N} = (2,0) A_N$ SCFT [Strominger '95]

- Wrapping M5s on Riemann surfaces and T_N blocks
- Take M5 wrap on S^1 with radius R_6

$$
\int d^5x \frac{1}{g_5^2} \text{tr} F \wedge \star F + \cdots \implies g_5^2 \propto R_6
$$

Compactify on another
$$
S^1
$$
 with radius $R_5 \implies 4d$ $\mathcal{N} = 4$ SYM

\n
$$
\int dx_5 \int d^4x \frac{1}{g_5^2} \text{tr} F \wedge \star F + \dots \implies g_5^{-2} \text{d} x_5 = g_4^{-2} \implies \frac{1}{g_4^2} \sim \frac{R_5}{R_6}
$$

$$
6 \implies 5d \mathcal{N} = 2 \text{ SYM}
$$

- Wrapping M5s on Riemann surfaces and T_N blocks
- Take M5 wrap on S^1 with radius R_6

$$
\int d^5x \frac{1}{g_5^2} \text{tr} F \wedge \star F + \cdots \implies g_5^2 \propto R_6
$$

Computer

\nComputer

\n
$$
\text{Comparing } S^1 \text{ with radius } R_5 \implies 4d \mathcal{N} = 4 \text{ SYM}
$$
\n
$$
\int dx_5 \int d^4x \frac{1}{g_5^2} \text{tr} F \wedge \star F + \dots \implies g_5^{-2} \text{d} x_5 = g_4^{-2} \implies \frac{1}{g_4^2} \sim \frac{R_5}{R_6}
$$

$$
6 \longrightarrow 5d \mathcal{N} = 2 \text{ SYM}
$$

This is S-duality!

We can generalize for any (punctured) Riemann surfaces $\mathbf{\Sigma}_{g,n}$: class-S

theories [Gaiotto '09]

$\mu_4^{-2} \sim R_5/R_6$

$\sqrt{4} \sim R_6/R_5$

• Wrapping M5s on Riemann surfaces and T_N blocks

Upshot: M5 wrapped on $T^2 \implies 4d \mathcal{N} = 4$ SYM w/ g_4^{-2}

Compactify in opposite order $\implies 4d$ ${\cal N}=4$ SYM w/ g_4^{-2}

This is S-duality!

We can generalize for any (punctured) Riemann surfaces $\mathbf{\Sigma}_{g,n}$: class-S

theories [Gaiotto '09]

- $\mu_4^{-2} \sim R_5/R_6$
- $\mu_4^{-2} \sim R_6/R_5$

• Wrapping M5s on Riemann surfaces and T_N blocks

Any Riemann surface can be decomposed into pair of pants

-
-
- T_N block : $\mathscr{N}=2$ SCFTs with $SU(2) \times U(1)_R \times SU(N)^3$ global symmetry as world-volume theories of stack of M5 on three-punctured sphere. 3

• Wrapping M5s on Riemann surfaces and T_N blocks

Gluing T_N blocks is gauging some $SU(N)$: higher genus Riemann surfaces

S-class: gluing with $\mathcal{N}=2$ vector multiplet

General introduction • The B3W model

Up to now, compactification on Riemann surface. Generalization to twisting, aka preserve SUSY

wrapping branes on calibrated cycles on CYs. Calibration needed for

• The B3W model

Further generalization [Bah, Beem, Bobev, Wecht '12]:

• The B3W model

IR dynamics of branes wrapped on this geometry depend on choice of this rank-2 vector bundle

Further generalization [Bah, Beem, Bobev, Wecht '12]:

General introduction • The B3W model

Reduce structure group from $SU(2)$ to $U(1)$ CY_3 decomposable $\mathscr{L}_1 \oplus K_{C_g}\mathscr{L}_2 \to C_g$ $c_1(\mathcal{L}_1) = p$, $c_1(\mathcal{L}_2) = q$, $p + q = 2g - 2$

Manifest $U(1)^2$ isometry

$\mathbb{C}^2 \longrightarrow \mathcal{L}_1 \oplus \mathcal{L}_2$ π

General introduction • The B3W model

$q = 0$ or $p = 0 \implies X = \mathbb{C} \times T^{\star}C_{g}$, $\mathscr{N} = 2$ MN theories $= 2$ $q=p,\ \mathscr{N}=1$ Sicilian gauge theories [Benini, Tachiwaka, Wecht '09]

