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»  The M5 world-volume theory: 6d A = (2,0) Ay_; SCFT
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Spindle Geometry

Important insights into strongly coupled SCFT by realizing them as RG
fixed points of compactification of higher-dimensional QFTs

Foundational work Maldacena & Nunez 4d SCFT from M5-branes on

Riemann surface Zg —> SUSY preserved by topological twist
[IMaldacena, Nunez (2000)]

No covariantly constant spinor (6ﬂ + a)ﬂ)e = (), couple to background R-
symmetry A}f = — w,, then (aﬂ "‘}0//4 +A/f)€ = (0 = € constant




Spindle Geometry

Condition Aﬂ = — w, equivalent to choosing right flux for R-symmetry
background

LJ FR=y(z)=2@g-1)
271_ . — X g/ g

8




Spindle Geometry
/\?J

More general solutions 2. is not compact
manifold, but orbifold. The spindle is one such

geometry where SUSY is preserved
[Ferrero, Gauntlett, Ipina, Martelli, Sparks (2020, 2021)]
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Spindle Geometry
/\?/

More general solutions 2 is not compact
manifold, but orbifold. The spindle is one such

geometry where SUSY is preserved
[Ferrero, Gauntlett, lpina, Martelli, Sparks (2020, 2021)]

Spindle: topologically S with conical deficit
angles at poles

27z<
n




Spindle Geometry

/‘ SUSY preserved in novel way
L 2m Nyt
o Anti-twist ( — ) WCPy i

< : | Preserved Killing spinors
 Depend on (some) coordinates of Spindle

 Have definite chirality only at the poles




The M5 world-volume theory

The world-volume theory of an M5-brane is a 6d ./ = (2,0) SCFT. No
known lagrangian formulation
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The M5 world-volume theory

The world-volume theory of an M5-brane is a 6d ./ = (2,0) SCFT. No
known lagrangian formulation

From D = 11 SO(5) normal bundle to M5 couples to R-symmetry
Sp(2) ~ SO(5).

By stacking M5-branes we get 6d 4/ = (2,0) G=ADE SCFT. Label coming
from compactification on S! giving 5d A = 2 G-SYM




Wrapping M5s on 2 0

Take M5 wrap on S! with radius R, => 5d A = 2 SYM

1
[d5x—2trFA *xF+ - = g52 x R
55




Wrapping M5s on Zg

Take M5 wrap on S! with radius R, => 5d A = 2 SYM

|
[d5x—2trFA *F 4 = g& xRy
835

Compactify on another S! with radius Ry = 4d N = 4 SYM

4, 1 ) ) I Rs
d.x5 d x—ztl‘F/\ *F‘l‘ cee /> gS de — g4 — —2 ~N —
83 gr R




Wrapping M5s on 2 0

Upshot: M5 wrapped on 7% = 4d N = 4 SYM w/ g4_2 ~ Rs/Rg




Wrapping M5s on Zg

Upshot: M5 wrapped on 7% = 4d N = 4 SYM w/ g4_2 ~ Rs/Rg

We can generalize for any (punctured) Riemann surfaces Zg,n . class-S
theories [Gaiotto (2009)]




Wrapping M5s on Zg

Any Riemann surface can be decomposed into pair of pants

T’y block : /' = 2 SCFTs with

o
~ SU(2) x U(1), x SU(N) global
/ \ symmetry as world-volume theories of

stack of M5 on three-punctured sphere.




