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Chapter 1

Electroweak Interactions in the
Standard Model

Figure 1.1. The Standard Model of particle physics.

Whenever somebody asks questions like how many particles there are? How do
these particles interact with each other? What are the properties of certain particles?
Are they fundamental or composite? What makes up a composite particle? How do
they decay if they decay? And so on, the answer, as far as we know, can be found in
a theory which is called by physicists the Standard Model (SM) of particle physics
[26, 53, 60].
Loosely one can think of the SM as a Periodic Table for subatomic particles, but
the reality is much more complicated. In some way this statement is not completely
incorrect and, just like a Periodic Table, the Standard Model can be summarized in
a table like the one in figure (1.1). However, this famous table is deceiving: it does
not show all of the subatomic particles and their antiparticle! But for the purpose
of the physics, particles and antiparticles are much of the same in their properties
and their interactions, so it would be redundant to show them both.
Although this picture is very pretty, some physicists have a more pragmatic way
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of presenting what they call the SM, which is as follows: the SM is a non-Abelian
Yang-Mills theory whose symmetry group is given by

SU(3) ◊ SU(2) ◊ U(1). (1.1)

Equation eq. (1.1) is what we call the gauge group of the Standard Model. Mathe-
matically speaking even this sentence is not very precise since what we know exactly
is the Lie algebra of the SM. From the Lie algebra and the properties of the particles,
we can infer the precise Lie group of the SM [8], which is somewhat di�erent from
the one in equation eq. (1.1) and is given by the following quotient

su(3) ü su(2) ü u(1) SU(3) ◊ SU(2) ◊ U(1)
Z6

. (1.2)

Yet, this is beyond the scope of this notes and we will stick to the mathematically
imprecise, physicist way, of equation eq. (1.1) to avoid any confusion.

With this introduction one would be lead to believe that the SM has the pos-
sibility to answer all of our questions but, unfortunately (or fortunately, depends
on who’s the question being asked), this is not the case. Many questions, both
theoretical and experimental, cannot be answered by a pure SM analysis, and here
is when e�ective theories come into play. We will discuss e�ective theories and how
they enter the game in the next chapters.
For now let us focus on what actually is the Standard Model. In this chapter we are
going to give the basics upon which the Standard Model is built and how particles are
described within this theory. In the first part we will focus on the su(2) ü u(1) bit of
equation eq. (1.2), the so-called electroweak (EW) sector or Glashow-Weinberg-Salam
(GWS) theory [25, 54, 61], carrying the name of the physicists that theorized it and
consequently won the Nobel prize for it in 1979. Then we will show how, within this
theory, an incredible thing happens: the particles that make up hadrons, what we
call quarks, can mix with one another in a way initially theorized by Nicola Cabibbo
[13] and then expanded by Kobayashi and Maskawa [43] (the latter two winning the
Nobel prize for it, while the former sadly did not receive it).

1.1 Basics of the Standard Model
For a more in-depth analysis of the contents of these chapters, there are many
excellent books. Schwart’s [55] and Sredniki’s [56] texts are, in my opinion, two of
the best and up to date. For a more experimental prospective, Peskin’s book [50] is
optimal.
In the Standard Model there are three types of particles: the matter constituents
called quarks and leptons, which obey the Fermi-Dirac statistic, and the force-
carrying particles, that obey the Bose-Einstein. In nature there are four main forces:
gravitational, electromagnetic, weak and strong force. The bosons which carry these
forces are given in table (1.1). Then the last piece is the Higgs1 particle. This

1I would like to mention all the other physicists that, in some way, worked on the theory of the
Higgs that are, most of the time, going unseen: Englert, Brout, Higgs, Guralnik, Hagen and Kibble.
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Table 1.1. Vector and tensor boson carriers in the SM.The Graviton has not yet been
discovered, it is just theorized.

Field Boson Spin
Grav. Graviton 2
EM Photon “ 1

Weak W ±,Z0 1
Strong Gluon g 1

is again a boson, a scalar boson, whose interactions does not come from a gauge
principle, that through the Higgs mechanism [31, 35, 37, 38, 42], after EW symmetry
breaking gives masses to the various particles of the SM. In table (1.2) the main
properties of the SM particles are given. With all the experimental properties out of
the way, we can concentrate on the theoretical side of things.

