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The bulk

General introduction

The boundary

• Spindle geometry  : Twist and anti-twist

• The M5 world-volume theory:  SCFT 

• Wrapping M5s on Riemann surfaces and  blocks

• The B3W model

𝕎ℂℙ1
[nN,nS]

6d 𝒩 = (2,0) AN−1
TN



Spindle Geometry
Important insights into strongly coupled SCFT by realizing them as RG 
fixed points of compactification of higher-dimensional QFTs

No covariantly constant spinor  , couple to background R-
symmetry , then  constant

(∂μ + ωμ)ϵ = 0
AR

μ = − ωμ (∂μ + ωμ + AR
μ )ϵ = 0 ⟹ ϵ

Foundational work Maldacena & Nunez  SCFT from M5-branes on 
Riemann surface SUSY preserved by topological twist  
[Maldacena, Nunez (2000)] 

4d
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Condition  equivalent to choosing right flux for R-symmetry 
background 

Aμ = − ωμ

1
2π ∫Σg

FR = χ(Σg) = 2(g − 1)

Spindle Geometry



More general solutions  is not compact 
manifold, but orbifold. The spindle is one such 
geometry where SUSY is preserved 

[Ferrero, Gauntlett, Ipina, Martelli, Sparks (2020, 2021)] 

Σ

Spindle: topologically  with conical deficit 
angles at poles 

S2

Spindle Geometry



Spindle: topologically  with conical deficit 
angles at poles 

S22π (1 −
1

nN,S )

Spindle Geometry

More general solutions  is not compact 
manifold, but orbifold. The spindle is one such 
geometry where SUSY is preserved 

[Ferrero, Gauntlett, Ipina, Martelli, Sparks (2020, 2021)] 

Σ



SUSY preserved in novel way


• Twist 


• Anti-twist 

( + )

( − )

1
2π ∫

𝕎ℂℙ1
[nN,nS]

FR =
nN ± nS

nNnS

Spindle Geometry

2π (1 −
1

nN,S ) Preserved Killing spinors

• Depend on (some) coordinates of Spindle

• Have definite chirality only at the poles



The M5 world-volume theory

The world-volume theory of an M5-brane is a   SCFT. No 
known lagrangian formulation

6d 𝒩 = (2,0)

From   normal bundle to M5 couples to R-symmetry
.

D = 11 SO(5)
Sp(2) ≃ SO(5)

By stacking M5-branes we get   =ADE SCFT. Label coming 
from compactification on  giving -SYM

6d 𝒩 = (2,0) G
S1 5d 𝒩 = 2 G
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Wrapping M5s on Σg

Take M5 wrap on  with radius  SYMS1 R6 ⟹ 5d 𝒩 = 2

∫ d5x
1
g2

5
trF ∧ ⋆F + ⋯ ⟹ g2

5 ∝ R6

Compactify on another  with radius  SYMS1 R5 ⟹ 4d 𝒩 = 4

∫ dx5 ∫ d4x
1
g2

5
trF ∧ ⋆F + ⋯ ⟹ g−2

5 dx5 = g−2
4 ⟹

1
g2

4
∼

R5

R6
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Wrapping M5s on Σg

Upshot: M5 wrapped on  SYM w/ T2 ⟹ 4d 𝒩 = 4 g−2
4 ∼ R5/R6

We can generalize for any (punctured) Riemann surfaces  : class-S 
theories [Gaiotto (2009)] 

Σg,n
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Wrapping M5s on Σg

Any Riemann surface can be decomposed into pair of pants

∼
 block :  SCFTs with 

 global 
symmetry as world-volume theories of 
stack of M5 on three-punctured sphere.

TN 𝒩 = 2
SU(2) × U(1)R × SU(N)3



Gluing  blocks is gauging some : higher genus Riemann surfacesTN SU(N)

S-class: gluing with  vector multiplet𝒩 = 2

Σ1,2

Wrapping M5s on Σg



The B3W Model

Up to now, compactification on Riemann surface. Generalization to 
wrapping branes on calibrated cycles on CYs. Calibration needed for 
twisting, aka preserve SUSY



Further generalization: CY  as holo  bundle over  

[Bah, Beem, Bobev, Wecht (2012)] 

3 ℂ2 Cg

CY3 = KCg
⊗ V

To preserve SUSY

The B3W Model

Central  in  connection on CY constrained  R-symmetryU(1) U(2) ⟹



Further generalization [Bah, Beem, Bobev, Wecht (2012)]:

IR dynamics of branes wrapped on this 
geometry depend on choice of this bundle

The B3W Model



When CY   (decomposable)3 = ℒ1 ⊕ ℒ2

Manifest  isometry U(1)2 ⟹ U(1)R × U(1)F

c1(ℒ1) = p, c1(ℒ2) = q, p + q = 2g − 2

The B3W Model

Reparametrization   where p = (1 + z)(g − 1), q = (1 − z)(g − 1)
z(g − 1) ∈ ℤ

Family of IR SCFT described by degree of line bundles



Limiting cases c1(ℒ1) = p, c1(ℒ2) = q, p + q = 2g − 2

   S-class [Gaiotto (2009)] q = 0 or p = 0 ⟹ X = ℂ × T⋆Cg, 𝒩 = 2

 Sicilian gauge theories [Benini, Tachikawa, Wecht (2009)] q = p, 𝒩 = 1

The B3W Model



General  can be constructed from opportune gluing of  
blocks to form a Riemann surface with no punctures. Gluing with both 

 vector multiplets  choice of 

p, q 2(g − 1) TN

𝒩 = 1,2 ⟹ p, q

The B3W Model



The 
boundary
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The bulk

The boundary
General introduction

• The anomaly polynomial of an M5-brane

• Stacking the branes

• Wrapping the branes

• Two-dimensional central charge 



Anomaly Polynomial of M5-brane

Supersymmetric  abelian tensor multiplet in  : [Witten (1996)] 


• Self-dual three form


•  scalars


•  real Weyl fermions

𝒩 = (2,0) 6d

5

4



Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Self-dual chiral two-form


IA =
1

5760 (16p1(TW)2 − 112p2(TW))

Anomaly Polynomial of M5-brane

 [Witten, Gaume (1986)] 



Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Sections of rank-four spinor bundle constructed 
from the normal bundle  using the spinor rep 
of 

N
SO(5)

 is the remaining isometry from M-theory 
after M5 defect insertion
SO(5)

Anomaly Polynomial of M5-brane



 is the Dirac genus of , index of the 
Dirac operator on it

̂A(TW) TW

̂A(TW) = 1 −
p1(TW)

24
+

7p1(TW)2 − 4p2(TW)
5760

Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Anomaly Polynomial of M5-brane



ID =
1
2 ( p2(N)2

24
+

p1(N)2

96
−

p1(N)p1(TW)
48

+
7p1(TW)2 − 4p2(TW)

1440 )

Four components chiral spinors


ID =
1
2

chS(N) ̂A(TW)

Anomaly Polynomial of M5-brane



Self-dual chiral two-form


IA =
1

5760 (16p1(TW)2 − 112p2(TW))

Propagates on brane world-volume W, 
does not see normal bundle

Anomaly Polynomial of M5-brane



Stacking the Branes
Anomaly polynomial 

I8 =
N − 1

48 [p2(NW ) − p2(TW ) +
1
4

(p1(TW ) − p1(NW ))2] +
N3 − N

24
p2(NW )

[Witten (1996)] [Harvey, Minasian, Moore (1998)] 
[Intriligator (2000)] [Yi (2001)] …

Spinors+Three-form CS termInflow



Wrapping the Branes

 SCFT6d 𝒩 = (2,0) AN−1

Family  SCFT4d 𝒩 = 1,2

Family  SCFT2d 𝒩 = (2,0)



 SCFT6d 𝒩 = (2,0) AN−1

Family  SCFT4d 𝒩 = 1,2

Family  SCFT2d 𝒩 = (2,0)

Wrapping the Branes



[Bah, Beem, Bobev, Wecht (2012)]

I6 = ∫Cg

I8 ∼ ∑
i,j,k=1,2

Aijkc1(Fi)c1(Fj)c1(Fk)

Where  abelian anomalies of  theoryAijk 4d

A
RRR

= (g − 1)N3 A
RRF

= −
1
3

(g − 1)zN3

A
RFF

= −
1
3

(g − 1)N3 A
FFF

= (g − 1)zN3

Wrapping the Branes



 SCFT6d 𝒩 = (2,0) AN−1

Family  SCFT4d 𝒩 = 1,2

Family  SCFT2d 𝒩 = (2,0)