• The B3W model

 $\epsilon = 1,2$ vector multiplets \Longrightarrow choice of p,q

General p,q can be constructed from opportune gluing of $2(g-1)$ T_N blocks to form a Riemann surface with no punctures. Gluing with both

Outline

The gravity dual

General introduction

- The anomaly polynomial of an M5-brane
- Stacking the branes
- Wrapping the branes
- Two-dimensional central charge

Field Theory

Field Theory • The anomaly polynomial of an M5-brane

Supersymmetric $\mathscr{N}=(2,0)$ abelian tensor multiplet in $6d$:

- Two-form with self-dual field strength
- 5 scalars
- 4 real Weyl fermions

Four components chiral spinors

Self-dual chiral two-form 1 $\frac{1}{5760}$ (16 $p_1(TW)$ $2 - 112p_2(TW)$

$$
I_D = \frac{1}{2} \text{ch} S(N) \hat{A}(TW)
$$

• The anomaly polynomial of an M5-brane

Field Theory

Four components chiral spinors

$$
I_D = \frac{1}{2} \text{ch} S(N) \hat{A}(TW)
$$

Sections of rank-four spinor bundle constructed from the normal bundle N using the spinor rep

SO(5) is the remaining isometry from M-theory after M5 defect insertion

• The anomaly polynomial of an M5-brane **Field Theory**

• The anomaly polynomial of an M5-brane

 $A(TW)$ is the Dirac genus of TW , index of the Dirac operator on it

$$
(TW) = 1 - \frac{p_1(TW)}{24} + \frac{7p_1(TW)^2 - 4p_2(TW)}{5760}
$$

Four components chiral spinors

$$
I_D = \frac{1}{2} \text{ch} S(N) \hat{A}(TW)
$$

Field Theory

• The anomaly polynomial of an M5-brane

1440)

Four components chiral spinors

Field Theory

Self-dual chiral two-form

$$
\frac{1}{5760} (16p_1(TW)^2 - 112p_2(TW))
$$

• The anomaly polynomial of an M5-brane **Field Theory**

Propagates on brane world-volume W, does not see normal bundle

$$
I_8 = \frac{N-1}{48} \left[p_2(NW) - p_2(TW) + \frac{1}{4} (p_1(TW) - p_1(NW))^2 \right] + \frac{N^3 - N}{24} p_2(NW)
$$

Inflow
Spinors+Three-form
CS term

Anomaly polynomial for A_N case

[Witten '96; Harvey, Minasian, Moore '98; Intriligator '00; Yi '01; …]

• Wrapping the branes

• Wrapping the branes

• Wrapping the branes

$$
= \int_{C_g} I_8 \sim \sum_{i,j,k=1,2} A_{ijk} c_1(F_i) c_1(F_j) c_1(F_k)
$$

Where A_{ijk} abelian anomalies of $4d$ theory

$$
A_{_{RFR}} = (g - 1)N^3 \t A_{_{RRF}} = -\frac{1}{3}(g - 1)zN^3
$$

$$
A_{_{RFF}} = -\frac{1}{3}(g - 1)N^3 \t A_{_{FFF}} = (g - 1)zN^3
$$

[Bah, Beem, Bobev, Wecht '12]

Additional abelian symmetry from azimuthal rotation on spindle

Fix magnetic fluxes

• Two-dimensional central charge **Field Theory**

$$
\int c_1(F_R) = [\rho_R]_N^S = \frac{p_R}{n_N n_S}
$$

$$
\int c_1(F_F) = [\rho_F]_N^S = \frac{p_F}{n_N n_S}
$$

Preserve SUSY by R-symmetry (anti-)twist

 ρ_R

$$
P_R(y_N) = \frac{(-1)^{t_N}}{n_N} \qquad P_R(y_S) = \frac{(-1)^{t_S + 1}}{n_S}
$$