Wrapping M5s on 2 0

Gluing T blocks is gauging some SU(/N): higher genus Riemann surfaces

S-class: gluing with //° = 2 vector multiplet




The B3W Model

Up to now, compactification on Riemann surface. Generalization to
wrapping branes on calibrated cycles on CYs. Calibration needed for
twisting, aka preserve SUSY




The B3W Model

Further generalization: CY; as holo C* bundle over C,
[Bah, Beem, Bobev, Wecht (2012)]

C? ——— CY;

743

Y

Cy

To preserve SUSY

SU(2)

Y

>V

s

Cy

Central U(1) in U(2) connection on CY constrained =—> R-symmetry




The B3W Model

Further generalization [Bah, Beem, Bobev, Wecht (2012)]:

IR dynamics of branes wrapped on this
geometry depend on choice of this bundle

SU(2)




The B3W Model

When CY; = £, @ £, (decomposable)

Family of IR SCFT described by degree of line bundles
C? — L, L5

c(Z)=p,c(Ly)=¢q,p+q=28-12

Manifest U(1)% isometry => U(1), x U(1); C,

Reparametrizationp = (1 +z)(g—1), g= (1 —12z)(g — 1) where
Z(g—1)e ”/




The B3W Model

Limiting cases c(ZL)=p,c(£L5)=qg,p+qg=2g—72
g=0orp=0 = X=CX T*Cg, A =2 S-class [Gaiotto (2009)]

g = p, /V = 1 Sicilian gauge theories [Benini, Tachikawa, Wecht (2009)]




The B3W Model

General p, g can be constructed from opportune gluing of 2(g — 1) T}
blocks to form a Riemann surface with no punctures. Gluing with both

A = 1,2 vector multiplets = choice of p, g

O~
\ A

N
\J

O-octmo
B







Outline

The boundary

 The anomaly polynomial of an M5-brane
o Stacking the branes

 Wrapping the branes
 Jwo-dimensional central charge




Anomaly Polynomial of M5-brane

Supersymmetric /= (2,0) abelian tensor multiplet in 6d : [witten (1996)]

e Self-dual three form
e 5 scalars

e 4 real Weyl fermions




Anomaly Polynomial of M5-brane

Four components chiral spinors

/ 1 R
‘ //‘ I, = EchS(N)A(TW)
Self-dual chiral two-form
I : (16p,(TW)* = 112p(TW))
AT 5760 V! :

[Witten, Gaume (1986)]




Anomaly Polynomial of M5-brane

Four components chiral spinors

///* I, = %ChS(N)A(TW)

Sections of rank-four spinor bundle constructed
from the normal bundle N using the spinor rep

of SO(5)
SO(S) is the remaining isometry from M-theory

after M5 defect insertion




Anomaly Polynomial of M5-brane

Four components chiral spinors

///‘ I, = %ChS(N)A(TW)

A(TW) is the Dirac genus of 1T W, index of the
Dirac operator on it

. ™W)  Tp(TW)? — 4p.(TW
/ ATW) =1 — P1( ) N Pl( ) Pz( )
24 5760




Anomaly Polynomial of M5-brane

Four components chiral spinors

/ 1 )
NV
7. — l Pz(N)2 | Pl(N)2 pi(N)p,(TW) | 7P1(TW)2 — 4p,(TW)
P72\ 24 = 96 48 | 1440




Anomaly Polynomial of M5-brane

/ Propagates on brane world-volume W,
does not see normal bundle

Self-dual chiral two-form
I : (16p(TW)* — 112p,(TW))
A” 5760 ¢ ! :




Stacking the Branes

f :
“;,“ Anomaly polynomial

Nt | NW TW) + — TW) — (NW))Z_ - (NW)
87 T 4g _Pz( ) — Do( ) + 4(191( P | | o %)
\ ) L )
AV Y
Inflow Spinors+Three-form CS term

[Witten (1996)] [Harvey, Minasian, Moore (1998)]
[Intriligator (2000)] [Yi (2001)] ...




Family 2d A = (2,0) SCFT

Family 4d N = 1,2 SCFT
T IR
-

Wrapping the Branes




Wrapping the Branes




Wrapping the Branes

lg = [ Ig ~ Z Azjkcl(Fi)Cl(Fj)C1(Fk)
Ce ijik=12

Where A;;; abelian anomalies of 4d theory

1
[Bah, Beem, Bobev, Wecht (2012)] A =@-DN° A =- g(g — 1)zN?