Wrapping the Branes



Two-dimensional Central Charge

[Amariti, Mancani, Morgante, 
Petri, Segati (2023)]

I4 = ∫
𝕎ℂℙ1

[nN,nS]

I6

∼
cR

6
c1(FR)2 −

cR − cL

24
p1(TW2)

Additional abelian symmetry from 
azimuthal rotation on spindle

Subleading at large N



Fix magnetic fluxes

∫ c1(FR) =
pR

nNnS ∫ c1(FF) =
pF

nNnS

Preserve SUSY by R-symmetry (anti-)twist

Two-dimensional Central Charge

[Amariti, Mancani, Morgante, 
Petri, Segati (2023)]



Where . Twist  , anti-twist tN = 0,1 tS = tN
tS = tN + 1

ρR(yN) =
(−1)tN

nN
ρR(yS) =

(−1)tS+1

nS

Flavour flux fixed up to arbitrary constant

Two-dimensional Central Charge

[Amariti, Mancani, Morgante, 
Petri, Segati (2023)]



Two-dimensional Central Charge

Rtrial(x, ϵ) = R0 + xF + ϵJ

cR(ϵ, x) =
6I4(ϵ, x)
c1(FR)2

Central charge in large-N from anomaly 
polynomial and allow mixing. New  
from azimuthal symmetry of spindle

U(1)J

-extremization! c

[Amariti, Mancani, Morgante, 
Petri, Segati (2023)]



Rtrial(x, ϵ) = R0 + xF + ϵJ

cR(ϵ, x) =
6I4(ϵ, x)
c1(FR)2

Central charge in large-N from anomaly 
polynomial and allow mixing. New  
from azimuthal symmetry of spindle

U(1)J

-extremization! c

Two-dimensional Central Charge

[Amariti, Mancani, Morgante, 
Petri, Segati (2023)]



Twist  and anti-twist ( + ) ( − )

Two-dimensional Central Charge

c±
2d =

N3(g − 1)(4p2
F − (nN ± nS)2) (2zpF + (−1)tN(nN ± nS))((−1)tN(nN ± nS) (16zpF + (z2 + 3)(−1)tN(nN ± nS)) + 4 (3z2 + 1) p2

F)
2nNnS(8p2

F (∓2nNnS + 3z2n2
S + 3z2n2

N) − 32zp3
F(−1)tN(nN ± nS) + 8zpF(−1)tN(nN ± nS) (3n2

N ∓ 2nNnS + 3n2
S) − 48z2p4

F + (nN ± nS)2( ∓ 2 (z2 + 2) nNnS + (z2 + 4) n2
S + (z2 + 4) n2

N))

N.B.  z =
p − q
p + q

Checks with limiting cases  of [Benini, Bobev (2013)]. In 
this limit  and isometry enhances  therefore 

, i.e. no mixing in extremization.

nS = nN = 1, pF = 0
𝕎ℂℙ1 → ℙ1 U(1) → SU(2)

ϵ → 0
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p − q
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•   gauged supergravity

• Consistent AdS  truncation with hypermultiplets

• Down to AdS 

• Central charge from the poles and matching with field theory

• Numerical solutions

5d 𝒩 = 2
5

3 × 𝕎ℂℙ1
[nN,nS]

The bulk
The boundary
General introduction



Gravity and matter multiplets:


• Gravity multiplet:  graviton, 2 gravitini, graviphoton


• Vector multiplet:  vector field, 2 gauginos, real scalar


• Hypermultiplet:  4 real scalars, 2 hyperinos  

Total number of vector fields is  


{ea
μ, ψ i

μ, Aμ}
{Ax

μ, λx i, ϕx}
{qX, ζA}

nV + 1 AI
μ

 sugra admit coupling to  vectors and   hypermultiplets𝒩 = 2 nV nH

  gauged supergravity5d 𝒩 = 2



Scalars in multiplets parametrize a moduli space ℳ = 𝒮 ⊗ 𝒬

  gauged supergravity5d 𝒩 = 2

• Scalars in vector parametrize  a very special real manifold defined 
by cubic equation

𝒮

{hI(ϕx) |cIJKhIhJhK = 1} ∈ ℝnV+1

• Scalars in hyper parametrize  a quaternionic Kähler manifold of real 
dimension 

𝒬
4nH



Gauging of abelian isometries of the quaternionic Kähaler by vectors  
generated by Killing vectors  that encode charge of scalars

AI
μ

kX
I (q)

  gauged supergravity5d 𝒩 = 2

DμqX = ∂μqX + gAI
μkX

I

Here we can define scalar super potential  to restore susy from 
prepotentials .