The basic SM Lagrangian, before EW symmetry breaking, can be divided into
five main pieces

LSM = Lgauge + Lfermions + LHiggs + LYukawa + LTheta-vacuum, (1.3)

where23

Lgauge = ≠
1
2 Tr Gµ‹Gµ‹

≠
1
2 Tr Wµ‹ W µ‹

≠
1
4Bµ‹ Bµ‹

= ≠
1
4

8ÿ

a=1

Ga

µ‹Gaµ‹
≠

1
4

3ÿ

a=1

W a

µ‹W aµ‹
≠

1
4Bµ‹Bµ‹ (1.4)

Lfermions =
ÿ

left
quarks

iQ̄i

L
/D

(q)
Qi

L +
ÿ

up

quarks

iūi

R
/D

(u)
ui

R +
ÿ

down
quarks

id̄i

R
/D

(d)
di

R

+
ÿ

left
leptons

iL̄i /D
(¸)

Li + iēi

R
/D

(e)
ei

R (1.5)

LHiggs =
---DµH

---
2

+ m2
|H|

2
≠ ⁄H |H|

4 (1.6)

≠LYukawa = Y ij

D

1
Q̄i

LHdj

R
+ d̄j

R
H†Qi

L

2
+ Y ij

U

1
Q̄i

LH̃uj

R
+ ūj

R
H̃†Qi

L

2

+ Y¸

Ë
L̄iHei

R + ēi

RH†Li

È
(1.7)

LTheta-vacuum = ≠
◊

16fi2
Áµ‹fl‡ Tr Gµ‹Gfl‡ = ≠

◊

32fi2
Áµ‹fl‡Ga

µ‹Ga

fl‡, (1.8)

where we used the convention that italicized indices are the SU(2) indices a = 1, 2, 3,
the non-italicized ones are for the SU(3) color indices a = 1, · · · , 8 and the fermion
indices are to label the three families of leptons and quarks i = 1, 2, 3. Moreover
we call up quarks the up, charm and top quarks, while the down quarks are the
remaining down, strange and bottom quarks.
The theta-vacuum term is a consequence of the strong CP problem [45, 49] and is
given just for completion since we won’t discuss the nature of this term in this notes.

2From hereafter the Einstein summation convention is used unless stated otherwise. Sometimes
the summation will be shown for clarity’s sake.

3We make use of the Feynman slash notation where “µaµ = /a.
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Table 1.2. Properties of the Standard Model Particles as given by the PDG [66].

Particle Mass (MeV) Mean Life (s) Charge (e)

Leptons

e≠ 0.511 ± 10≠9 > 6.6 ◊ 1028 yr
≠1µ≠ 105.7 ± 10≠6 2.197 ± 10≠6

·≠

‹e, ‹µ, ‹· < 2 ◊ 10≠6 - 0

Quarksa

u 2.2+0.5

≠0.4
-

2
3c 1.27+0.025

≠0.035
◊ 103 -

t (173.0 ± 0.4) ◊ 103 -

d 4.7+0.5

≠0.3
-

≠
1
3s 95+9

≠3
-

b 4.18+0.04

≠0.03
◊ 103 -

Particle Mass (GeV) Decay Width (GeV) Charge

Bosons

“ < 1 ◊ 10≠24 Stable < 1 ◊ 10≠35

W ± 80.379 ± 0.012 2.085 ± 0.042 ±1

Z0 91.1876 ± 0.0021 2.4952 ± 0.0023 0

g 0 - -

h0 125.18 ± 0.16 < 0.013 0
a The u, d and s quark masses are estimates of so-called "current-quark masses", in
a mass-independent subtraction scheme such as MS at a scale µ ¥ 2 GeV. The c
and b quark masses are the running masses in the MS scheme. The t quark mass
comes from direct measurements.

We will treat in more details equations eqs. (1.4) to (1.7) in the upcoming sections.
For now we just set up our various conventions that we will use throughout the
whole notes.