RRF

1

RFF__E

A (g—DN> A =(g—1)zN°




Wrapping the Branes

Family 4d N/ = 1,2 SCFT —

Family 2d A = (2,0) SCFT

v




Two-dimensional Central Charge

Additional abelian symmetry from
azimuthal rotation on spindle

[Amariti, Mancani, Morgante, WCP
Petri, Segati (2023)]

(1] Subleading at large N




Two-dimensional Central Charge

Fix magnetic fluxes

PR

URY

PFr

LAY

JCI(FR) = {Q(FF) =

[Amariti, Mancani, Morgante,

Petri, Segati (2023)]

Preserve SUSY by R-symmetry (anti-)twist




Two-dimensional Central Charge

(_ l)tN B (_ 1)tS+1
pPryg) = ———
Ny ng

PrOVN) =

Where 1, = 0,1. Twist 7 = ¢, anti-twist

[Amariti, Mancani, Morgante,

Petri, Segati (2023)]
Flavour flux fixed up to arbitrary constant




Two-dimensional Central Charge

Central charge in large-N from anomaly

polynomial and allow mixing. New U(1);
from azimuthal symmetry of spindle

R™l(x,e) = Ry + xF + eJ

[Amariti, Mancani, Morgante,

Petri, Segati (2023)]




Two-dimensional Central Charge

Central charge in large-N from anomaly

polynomial and allow mixing. New U(1);
from azimuthal symmetry of spindle

R™l(x,e) = Ry + xF + eJ

[Amariti, Mancani, Morgante, 6l,(e, x)
Petri, Segati (2023)] cp(€,X) = ———
c(Fg)

c-extremization!




Two-dimensional Central Charge

NB. z=2"1
Twist ( + ) and anti-twist ( — ) p+q

N3(g — 1)(4p% — (nN + nS)z) <2zpF + (— l)tN(nN + nS) ) <(— l)tN(nN + nS) <16zpF + (22 + 3)(— l)tN(nN + nS)) + 4 (3Z2 + 1) p%)

N
Cqr, =
* 2nNnS<8p% (F2nyng + 32202 + 322n3) — 32zpp(—1)W(ny £ ng) + 8zpp(— 1) (ny % ng) (3nf F 2nyng + 3n2) — 4822%pf + (ny + nS)z( F2(22+2) nyng+ (2 +4) nf + (2 + 4) n}) )




Two-dimensional Central Charge

NB. z=2"1
Twist ( + ) and anti-twist ( — ) p+q

N3(g — 1)(4p% — (nN + ns)z) <2zpF + (— l)tN(nN + nS) ) <(— l)tN(nN + nS) <16zpF + (Z2 + 3)(— l)tN(nN + nS)) + 4 (322 + 1) p%)

N
Cqr, =
2d 2nNnS<8p% (F2nyng + 32202 + 322n3) — 32zpp(—1)W(ny £ ng) + 8zpp(— 1) (ny % ng) (3nf F 2nyng + 3n2) — 4822%pf + (ny + nS)z( F2(22+2) nyng+ (2 +4) nf + (2 + 4) n}) )

Checks with limiting cases ng = ny = 1, pr = 0 of [Benini, Bobev (2013)]. In
this limit WCP'! — P! and isometry enhances U(1) — SU(2) therefore
¢ — 0, i.e. no mixing in extremization.







Outline

The bulk

e 5d .V = 2 gauged supergravity
« Consistent AdS5 truncation with hypermultiplets
 Down to AdS; X WCI :

(11 ]
* (Central charge from the poles and matching with field theory
 Numerical solutions




S3d /¥ = 2 gauged supergravity
N =2 sugra admit coupling to n; vectors and n;; hypermultiplets
Gravity and matter multiplets:

« Gravity multiplet: {e/j‘, l///i,A’u} graviton, 2 gravitini, graviphoton
. Vector multiplet: {A*, 1*!, *} vector field, 2 gauginos, real scalar