Where $t_N = 0, 1$. Twist $t_S = t_N$, anti-twist $t_{S} = t_{N} + 1$

Flavour flux fixed up to arbitrary constant

$$
c_R(\epsilon, x) = \frac{6I_4(\epsilon, x)}{c_1(F_R)^2}
$$

Central charge in large-N from anomaly polynomial and allow mixing

$R^{\text{trial}}(x,\epsilon) = R + xF + \epsilon J$

C-extremization!

$$
Rtrial(x, \epsilon) = R + xF + \epsilon J
$$

$$
c_R(\epsilon, x) = \frac{6I_4(\epsilon, x)}{c_1(F_R)^2}
$$

Central charge in large-N from anomaly polynomial and allow mixing

C-extremization!

$$
(g-1)N^{3}\left(4p_{F}^{2}-(n_{N}+n_{S})^{2}\right)\left(2zp_{F}+(-1)^{t_{N}}(n_{N}+n_{S})\right)\left((-1)^{t_{N}}(n_{N}+n_{S})\left(16zp_{F}+\left(z^{2}+3\right)(-1)^{t_{N}}(n_{N}+n_{S})\right)+4\left(3z^{2}+1\right)p_{F}^{2}\right)
$$
\n
$$
2n_{N}n_{S}\left(8p_{F}^{2}\left(-2n_{N}n_{S}+3z^{2}n_{S}^{2}+3z^{2}n_{N}^{2}\right)-32zp_{F}^{3}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)+8zp_{F}\left(-1\right)^{t_{N}}\left(n_{N}+n_{S}\right)\left(3n_{N}^{2}-2n_{N}n_{S}+3n_{S}^{2}\right)-48z^{2}p_{F}^{4}+\left(n_{N}+n_{S}\right)^{2}\left(-2\left(z^{2}+2\right)n_{N}n_{S}+\left(z^{2}+4\right)n_{S}^{2}+\left(z^{2}+4\right)n_{N}^{2}\right)\right)
$$

$$
\mathsf{Ar}
$$

N.B. $z =$ *p* − *q p* + *q*

• Two-dimensional central charge **Field Theory**

$$
\frac{(g-1)N^3\left(\left(n_S-n_N\right)^2-4p_F^2\right)\left(2zp_F+(-1)^{t_N}\left(n_N-n_S\right)\right)\left((-1)^{t_N}\left(n_N-n_S\right)\left(16zp_F+\left(z^2+3\right)(-1)^{t_N}\left(n_N-n_S\right)\right)+4\left(3z^2+1\right)p_F^2\right)}{2n_Nn_S\left(8p_F^2\left(2n_Nn_S+3z^2n_S^2+3z^2n_N^2\right)+32zp_F^3\left(-1)^{t_N}\left(n_S-n_N\right)-8zp_F\left(-1\right)^{t_N}\left(n_S-n_N\right)\left(3n_N^2+2n_Nn_S+3n_S^2\right)-48z^2p_F^4+\left(n_S-n_N\right)^2\left(2\left(z^2+2\right)n_Nn_S+\left(z^2+4\right)n_S^2+\left(z^2+4\right)n_N^2\right)\right)\right)}
$$

Twist

nti-twist

$$
\frac{(g-1)N^3\left(4p_F^2-\left(n_N+n_S\right)^2\right)\left(2zp_F+(-1)^{t_N}\left(n_N+n_S\right)\right)\left((-1)^{t_N}\left(n_N+n_S\right)\left(16zp_F+\left(z^2+3\right)(-1)^{t_N}\left(n_N+n_S\right)\right)+4\left(3z^2+1\right)p_F^2\right)}{2n_Nn_S\left(8p_F^2\left(-2n_Nn_S+3z^2n_S^2+3z^2n_N^2\right)-32zp_F^3\left(-1)^{t_N}\left(n_N+n_S\right)+8zp_F\left(-1\right)^{t_N}\left(n_N+n_S\right)\left(3n_N^2-2n_Nn_S+3n_S^2\right)-48z^2p_F^4+\left(n_N+n_S\right)^2\left(-2\left(z^2+2\right)n_Nn_S+\left(z^2+4\right)n_S^2+\left(z^2+4\right)n_N^2\right)\right)}\right)}
$$