Starting with the gauge Lagrangian eq. (1.4), the three kinetic terms are written
in terms of the field strength associated to each gauge connection of the gauge group.
That is45

Ga

µ‹ = ˆ[µGa

‹]
+ gsfabcGb

µGc

‹ , (1.9)
4We use the notation for the antisymmetrization of the indices where a[µb‹] = aµb‹ ≠ a‹bµ. A

similar notation is used for the symmetrization a(µb‹) = aµb‹ + a‹bµ.
5More generally the field strength is defined as the curvature tensor induced by the group

structure on the spacetime manifold and is therefore given by

Fµ‹ = i
gF

#
D(A)

µ , D(A)
‹

$

where D(A)
µ is the covariant derivative constructed from the gauge connection A.
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W a

µ‹ = ˆ[µW a

‹]
+ g‘abcW b

µW c

‹ , (1.10)
Bµ‹ = ˆ[µB‹], (1.11)

where Ga
µ is the SU(3) gauge connection (the gluon field), W a

µ is the SU(2) connection
and Bµ is the U(1) connection. The field W a

µ and Bµ will later combine, after
symmetry breaking, to make up the W ±

µ , Z0
µ bosons which are the massive vector

bosons which mediate the weak interactions and the Aµ boson, the photon, which
mediates the electromagnetic one. The constants fabc are the structure constants of
SU(3) and the Levi-Civita symbol ‘abc gives the structure constants of SU(2). In
this notes we use the convention where the Lie algebra of the groups [23] is given by
the commutators Ë

ta, tb
È

= ifabctb
Ë
·a, · b

È
= i‘abc· c, (1.12)

where, in the fundamental representation, the eight SU(3) generators ta are given
by the Gell-Mann matrices while the three SU(2) generators are given by ·a = ‡a/2
where ‡a are the Pauli matrices and are both normalized as

Tr tatb = 1
2”ab (1.13)

More complicated representations can be found in the literature or constructed using
methods like the highest weight method.
The three coupling constants are gs for the strong interactions, g for the W in-
teractions before symmetry breaking and gÕ for the B interactions before SB as
well.

1.2 Particles and Their Representations
Being the SM a Quantum Filed Theory, every particle belongs to some representation
of the underlying symmetry group. In the case of the SM we know that the symmetry
group, before symmetry breaking, is the one of equation eq. (1.1). We call the various
pieces with the quantum number associated to that specific group. In particular

• SU(3)C quantum number is called color,

• SU(2)L quantum number is called isospin,

• U(1)Y quantum number is called weak hypercharge.

The symmetry breaking pattern of the SM induced by the non-zero vacuum expec-
tation value (VEV) of the Higgs [20, 36, 32] is given by

SU(3)C ◊ SU(2)L ◊ U(1)Y æ SU(3)C ◊ U(1)em. (1.14)

The remaining symmetry after SB is given by the same color symmetry as before
plus the electromagnetic symmetry which gives to all particles a quantum number
called electric charge.

Given this, we can give all the fields appearing in equations eqs. (1.4) to (1.7)
their appropriate quantum numbers and with that it can be easily shown that every
component of the Lagrangian is by itself a scalar for the SM symmetry group. All
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the particles and their representation are given in table (1.3).
From the Yukawa Lagrangian eq. (1.7) there is another field which is the charge-
conjugate field of the Higgs. This is given by

H̃ = i‡2Hú, (1.15)

where ‡2 is a Pauli matrix and Hú is the complex conjugate of the Higgs field H.
This field transforms in the (1, 2)≠1 representation and is needed to make all the
possible scalar terms such as

1
Q̄ai

L
H̃

2
uaj

R
where i, j are flavour indices. In fact under

SU(3) this is a scalar since we have the following tensor product

3̄ ¢ 1 ¢ 3 = 1 ü 8 (1.16)

and we take the trace. Same goes for the isospin since we have

2 ¢ 2 ¢ 1 = 1 ü 3, (1.17)

and for the hypercharge
≠

1
3 ≠ 1 + 4

3 = 0, (1.18)

which come out to be scalars for the entire SM symmetry group.