W
Pr

I

kX
I Rr

XY = DYPr
Iwhere

Superpotential  relevant quantity for extremization! [Tachikawa (2006)]. 
Condition for maximization is condition on existence of AdS  solution. 

W
a− 5



  gauged supergravity5d 𝒩 = 2
Susy vacuum:  from susy variations ∂xW = 0, ∂XW = 0

δψμ = (Fμ + ⋯ +
1
2

gWγμ) ϵ = 0

δλx = (−
i
2

γμ∂μϕx + ⋯ + i
3
2

ggxy∂yW) ϵ = 0

δζA = 0 ⟹ (−iγμ∂μqX + ⋯ +
3
8

ig∂XW) ϵ = 0



Starting point: consistent  truncation from  

[Cassani, Josse, Petrini, Waldram (2010)]


• One hypermultiplet


• Two vector multiples

5d D = 11

AdS  Truncation with Hypers5

Broken global symmetries in FT related to massive vectors in sugra. 
Hypers serve as Stuckelberg fields. Massless vectors become massive by 
Higgs mechanism



AdS  Truncation with Hypers5
11-dimensional metric ansatz 

 is fibration of squashed  over Riemann surf     ℳ6 S4 Cg ℳ4 ↪ ℳ6 → Cg

ds2
11 = e2Δds2

AdS5
+ ds2

6 , ds2
6 = Δ̄1/2e2g0 ds2

Cg
+

1
4

Δ̄−2/3 ds2
4

Relation between warp factors e2ΔR2
AdS5

= e2f0Δ̄1/3

 depend on  and curvature  of Riemann surfaceΔ̄, f0, g0 z k



AdS  Truncation with Hypers5

Three vectors . Scalar geometry parametrized by manifoldAI
μ, I = 0,1,2

ℝ+ × SO(1,1) ×
SU(2,1)

SU(2) × U(1){Σ, ϕ} {φ, Ξ, θ1, θ2}

Further truncation consistent with AdS  vacuum 5 θ1 = θ2 = 0

Superpotential W =
Σ3((ke2φ + 4)cosh ϕ − zke2φ sinh ϕ) + e2φ

4Σ2
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4Σ2

ℝ+ × SO(1,1) ×
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Ansatz    where  are 
coordinates on Spindle:  and 

ds2 = e2V(y)ds2
AdS3

+ f(y)2dy2 + h(y)2dz2 (y, z)
z ∼ z + 2π y ∈ [yN, yS]

Field dependence on Spindle coordinates:  and Σ(y), ϕ(y), φ(y) Ξ = Ξ̄ ⋅ z

Gauge fields:  where A(I) = a(I)(y)dz I = 1,2

Down to AdS3 × 𝕎ℂℙ1
[nN,nS]



Orthonormal frame of reference [Arav, Gauntlett, Roberts, Rosen (2022)]

ea = eVēa, e3 = f dy, e4 = h dz

Field strength becomes

f h F(I)
34 = ∂ya(I)

Down to AdS3 × 𝕎ℂℙ1
[nN,nS]



Then, Maxwell’s equations are

2e3V

3Σ2 [(cosh 2ϕ − z sinh 2ϕ)F(1)
34 + (z cosh 2ϕ − sinh 2ϕ)F(2)

34 ] = ℰ1

2e3V

3Σ2 [zkΣ6F(0)
34 −(cosh 2ϕ+z sinh 2ϕ)F(1)

34 +(z cosh 2ϕ+sinh 2ϕ)F(2)
34 ]= ℰ2

∂y( 1
3

e3VΣ4F(0)
34 ) =

1
4

e4ψ+3Vg f h−1DzΞ

Constants
Down to AdS3 × 𝕎ℂℙ1

[nN,nS]

DzΞ = Ξ̄ + g(a(0) + zka(1) − za(2))

Higgsed combination



ϵ = ψ ⊗ χ :

∇mψ = − κ
2 Γmψ, κ = ± 1

χ = e
V
2 eisz

sin ξ
2

cos ξ
2

Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

BPS equations for this geometry computed by factorizing Killing spinors

Where  spinor on Spindle and  spinor on AdSψ χ 3

Chirality of dual SCFT 

 or 𝒩 = (0,2) 𝒩 = (2,0)