N.B. $z =$ *p* − *q p* + *q*

$$
\frac{(g-1)N^3\left(\left(n_S-n_N\right)^2-4p_F^2\right)\left(2zp_F+(-1)^{t_N}\left(n_N-n_S\right)\right)\left((-1)^{t_N}\left(n_N-n_S\right)\left(16zp_F+\left(z^2+3\right)(-1)^{t_N}\left(n_N-n_S\right)\right)+4\left(3z^2+1\right)p_F^2\right)}{2n_Nn_S\left(8p_F^2\left(2n_Nn_S+3z^2n_S^2+3z^2n_N^2\right)+32zp_F^3\left(-1)^{t_N}\left(n_S-n_N\right)-8zp_F\left(-1\right)^{t_N}\left(n_S-n_N\right)\left(3n_N^2+2n_Nn_S+3n_S^2\right)-48z^2p_F^4+\left(n_S-n_N\right)^2\left(2\left(z^2+2\right)n_Nn_S+\left(z^2+4\right)n_S^2+\left(z^2+4\right)n_N^2\right)\right)}
$$

Twist

Anti-twist

Outline

- Consistent AdS_5 truncation with hypermultiplets 5
- Down to $AdS_3 \times \mathbb{WCP}^1_{[n_N, n_S]}$
-
- Numerical solutions

• Central charge from the poles and matching with field theory

The bulk

The boundary General introduction

The gravity side

• Consistent AdS_5 truncation with hypermultiplets

Petrini, Waldram '21]

- One hypermultiplet
- Two vector multiples

Starting point: consistent $5d$ truncation from $D=11$ of [Cassani, Josse,

Gauge group $U(1) \times \mathbb{R}$

Ansatz
$$
ds_{11}^2 = e^{2\Delta} ds_{AdS_5}^2 + ds_6^2
$$

second factor is squashed four-sp

-
- Ansatz $ds_{11}^2 = e^{2\Delta} ds_{AdS_5}^2 + ds_6^2$ warped product $AdS_5 \times_w M_6$ where second factor is squashed four-sphere fibered over Riemann surface *Cg*
	- Dependence of metric on factors *p*, *q* introduced before & scalar curvature k of $\bm{\mathit{C}_g}$
	- Generalizes $\mathcal{N}=1,2$ twistings of MN [Maldacena, Nunez '00]

The gravity side

• Consistent AdS_5 truncation with hypermultiplets

Introduce superpotential *W* =

Vector multiplet: two real scalars Σ, ϕ parametrize $M_V = \mathbb{R}_+ \times SO(1,1)$ SU(2,1) $SU(2) \times U(1)$

Σ^3 ((ke^{2*φ*} + 4)cosh *ϕ* − zke^{2*φ*} sinh *ϕ*) + e^{2*φ*}

4Σ²

The gravity side

• Consistent AdS_5 truncation with hypermultiplets

Hypermultiplet: four scalars φ , Ξ , θ_1 , θ_2 parametrize M_H =

Further truncation: $\theta_1 = \theta_2 = 0$

Further truncation: $\theta_1 = \theta_2 = 0$ Introduce superpotential *W* =

Vector multiplet: two real scalars Σ, ϕ parametrize $M_V = \mathbb{R}_+ \times SO(1,1)$ SU(2,1) $SU(2)\times U(1)$ Σ^3 ((ke^{2*φ*} + 4)cosh *ϕ* − zke^{2*φ*} sinh *ϕ*) + e^{2*φ*} $\sqrt{1}$

The gravity side

• Consistent AdS_5 truncation with hypermultiplets

Hypermultiplet: four scalars φ , Ξ, θ_1, θ_2 parametrize M_H =

$$
E, \phi \text{ parametrize } M_V = \mathbb{R}_+ \times \text{SO}(1,1)
$$
\n
$$
\theta_1, \theta_2 \text{ parametrize } M_H = \frac{\text{SU}(2,1)}{\text{SU}(2) \times \text{U}(1)}
$$

$$
\frac{((ke^{2\varphi} + 4)\cosh \phi - zke^{2\varphi}\sinh \phi) + e^{2\varphi}}{4\Sigma^2}
$$