Table 1.3. Representations of the SM particles before symmetry breaking. The last column
refers to the representation under the Lorentz group.

Field SU(3)C SU(2)L U(1)Y SO(1, 3) ƒ SU(2) ◊ SU(2)a

Qi

L
3 2 1/3 (1/2, 0)

ui

R
3 1 4/3 (0, 1/2)

di

R
3 1 ≠2/3 (0, 1/2)

Li 1 2 ≠1 (1/2, 0)
ei

R
1 1 ≠2 (0, 1/2)

Gµ 8 1 1 (1/2, 1/2)
Wµ 1 3 0 (1/2, 1/2)
Bµ 1 1 0 (1/2, 1/2)
H 1 2 1 (0, 0)

a The isomorphism is at the level of the complexified algebras
so(1; 3) Òæ so(1; 3)C ƒ su(2)C ü su(2)C but we label it with the
group for simplicity.

After EW symmetry breaking, the relevant quantum numbers become the color
and the electric charge. Using the remaining unbroken generator of the SU(2)L ◊

U(1)Y group, we can find the relation between the isospin and hypercharge quantum
numbers with the electric charge. This is the well known Gell-Mann–Nishijima
formula6 [22, 47]

Q = ·3 + Y

2 , (1.19)

6Depending on the convention used, there can be a factor of 1/2 di�erence in the hypercharge
giving Q = ·3 + Y . We use the convention where the factor 1/2 is present.
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where T3 is the generator which labels the third component of the isospin and Y
is the generator of the hypercharge. Just for a sanity check, one can use formula
eq. (1.19) to see if the quantum numbers given in table (1.3) give back the expected
electric charge. For example, take the right-handed electron which we expect to
have a electric charge of ≠1 and, using eq. (1.19), find

ei

R æ Q = 0 + (≠1) = ≠1. X (1.20)

1.3 Electroweak Sector
We now have su�cient knowledge to formulate the GSW theory of weak and
electromagnetic interactions among leptons and quarks and to study its properties.
Let us first state the starting point and the aim of our study

1. There exist charged and neutral currents.

2. The charged currents contain only couplings between left-handed fermions.
This result is given by Fermi theory of weak interactions which, as we’ll see, is
the low energy limit of the GSW theory.

3. The bosons W ±, Z0 mediating the weak interaction must be very massive.

4. Nevertheless we’ll begin with massless bosons which then receive masses
through the Higgs mechanism. At that point we want to simultaneously
include the photon field.

Given this list of properties, we can begin to build up the first part of the SM which
accounts for the electroweak sector.

1.3.1 The GWS Lagrangian and symmetry breaking
Let’s begin, as we always must, to find the symmetry group of the theory. We know
that at least there must be one gauge boson for the photon. Moreover there must
be another two vector bosons for the W ± fields. With this we need at least the
SU(2) symmetry group since it has 3 generators. But it turns out that this group is
too small since it only accounts for left-handed interactions but we know that the
electromagnetism is perfectly symmetric between left and right-handed fermions.
What Glashow proposed was the following minimal group

SU(2)W ¢ U(1)Y , (1.21)

where the reps are defined, as we have seen before, by the isospin symmetry and the
hypercharge. Based on this symmetry group, the existence of a fourth gauge boson
was theorized since the group has 4 generators. It will turn out that the additional
gauge boson is, in fact, the Z0 which mediates the weak neutral currents.

Since we have that the total symmetry group is the product of two groups, we
need two di�erent coupling constants g, gÕ. The kinetic part of the Lagrangian will
be then by the second half of the Lagrangian eq. (1.4)

L = ≠
1
4W a

µ‹W aµ‹
≠

1
4Bµ‹Bµ‹ . (1.22)
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Given the local nature of the interactions, we need to give mass to the bosons. On
the other hand, the photon will be given by a linear combination of the symmetry
generators which remain unbroken under the action of the Higgs mechanism.
To induce the symmetry breaking, we have a complex isospin doublet with hyper-
charge 1, the Higgs

H =
A

H+

H0

B

. (1.23)