BPS equations ξ′ = 2f(gW cos ξ + κe−V), ϕ′ = − 2fg sin ξ ∂ϕW

3V′ = 2fgW sin ξ, φ′ = − fg sin−1 ξ∂φW

3Σ′ = − 2fg Σ2 sin ξ ∂ΣW, 3h′ = 2fh sin−1 ξ(gW(1 + 2 cos2 ξ) − 3κe−V cot ξ)

Down to AdS3 × 𝕎ℂℙ1
[nN,nS]

sin ξ(s − Qz) = − h(gW cos ξ + κe−V) Dμϵ = (∇μ − iQμ)ϵ
gh∂φW cos ξ = ∂φQz sin ξ

Algebraic 
constraints

 symmetryℤ2{h → − h, a(I) → − a(I), Qz → − Qz, s → − s, ϕ → − ϕ, z → − z}



Central Charge from the Poles

Conditions at poles are enough [Amariti, Petri, Segati (2023)] [Suh (2023)] …

BPS equations give ,  constanth = keV sin ξ k

1.  where  twist or anti-twist


2.  where  due to  symmetry


3.  from BPS equations


4.  to ensure finiteness of 

cos ξ |N,S = (−1) tN,S tN,S ∈ {0,1}

k sin′ ξ |N,S =
(−1)lN,S

nN,S
lN = 0, lS = 1 ℤ2

(s − Qz) |N,S =
1

2nN,S
(−1)tN,S+lN,S+1

∂φW = 0 φ(y)



Fluxes can be written int terms of pole data

pI

nNnS
=

1
2π ∫

𝕎ℂℙ

gF(I) = gℐ(I) |S
N ℐ(I) ≡ − keV cos ξhI

Flavour flux pF = p1 = gnNnSℐ(1) |S
N

R-symmetry flux pR = − p2 =
1
2

(nS(−1)tN + nN(−1)tS)

Constraint pM ∝ p0 + zkp1 − kp2 = 0

Central Charge from the Poles



Equations before fix boundary conditions for . MoreoverV, h, ϕ, Σ

eV(y)f(y)h(y) = −
k
2κ (e3V(y) cos ξ(y))′ Very important!!

Central charge 

c2d =
3

2G5
Δz∫

ys

yn

eV(y) | f(y)h(y) | dy

Central Charge from the Poles



Central charges match with the FT ones! Both for twist and anti-twist

Central Charge from the Poles

We found analytic solution by restricting to graviton sector only for anti-
twist case with  and generic  matching [Ferrero, Gauntlett, Ipina, 

Martelli, Sparks (2020)]  [Ferrero, Gauntlett, Sparks (2021)]. Graviton sector fixes .
k = − 1 z

pF
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Central charges match with the FT ones! Both for twist and anti-twist

We found analytic solution by restricting to graviton sector only for anti-
twist case with  and generic  matching [Ferrero, Gauntlett, Ipina, 

Martelli, Sparks (2020)]  [Ferrero, Gauntlett, Sparks (2021)]. Graviton sector fixes .
k = − 1 z

pF



Numerical solutions
For generic  (consistent 
with quantization) we find 
numerical solution by 
integrating BPS eqns. [Arav, 
Gauntlett, Roberts, Rosen (2022)] 
[Amariti, Petri, Segati (2023)] [Suh 
(2023)


Still only solutions for 
 and anti-twist
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Summary and 
Outlook



Summary
We provided a precision test for the AdS/CFT correspondence by 


• Computing the central charge of the  field theory by reduction

• Analizing the AdS  susy solution to  gauged supergravity in 

presence of hypermultiplets 

• The central charge can be extracted solely from the contribution on the 

poles of the spindle

• Matching the (very intricate) central charge between the gravity and 

field theory side

2d
3 × 𝕎ℂℙ1 5d



Outlook
Some future avenues 


• Computing the sub-leading order contributions to the central charge. 
Doable in field theory, very complicated in gravity


• AdS  truncations with hypers and their compactifications on spindles

• Compute this model from  by means of equivariant localization. 

Similarly to AdS  solutions of [Benetti Genolini, Gauntlett, Sparks (2023)]

4
11d

3 × M8



Thank You for 
the Attention


