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Summary

What we did: consider the B3W  model coming from wrapping M5-
branes on Riemann surface and compactify to  on a Spindle. Find the 
central charge of the theory to then match it to the sugra calculation
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General introduction

The gravity dual

• Spindle geometry  : Twist and anti-twist


• The M5 world-volume theory:  SCFT 

• Wrapping M5s on Riemann surfaces and  blocks

• The B3W model

𝕎ℂℙ1
[nN,nS]

6d 𝒩 = (2,0) AN−1
TN



General introduction
• Spindle geometry  : Twist and anti-twist𝕎ℂℙ1

[nN,nS]

Important insights into strongly coupled SCFT by realizing them as RG 
fixed points of compactification of higher-dimensional QFTs

No covariantly constant spinor  , couple to background 

R-symmetry , then  constant

(∂μ + ωμ)ϵ = 0
Aμ = − ωμ (∂μ + ωμ + Aμ)ϵ = 0 ⟹ ϵ

Foundational work Maldacena & Nunez  SCFT from M5-branes on 
Riemann surface SUSY preserved by topological twist

4d
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General introduction

Condition  equivalent to choosing right flux for R-symmetry 
background 

Aμ = − ωμ

1
2π ∫Σg

FR = 2(g − 1)

• Spindle geometry  : Twist and anti-twist𝕎ℂℙ1
[nN,nS]



General introduction

More general solutions  is not compact 
manifold, but orbifold. The spindle is one such 
geometry where SUSY is preserved [Ferrero et 
al. ‘21, Ferrero et al. ’22, …]

Σ

Spindle: topologically  with conical deficit 
angles at poles 
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General introduction

2π (1 −
1

nN,S )

SUSY preserved also in non-trivial way


• Twist


• Anti-twist

1
2π ∫

𝕎ℂℙ1
[nN,nS]

FR =
nN + nS

nNnS

1
2π ∫

𝕎ℂℙ1
[nN,nS]

FR =
nN − nS

nNnS

• Spindle geometry  : Twist and anti-twist𝕎ℂℙ1
[nN,nS]



General introduction
• The M5 world-volume theory:  SCFT 6d 𝒩 = (2,0) AN−1

The world-volume theory of an M5-brane is a   SCFT. No 
known lagrangian formulation

6d 𝒩 = (2,0)

By stacking M5-branes we get    SCFT [Strominger ’95]6d 𝒩 = (2,0) AN

From   normal bundle to M5 couples to R-symmetry
.

D = 11 SO(5)
Sp(2) ≃ SO(5)
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General introduction
• Wrapping M5s on Riemann surfaces and  blocksTN

Take M5 wrap on  with radius  SYMS1 R6 ⟹ 5d 𝒩 = 2

∫ d5x
1
g2

5
trF ∧ ⋆F + ⋯ ⟹ g2

5 ∝ R6

Compactify on another  with radius  SYMS1 R5 ⟹ 4d 𝒩 = 4

∫ dx5 ∫ d4x
1
g2

5
trF ∧ ⋆F + ⋯ ⟹ g−2

5 dx5 = g−2
4 ⟹

1
g2

4
∼

R5

R6
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General introduction
• Wrapping M5s on Riemann surfaces and  blocksTN

Upshot: M5 wrapped on  SYM w/ T2 ⟹ 4d 𝒩 = 4 g−2
4 ∼ R5/R6

Compactify in opposite order  SYM w/ ⟹ 4d 𝒩 = 4 g−2
4 ∼ R6/R5

This is S-duality!

We can generalize for any (punctured) Riemann surfaces  : class-S 
theories [Gaiotto ’09]

Σg,n
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General introduction
• Wrapping M5s on Riemann surfaces and  blocksTN

Any Riemann surface can be decomposed into pair of pants

∼
 block :  SCFTs with 

 global 
symmetry as world-volume theories of 
stack of M5 on three-punctured sphere.

TN 𝒩 = 2
SU(2) × U(1)R × SU(N)3



• Wrapping M5s on Riemann surfaces and  blocksTN

Gluing  blocks is gauging some : higher genus Riemann surfacesTN SU(N)

General introduction

S-class: gluing with  vector multiplet𝒩 = 2

Σ1,2



General introduction
• The B3W model

Up to now, compactification on Riemann surface. Generalization to 
wrapping branes on calibrated cycles on CYs. Calibration needed for 
twisting, aka preserve SUSY



General introduction
• The B3W model

Further generalization [Bah, Beem, Bobev, Wecht ’12]:

To preserve SUSY

CY3 = Tot V

detV = KCg



General introduction
• The B3W model

IR dynamics of branes wrapped on this 
geometry depend on choice of this rank-2 
vector bundle