The gravity side

• Consistent AdS_5 truncation with hypermultiplets

Vector multiplet: two real scalars Σ

Hypermultiplet: four scalars φ , Ξ , *θ*

Further truncation: $\theta_1 = \theta_2 = 0$

Introduce superpotential $W = \frac{1}{\sqrt{2\pi}}$ Σ^3 Ansatz $ds^2 = e^{2V(y)}ds^2_{AdS} + f(y)^2 dy^2 + h(y)^2 dz^2$ where (y, z) are α coordinates on Spindle: $z \sim z + 2\pi$ and $y \in [y_N, y_S]$ $ds^2 = e^{2V(y)}ds_A^2$ AdS_3 + *f*(*y*)

Gauge fields: $A^{(I)} = a^{(I)}(y)dz$ where $I = 1,2$

Assume: $\Sigma(y)$, $\phi(y)$, $\phi(y)$ and $\Xi = \Xi \cdot z$

$^{2}dy^{2} + h(y)^{2}dz^{2}$ where (y, z)

• Down to $AdS_3 \times \mathbb{WCP}^1_{[n_N, n_S]}$ **The gravity side**

Orthonormal frame of reference [Arav, Gauntlett, Roberts, Rosen '22]

$3 = f dy$, $e^4 = h dz$

34 $= \partial_{y} a^{(I)}$

The gravity side
\n• Down to
$$
AdS_3 \times WCP^1_{[n_N, n_S]}
$$

$$
e^a = e^V \bar{e}^a, \qquad e^2
$$

Field strength becomes

 f h $F_{34}^{(I)}$

The gravity side
\n• Down to
$$
AdS_3 \times WCP^1_{[n_N, n_S]}
$$

Then

$$
\begin{aligned}\n &\text{Maxwell's equations are} \\
&\text{Maxwell's equations are} \\
&\frac{2e^{3V}}{3\Sigma^2} \Big[(\cosh 2\phi - \mathbf{z} \sinh 2\phi) F_{34}^{(1)} + (\mathbf{z} \cosh 2\phi - \sinh 2\phi) F_{34}^{(2)} \Big] = \mathcal{E}_1 \\
&\frac{2e^{3V}}{3\Sigma^2} \Big[\mathbf{z} k \Sigma^6 F_{34}^{(0)} - (\cosh 2\phi + \mathbf{z} \sinh 2\phi) F_{34}^{(1)} + (\mathbf{z} \cosh 2\phi + \sinh 2\phi) F_{34}^{(2)} \Big] = \mathcal{E}_2 \\
&\partial_y \Big(\frac{1}{3} e^{3V} \Sigma^4 F_{34}^{(0)} \Big) = \frac{1}{4} e^{4\psi + 3V} g f h^{-1} D_z \Xi\n \end{aligned}
$$

 $D_z \Xi$

3

4

Killing spinor $\epsilon = \psi \otimes \chi$ with ψ on AdS_3 and χ on Spindle, where and $\nabla_m \psi = -\frac{\kappa}{2}$ 2 Γ*mψ*

• Down to $AdS_3 \times \mathbb{WCP}^1_{[n_N, n_S]}$ **The gravity side**

χ = *e*

$$
\frac{v}{2}e^{isz}\begin{pmatrix} \sin\frac{\xi}{2} \\ \cos\frac{\xi}{2} \end{pmatrix}
$$

ξ′− 2*f*(*gW* cos *ξ* + *κe*−*V*) = 0 $V' - \frac{2}{2}$ $\frac{1}{3}$ *fgW* sin $\xi = 0$ Σ' + 2 $\frac{2}{3}$ *fg* Σ^2 sin $\xi \partial_{\Sigma} W = 0$ ϕ' + 2*fg* sin $\xi \partial_{\phi}$ *W* = 0 $\varphi' + \frac{fg}{\cdot}$ sin *ξ* $\partial_\varphi W=0$ $(gW(1 + 2\cos^2 \xi) + 3\kappa e^{-V}\cot \xi) = 0,$

BPS equations

^h′− ²*fh*

3 sin *ξ*

Conditions at poles are enough [Arav, Gauntlett, Roberts, Rosen '22; Suh

'23; Amariti, Petri, Segati '23]