» Hypermultiplet: {qX, £A) 4 real scalars, 2 hyperinos

Total number of vector fields is ny, + 1 Ali




d3d ./ = 2 gauged supergravity
Scalars in multiplets parametrize a moduli space Z = & Q @

 Scalars in vector parametrize & a very special real manifold defined
by cubic equation

(W™ | cyxh'WhK = 1} € R

 Scalars in hyper parametrize @@ a quaternionic Kahler manifold of real
dimension 4n;




S3d /¥ = 2 gauged supergravity
Gauging of abelian isometries of the quaternionic Kahaler by vectors Aé
generated by Killing vectors kIX(q) that encode charge of scalars

D,,,QX = a,ﬂX T gAékIX where kIXR)’;Y = DyP;

Here we can define scalar super potential W to restore susy from
prepotentials P;.

Superpotential W relevant quantity for extremization! [Tachikawa (2006)].
Condition for a—maximization is condition on existence of AdS5 solution.




S3d /¥ = 2 gauged supergravity

Susy vacuum: 0 W = 0, 0, W = 0 from susy variations

1

oY, = (Fﬂ + .- +5gWyﬂ) e =0

[ 13
O™ = (—Eg/”aﬂqu + - + l\ggg y@yW) e =0

A . X 3
o =0 = | —1y'd,q" + -~ +§1g8XW e =0




AdS: Truncation with Hypers

Starting point: consistent 5d truncation from D = 11
[Cassani, Josse, Petrini, Waldram (2010)]

* One hypermultiplet

 [wo vector multiples

Broken global symmetries in FT related to massive vectors in sugra.
Hypers serve as Stuckelberg fields. Massless vectors become massive by
Higgs mechanism




AdS: Truncation with Hypers

11-dimensional metric ansatz

_ 1 _
2 _ 2A1.2 0 2 Ax12.280 42 4 - KA=2/3 4.2
ds7, =e dSAd85 +dsg, dsg = A" OdSCg + A A7 ds;

A ¢ is fibration of squashed S* over Riemann surf C, My Mg— C,

2AR2

2R 13
Ads. = €7°A

Relation between warp factors e

A, fo, &9 depend on Z and curvature K of Riemann surface




AdS: Truncation with Hypers

Three vectors Aé, [ = 0,1,2. Scalar geometry parametrized by manifold




AdS: Truncation with Hypers

Three vectors Aé, [ = 0,1,2. Scalar geometry parametrized by manifold

(, qb}\/ ExUD - 1p,8,0,,6,)




AdS: Truncation with Hypers

Three vectors Aé, [ = 0,1,2. Scalar geometry parametrized by manifold

{Z ¢}\/ ( )X ( ) {qDaEaHlaHZ}

Further truncation consistent with AdSs vacuum 6, = 6, = 0

¥3((ke?? + 4)cosh ¢ — zke?? sinh @) + €%

Superpotential W =
432




Down to AdS; X WCP[lnN,

ns]

Ansatz ds? = ezv(y)dSidS3 + f(y)*dy? + h(y)*dz* where (y, 7) are
coordinates on Spindle: z ~ z + 2z and y € [y, Vgl

Gauge fields: AY) = a(y)dz where I = 1,2

Field dependence on Spindle coordinates: 2(y), $(y), p(y) and = = = - 7




Down to AdS; X WCIP[lnN,

ns]

Orthonormal frame of reference [Arav, Gauntlett, Roberts, Rosen (2022)]

e =e"é", e’ = fdy, e* = hdz

Field strength becomes

() — (1)
JhE) =oa




Down to AdS; X WCP[lnN,

I
5 ] Constants
Then, Maxwell’s equations are

2e3V

l(cosh 2 — z5inh 2)FY + (z cosh 2¢ — sinh 2¢)F<2>] _ %

332 34 34 1

2e”” 6 (0) (1) 2) /

5 lsz F>)—(cosh2¢+zsimh2¢)F; '+ (z cosh 2¢p+sinh 2¢) F7 ] = &,

| 1 _
0y(§e3vZ4F3(2)) =~ VefhIDE  DE=E+ga” +ka" ~2a?)