The hypercharge is set by the Gell-Mann Nishijima formula eq. (1.19).
The Lagrangian for the Higgs field is given in equation eq. (1.6). In particular, we
have to specify how the covariant derivative of equation eq. (1.6) acts on the Higgs
doublet. This is easily done by exploiting the Higgs representation under the gauge
group

Dµ = ˆµ ≠ igÕ Y

2 Bµ ≠ igW a

µ ·a = ˆµ ≠ i
gÕ

2 Bµ ≠ igW a

µ ·a, (1.24)

where the ·a are the the generators of the fundamental 2 representation of SU(2).
The Higgs potential with the opposite mass sign, induces a VEV for H, which can
be taken to be real and in the lower component without loss of generality. Thus we
choose

H = exp
3

i

v
fia·a

4 Q

a
0

h + v
Ô

2

R

b , (1.25)

where v = È0| H |0Í = µ/
Ô

⁄. Since we are going to study how the gauge bosons and
the fermions gain mass through the Higgs mechanism, we will fix the gauge to the
unitary gauge where, essentially, we set fia = 0. With the VEV fixed it is easy to
find that the broken generators, i.e. the ones for which ·a

ÈHÍ ”= 0 are given by

·1 = 1
2

A
0 1
1 0

B

·2 = 1
2

A
0 ≠i
i 0

B

·3
≠

Y

2 =
A

0 0
0 1

B

(1.26)

and the unbroken generator is given by

·3 + Y

2 =
A

1 0
0 0

B

(1.27)

which is exactly the electric charge as given by the Gell-Mann Nishijima formula!
The symmetry breaking pattern is therefore

SU(2)W ¢ U(1)Y æ U(1)em (1.28)

and we expect, thanks to Goldstone theorem and the Higgs mechanism, three out
of four vector bosons to be massive while one remains massless (spoiler: the only
vector boson without mass will be the photon!).

Putting the VEV in the kinetic part of the Higgs, making use of gauge freedom
and choosing a gauge which "eats" the Goldstone bosons fia called unitary gauge7,

7One needs to be aware of which gauges are at play and the ones to choose for specific calculations.
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we get

|DµH|
2 =

= v2

8
1
0 1

2A
gÕBµ + gW 3

µ g(W 1
µ ≠ iW 2

µ)
g(W 1

µ + iW 2
µ) gÕBµ ≠ gW 3

µ

BA
gÕBµ + gW 3

µ g(W 1
µ ≠ iW 2

µ)
g(W 1

µ + iW 2
µ) gÕBµ ≠ gW 3

µ

B1
0 1

2

= g2
v2

8

C1
W 1

µ

2
2

+
1
W 2

µ

2
2

+
3

gÕ

g
Bµ ≠ W 3

µ

42
D

(1.29)

The W 1, W 2 terms are degenerate in mass

M2

W = v2g2

4

The remaining terms are given by

v2g2

4 (W 3

µ)2 + v2gÕ2

4 B2

µ ≠
2ggÕv2

4 BµW 3

µ = v2

4
1
Bµ W 3

µ

2A
g2 ggÕ

ggÕ gÕ2

BA
Bµ

W µ

3

B

(1.30)

it is clear that the initial basis is not the basis given by the mass eigenstates. We
can therefore go to the latter by diagonalizing eq. (1.30)

det
A

g2
≠ m ggÕ

ggÕ gÕ2
≠ m

B

= (g2
≠ m)(gÕ2

≠ m) ≠ (ggÕ)2 = 0

= m2 + (ggÕ)2
≠ m(g2 + gÕ2) ≠ (ggÕ)

= m(m ≠ g2
≠ gÕ2) = 0

m = 0 m = g2 + gÕ2

(1.31)

The two solutions give us what we wanted: a massless mode and a massive one.
Looking for the eigenvectors will give us linear combinations of the Bµ and W 3

µ fields
which will turn out to be the massless photon field and the massive Z0 gauge boson
field.
By means of the following reparametrization

sin ◊W = gÕ


g2 + gÕ2 , cos ◊W = g2


g2 + gÕ2 , (1.32)

where ◊W is called the Weinberg angle [26, 60], one can easily show that rotation
based on this angle gives us indeed the linear combination that we need

A
Z0

µ

Aµ

B

=
A

cos ◊W ≠ sin ◊W

sin ◊W cos ◊W

BA
W 3

µ

Bµ

B

=∆

I
Z0

µ = cos ◊W W 3
µ ≠ sin ◊W Bµ

Aµ = sin ◊W W 3
µ + sin ◊W Bµ.