• $\varphi(y)$ finite at poles: $\frac{\partial_{\varphi} W|_{N,S}}{\partial y} = 0 \implies k\Sigma^3$

$$
0 \implies k\Sigma^3|_{N,S} + \frac{1}{\cosh\phi|_{N,S} - z\sinh\phi|_{N,S}} = 0
$$

Combine two conserved charges as

$$
Q_{1}|_{N,S} = \mathcal{E}_{1}|_{N,S} = \frac{4}{3}e^{2V|_{N,S}} \left(\frac{\kappa(\sinh(\phi|_{N,S}) - \mathbf{z}\cosh(\phi|_{N,S}))}{\Sigma|_{N,S}} - \mathbf{z}ge^{V|_{N,S}}\cos(\xi|_{N,S}) \right)
$$

$$
Q_{2}|_{N,S} = \mathcal{E}_{1}|_{N,S} - \mathcal{E}_{2}|_{N,S} = \frac{4\kappa e^{2V|_{N,S}}}{3\Sigma|_{N,S}} \left(2\sinh(\phi|_{N,S}) - \mathbf{z}k\Sigma|_{N,S}^{3} \right).
$$

The gravity side

$$
U|_{N}^{S} \qquad \mathcal{J}^{(I)} \equiv -ke^{V} \cos \xi h^{I}
$$

$$
\frac{1}{2}(n_S(-1)^{t_N} + n_N(-1)^{t_S})
$$

= 0

Three equations before fix boundary conditions for V, h, ϕ, Σ

 $e^{V(y)}f(y)h(y) = -\frac{k}{2}$

 $\frac{\kappa}{2\kappa}$ ($e^{3V(y)}$ cos $\xi(y)$) ′

Very important!!

Central charge

$$
= \frac{3}{2G_5} \Delta z \int_{y_n}^{y_s} e^{V(y)} |f(y)h(y)| dy
$$

The gravity side

Central charges match with the FT ones! Both for twist and anti-twist

We found analytic solution by restricting to graviton sector only for anti t wist case with $\mathbf{k} = 1$ and generic z matching [Ferrero et al. '21; Ferrero, Gauntlett, Sparks '22]. Graviton sector fixes p_F

Central charges match with the FT ones! Both for twist and anti-twist

We found analytic solution by restricting to graviton sector only for anti- $\tt{twist case with}$ ${\bf k} = 1$ and generic ${\rm z}$ matching [Ferrero et al. '21; Ferrero,

Gauntlett, Sparks '22]. Graviton sector fixes $p_F^{}$

• Numerical solutions For generic p_F (consistent with quantization) we find numerical solution by integrating BPS eqns. [Arav, Gauntlett, Roberts, Rosen '22; Suh '23; Amariti, Petri, Segati '23]

Still only solutions for $\mathbf{k} = -1$ and anti-twist

The gravity side

Thank you

Backup slides

• Couple of details on 2*d* anomaly polynomial

Anomaly polynomial in $2d$ is $I_4 =$

In terms of $2d$ mixed anomalies $I_4 =$

Field Theory

cR 6 $c_1(F_R)$ $2\left(-\frac{c_R-c_L}{2\pi}\right)$ $\frac{L}{24} p_1(TW_2)$ 1 2 $A_{ij}c_1(F_i)c_1(F_j)$ $\bigcap -\frac{k}{2}$ $\frac{1}{24} p_1(TW_2)$ Gravitational anomalies

Central charge of trial R-symmetry, many U(1)s

$$
c_R^{\text{trial}}(t) = 3 \left(A_{RR} + 2 \sum_{i \neq R} \right)
$$

i≠*R t iAiR* + ∑ *i*,*j*≠*R t i t jAij*

• Couple of details on 2*d* anomaly polynomial

In our case only $\mathop{\rm U}(1)_F$ and $\mathop{\rm U}(1)_J$, so mixing is

$$
c_R(x,\epsilon) = 3(A_{RR} + 2\epsilon A_{RJ} + 2\epsilon A_{RJ}
$$

Field Theory

where the anomalies are suitably normalized

-
- $c_R(x, \epsilon) = 3(A_{RR} + 2\epsilon A_{RI} + 2xA_{RF} + x^2\epsilon A_{FF} + \epsilon^2 A_{JJ} + 2x\epsilon A_{FJ})$
	-

• Numerical solutions

The gravity side