—

Higgsed combination




Down to AdS; X WCP[lnN,

ns]

BPS equations for this geometry computed by factorizing Killing spinors

le/j:—grml/j, K:il <« \
c=w®y: <in <. Chirality of dual SCFT
W y = e%eisz 25 N = (0,2) or N = (2,())
COS =

2

Where y spinor on Spindle and y spinor on AdS;




Down to AdS; X WCP[lnN,

ns]

5/ — Zf(gWCOS 5 + Ke_V), ¢/ — — ng Sin 5 6¢W BPS equatlons

3V =2fegWsin ¢, @' = — fgsin™! gd,W

3% = — 2fg X%sin £ 0 W, 3h' = 2fhsin~! E(gW(1 + 2 cos® &) — 3ke™" cot &)
siné(s — Q,) = — h(gWcos ¢ + ke~ ") D = (Vﬂ — iQﬂ)G Algebraic
gho,Wcos¢& = 0,0,sin¢ constraints

(h—>—ha"—-a"0 --0,s> -5, >—p.z2— -2} 7, symmetry




Central Charge from the Poles

BPS equations give i1 = ke" sin E, k constant

Conditions at poles are enough [Amariti, Petri, Segati (2023)] [Suh (2023)] ...

1. cos&|y o= (=1)™swhere ty g € {0,1} twist or anti-twist

(=)
2. ksin'G|, =

where [y, = 0, [, = 1 due to Z, symmetry
"IN.S

3. (s—0)lye= (—1)wstivstl from BPS equations

2nN,S

4. %W = 0 to ensure finiteness of @(y)




Central Charge from the Poles

Fluxes can be written int terms of pole data

Pr _L
nyng  2x

J gFD =g g0 70 = — ke cos &h'

WCP
Flavour flux Pr=DP1 = 8”N”Sj(1) \ZSV

|
R-symmetry flux pr=—p, = 5(715(— 1) 4+ ny(—1)5)

Constraint  py « py+ zkp, — kp, =0




Central Charge from the Poles

Equations before fix boundary conditions for V, h, ¢, 2.. Moreover

7\

/

eV(Y)f(y)h(y) — _ i (63V(y) COS 5(),)) Very important!!
2K

Central charge

ey = ——0z | "0 fh()] dy
2G5,




Central Charge from the Poles

Central charges match with the FT ones! Both for twist and anti-twist




Central Charge from the Poles

Central charges match with the FT ones! Both for twist and anti-twist

We found analytic solution by restricting to graviton sector only for anti-
twist case with K = — 1 and generic z matching [Ferrero, Gauntlett, Ipina,

Martelli, Sparks (2020)] [Ferrero, Gauntlett, Sparks (2021)]. Graviton sector fixes py.




Numerical solutions

For generic py (consistent

with quantization) we find
numerical solution by

iIntegrating BPS eqgns. [Aray,
Gauntlett, Roberts, Rosen (2022)]
[Amariti, Petri, Segati (2023)] [Suh
(2023)

Still only solutions for
Z = — | and anti-twist




Summeary anal
Outloolk




Summary

We provided a precision test for the AAS/CFT correspondence by

« Computing the central charge of the 2d field theory by reduction

» Analizing the AdS; X WCI 1 susy solution to Sd gauged supergravity in

presence of hypermultiplets

* The central charge can be extracted solely from the contribution on the
poles of the spindle

 Matching the (very intricate) central charge between the gravity and
field theory side




Outlook

Some future avenues

 Computing the sub-leading order contributions to the central charge.
Doable in field theory, very complicated in gravity

« AdS, truncations with hypers and their compactifications on spindles

« Compute this model from 11d by means of equivariant localization.
Similarly to AdS; X M solutions of [Benetti Genolini, Gauntlett, Sparks (2023)]
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