Further generalization [Bah, Beem, Bobev, Wecht ’12]:



General introduction
• The B3W model

Reduce structure group from  to  SU(2) U(1)

 decomposable  CY3 ℒ1 ⊕ KCg
ℒ2 → Cg

Manifest  isometryU(1)2

c1(ℒ1) = p, c1(ℒ2) = q, p + q = 2g − 2



General introduction
• The B3W model

Limiting cases c1(ℒ1) = p, c1(ℒ2) = q, p + q = 2g − 2

   MN theoriesq = 0 or p = 0 ⟹ X = ℂ × T⋆Cg, 𝒩 = 2

   Sicilian gauge theories [Benini, Tachiwaka, Wecht ’09]q = p, 𝒩 = 1



General introduction
• The B3W model

General  can be constructed from opportune gluing of  
blocks to form a Riemann surface with no punctures. Gluing with both 

 vector multiplets  choice of 

p, q 2(g − 1) TN

𝒩 = 1,2 ⟹ p, q
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The gravity dual

General introduction

• The anomaly polynomial of an M5-brane

• Stacking the branes

• Wrapping the branes

• Two-dimensional central charge 

Field Theory 



Field Theory

Supersymmetric  abelian tensor multiplet in  : 


• Two-form with self-dual field strength


•  scalars


• 4 real Weyl fermions

𝒩 = (2,0) 6d

5

• The anomaly polynomial of an M5-brane



Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Self-dual chiral two-form


IA =
1

5760 (16p1(TW)2 − 112p2(TW))

• The anomaly polynomial of an M5-brane
Field Theory



Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

• The anomaly polynomial of an M5-brane

Sections of rank-four spinor bundle constructed 
from the normal bundle  using the spinor rep 
of 

N
SO(5)

 is the remaining isometry from M-theory 
after M5 defect insertion
SO(5)

Field Theory



• The anomaly polynomial of an M5-brane

 is the Dirac genus of , index of the 
Dirac operator on it

̂A(TW) TW

̂A(TW) = 1 −
p1(TW)

24
+

7p1(TW)2 − 4p2(TW)
5760

Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Field Theory



• The anomaly polynomial of an M5-brane

ID =
1
2 ( p2(N)2

24
+

p1(N)2

96
−

p1(N)p1(TW)
48

+
7p1(TW)2 − 4p2(TW)

1440 )

Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Field Theory



Self-dual chiral two-form


IA =
1

5760 (16p1(TW)2 − 112p2(TW))

• The anomaly polynomial of an M5-brane

Propagates on brane world-volume W, 
does not see normal bundle

Field Theory



• Stacking the branes

Anomaly polynomial for  caseAN

I8 =
N − 1

48 [p2(NW ) − p2(TW ) +
1
4

(p1(TW ) − p1(NW ))2] +
N3 − N

24
p2(NW )

[Witten ’96; Harvey, Minasian, Moore ’98; Intriligator ’00; Yi ’01; …]

Spinors+Three-form CS termInflow

Field Theory



• Wrapping the branes

 SCFT6d 𝒩 = (2,0) AN−1

Family  SCFT4d 𝒩 = 1,2

Family  SCFT2d

Field Theory
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• Wrapping the branes

I6 = ∫Cg

I8 ∼ ∑
i,j,k=1,2

Aijkc1(Fi)c1(Fj)c1(Fk)

Where  abelian anomalies of  theoryAijk 4d

A
RRR

= (g − 1)N3 A
RRF

= −
1
3

(g − 1)zN3

A
RFF

= −
1
3

(g − 1)N3 A
FFF

= (g − 1)zN3

Field Theory

[Bah, Beem, 
Bobev, Wecht ’12]



• Wrapping the branes

 SCFT6d 𝒩 = (2,0) AN−1

Family  SCFT4d 𝒩 = 1,2

Family  SCFT2d

Field Theory



• Two-dimensional central charge 

I4 = ∫
𝕎ℂℙ1

[nN,nS]

I6 =

∼
cR

6
c1(FR)2 −

cR − cL

24
p1(TW2)

Additional abelian symmetry from azimuthal 
rotation on spindle

Subleading at large N

Field Theory

[Amariti, Mancani, 
DM, Petri, Segati ’23]



• Two-dimensional central charge 

Fix magnetic fluxes

∫ c1(FR) = [ρR]S
N =

pR

nNnS

Preserve SUSY by R-symmetry (anti-)twist

∫ c1(FF) = [ρF]S
N =

pF

nNnS

Field Theory

[Amariti, Mancani, 
DM, Petri, Segati ’23]



• Two-dimensional central charge 

Where . Twist  , anti-twist tN = 0,1 tS = tN
tS = tN + 1

ρR(yN) =
(−1)tN

nN
ρR(yS) =

(−1)tS+1

nS

Flavour flux fixed up to arbitrary constant

Field Theory

[Amariti, Mancani, 
DM, Petri, Segati ’23]



• Two-dimensional central charge 

Rtrial(x, ϵ) = R + xF + ϵJ

cR(ϵ, x) =
6I4(ϵ, x)
c1(FR)2

Central charge in large-N from anomaly 
polynomial and allow mixing

C-extremization! 

Field Theory

[Amariti, Mancani, 
DM, Petri, Segati ’23]
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• Two-dimensional central charge 

(g − 1)N3 (4p2
F − (nN + nS)2) (2zpF + (−1)tN(nN + nS))((−1)tN(nN + nS) (16zpF + (z2 + 3)(−1)tN(nN + nS)) + 4 (3z2 + 1) p2

F)
2nNnS(8p2

F (−2nNnS + 3z2n2
S + 3z2n2

N) − 32zp3
F(−1)tN(nN + nS) + 8zpF(−1)tN(nN + nS) (3n2

N − 2nNnS + 3n2
S) − 48z2p4

F + (nN + nS)2( − 2 (z2 + 2) nNnS + (z2 + 4) n2
S + (z2 + 4) n2

N))

(g − 1)N3 ((nS − nN)2 − 4p2
F) (2zpF + (−1)tN(nN − nS))((−1)tN(nN − nS) (16zpF + (z2 + 3)(−1)tN(nN − nS)) + 4 (3z2 + 1) p2

F)
2nNnS(8p2

F (2nNnS + 3z2n2
S + 3z2n2

N) + 32zp3
F(−1)tN(nS − nN) − 8zpF(−1)tN(nS − nN) (3n2

N + 2nNnS + 3n2
S) − 48z2p4

F + (nS − nN)2(2 (z2 + 2) nNnS + (z2 + 4) n2
S + (z2 + 4) n2

N))

Twist

Anti-twist

N.B.  z =
p − q
p + q

Field Theory



• Two-dimensional central charge 
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Outline

• Consistent AdS  truncation with hypermultiplets

• Down to AdS 

• Central charge from the poles and matching with field theory

• Numerical solutions

5

3 × 𝕎ℂℙ1
[nN,nS]

The bulk

The boundary
General introduction



The gravity side
• Consistent AdS  truncation with hypermultiplets 5

Starting point: consistent  truncation from  of [Cassani, Josse, 
Petrini, Waldram ’21]


• One hypermultiplet


• Two vector multiples

5d D = 11

Gauge group U(1) × ℝ



• Consistent AdS  truncation with hypermultiplets 5

Ansatz    warped product   where 
second factor is squashed four-sphere fibered over Riemann surface 

ds2
11 = e2Δds2

AdS5
+ ds2

6 AdS5 ×w M6

Cg

Dependence of metric on factors  
introduced before & scalar curvature  of 

p, q
k Cg

Generalizes  twistings of MN 
[Maldacena, Nunez ’00]

𝒩 = 1,2

The gravity side



• Consistent AdS  truncation with hypermultiplets 5

Vector multiplet: two real scalars  parametrize Σ, ϕ MV = ℝ+ × SO(1,1)

Hypermultiplet: four scalars  parametrize φ, Ξ, θ1, θ2 MH =
SU(2,1)

SU(2) × U(1)

Further truncation: θ1 = θ2 = 0

Introduce superpotential W =
Σ3((ke2φ + 4)cosh ϕ − zke2φ sinh ϕ) + e2φ

4Σ2

The gravity side
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• Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

Ansatz    where  are 
coordinates on Spindle:  and 

ds2 = e2V(y)ds2
AdS3

+ f(y)2dy2 + h(y)2dz2 (y, z)
z ∼ z + 2π y ∈ [yN, yS]

Assume:  and Σ(y), ϕ(y), φ(y) Ξ = Ξ̄ ⋅ z

Gauge fields:  where A(I) = a(I)(y)dz I = 1,2

The gravity side



• Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

Orthonormal frame of reference [Arav, Gauntlett, Roberts, Rosen ’22]

ea = eVēa, e3 = f dy, e4 = h dz

Field strength becomes

f h F(I)
34 = ∂ya(I)

The gravity side



• Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

Then, Maxwell’s equations are

2e3V

3Σ2 [(cosh 2ϕ − z sinh 2ϕ)F(1)
34 + (z cosh 2ϕ − sinh 2ϕ)F(2)

34 ] = ℰ1

2e3V

3Σ2 [zkΣ6F(0)
34 −(cosh 2ϕ+z sinh 2ϕ)F(1)

34 +(z cosh 2ϕ+sinh 2ϕ)F(2)
34 ]= ℰ2

∂y( 1
3

e3VΣ4F(0)
34 ) =

1
4

e4ψ+3Vg f h−1DzΞ

Constants

The gravity side



• Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

Killing spinor   with  on  and  on Spindle, where 
 and 

ϵ = ψ ⊗ χ ψ AdS3 χ
∇mψ = −

κ
2

Γmψ

χ = e
V
2 eisz

sin ξ
2

cos ξ
2

The gravity side



• Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

BPS equations 

ξ′ − 2f(gW cos ξ + κe−V) = 0

V′ −
2
3

fgW sin ξ = 0

Σ′ +
2
3

fg Σ2 sin ξ ∂ΣW = 0

ϕ′ + 2fg sin ξ ∂ϕW = 0

φ′ +
fg

sin ξ
∂φW = 0

h′ −
2fh

3 sin ξ
(gW(1 + 2 cos2 ξ) + 3κe−V cot ξ) = 0,

The gravity side



• Central charge from the poles and matching with field theory
Conditions at poles are enough [Arav, Gauntlett, Roberts, Rosen ’22; Suh 
’23; Amariti, Petri, Segati ‘23]


•  finite at poles:φ(y) ∂φW |N,S = 0 ⟹ kΣ3 |N,S +
1

cosh ϕ |N,S − z sinh ϕ |N,S
= 0

Combine two conserved charges as

Q1 |N,S = ℰ1 |N,S =
4
3

e2V|N,S (
κ(sinh(ϕ |N,S ) − z cosh(ϕ |N,S ))

Σ |N,S
− zgeV|N,S cos(ξ |N,S ))

Q2 |N,S = ℰ1 |N,S − ℰ2 |N,S =
4κe2V|N,S

3Σ |N,S
(2 sinh(ϕ |N,S ) − zkΣ |3

N,S ) .

The gravity side



• Central charge from the poles and matching with field theory

Fluxes

pI

nNnS
=

1
2π ∫

𝕎ℂℙ

gF(I) = gℐ(I) |S
N ℐ(I) ≡ − keV cos ξhI

Flavour flux pF = gnNnSℐ(1) |S
N

R-symmetry flux −gnNnSℐ(2) |S
N =

1
2

(nS(−1)tN + nN(−1)tS)

Constraint ℐ(0) + zkℐ(1) − kℐ(2) = 0

The gravity side



• Central charge from the poles and matching with field theory

Three equations before fix boundary conditions for V, h, ϕ, Σ

eV(y)f(y)h(y) = −
k
2κ (e3V(y) cos ξ(y))′ Very important!!

Central charge

c2d =
3RAdS3

2G3
=

3
2G5

Δz∫
ys

yn

eV(y) | f(y)h(y) | dy

The gravity side



• Central charge from the poles and matching with field theory

Central charges match with the FT ones! Both for twist and anti-twist

The gravity side

We found analytic solution by restricting to graviton sector only for anti-
twist case with  and generic  matching [Ferrero et al. ’21; Ferrero, 
Gauntlett, Sparks ’22]. Graviton sector fixes 

k = − 1 z
pF
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• Numerical solutions 
For generic  (consistent 
with quantization) we find 
numerical solution by 
integrating BPS eqns.
[Arav, Gauntlett, Roberts, 
Rosen ’22; Suh ’23; 
Amariti, Petri, Segati ‘23]


Still only solutions for 
 and anti-twist

pF

k = − 1

The gravity side



Thank you  
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• Couple of details on  anomaly polynomial 2d
Field Theory

Anomaly polynomial in  is 2d I4 =
cR

6
c1(FR)2 −

cR − cL

24
p1(TW2)

In terms of  mixed anomalies 2d I4 =
1
2

Aijc1(Fi)c1(Fj) −
k

24
p1(TW2)

Central charge of trial R-symmetry, many s


 

U(1)

ctrial
R (t) = 3 ARR + 2∑

i≠R

tiAiR + ∑
i,j≠R

titjAij

Gravitational anomalies



• Couple of details on  anomaly polynomial 2d
Field Theory

In our case only  and  , so mixing is


 


where the anomalies are suitably normalized

U(1)F U(1)J

cR(x, ϵ) = 3(ARR + 2ϵARJ + 2xARF + x2ϵAFF + ϵ2AJJ + 2xϵAFJ)



• Numerical solutions 
The gravity side