(1.33)
Now notice the following

W a

µ ·a = 1
Ô

2

1
W +

µ ·+ + W ≠
µ ·≠

2
+ W 3

µ·3, (1.34)
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where
·± = ·1

± i·2. (1.35)

Under this definition, the charged gauge fields are given by

W +

µ = 1
Ô

2
(W 1

µ + iW 2

µ) W ≠
µ = 1

Ô
2

(W 1

µ ≠ iW 2

µ). (1.36)

Therefore what we have in the hand are the following fields

W ±
µ  MW = vg

2 ,

Z0

µ  mZ = 1
2 cos ◊W

gv = v

2

Ò
g2 + gÕ2 = MW

cos ◊W

,

Aµ  mA = 0.

(1.37)

Already there’s an unambiguous prediction: the W bosons should be lighter than
the Z boson.
Moreover we find that, at tree level the following result should hold

fl = M2

W

cos2 ◊W m2

Z

= 1 (1.38)

This is the result of an hidden symmetry of the Standard Model, the custodial
symmetry8.

1.3.2 Gauge Sector
Putting together what we found, we can write down the kinetic term in the Lagrangian
for the Z and A bosons after symmetry breaking, in the unitary gauge, as

LK = ≠
1
4Fµ‹F µ‹

≠
1
4Zµ‹Zµ‹ + 1

2m2

ZZµZµ, (1.39)

where
Zµ‹ = ˆµZ‹ ≠ ˆ‹Zµ Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ. (1.40)

Since the gauge bosons transform in the adjoint rep, their interactions are given by
commutators and in particular, the W 3

µ part of the photon field gives us the known
coupling

g[Aµ, W a

‹ ·a] = g sin ◊W W 3

µW a

‹

Ë
·3, ·a

È
=∆ e = g sin ◊W = gÕ cos ◊W (1.41)

With this in mind, the W ± combinations will have ±1 charge in units of e, which is
what we want.

8"Turning down" the couplings to the Higgs g, gÕ æ 0 we can see that the Lagrangian eq. (1.6)
has a bigger symmetry group which we label as SU(2)L ◊ SU(2)R. The symmetry breaking pattern
then becomes SU(2)L ◊ SU(2)R æ SU(2)V which is a bigger symmetry than the one with the
couplings so that only at tree level we can see it is e�ects.
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Without giving the full calculation, one can find that the full gauge Lagrangian
is

L = ≠
1
4Fµ‹F µ‹

≠
1
4Zµ‹Zµ‹

≠
1
2(ˆµW +

‹ ≠ ˆ‹W +

µ )(ˆµ(W ≠)‹
≠ ˆ‹(W ≠)µ)

+ 1
2m2

ZZµZµ
≠ M2

W W +

µ (W ≠)µ

+ ie cot ◊W

Ë
Zµ‹W +

µ W ≠
‹ ≠ (ˆµW +

‹ ≠ ˆ‹W +

µ )Zµ(W ≠)‹ + (ˆµW ≠
‹ ≠ ˆ‹W ≠

µ )Zµ(W +)‹
È

+ ie
Ë
F µ‹W +

µ W ≠
‹ ≠ (ˆµW +

‹ ≠ ˆ‹W +

µ )Aµ(W ≠)‹ + (ˆµW ≠
‹ ≠ ˆ‹W ≠

µ )Aµ(W +)‹
È

+ 1
2

e2

sin2 ◊W

1
W +

µ (W +)µW ≠
‹ (W ≠)‹

≠ W +

µ (W ≠)µW +

‹ (W ≠)‹
2

+ e2
1
AµW +

µ A‹W ≠
‹ ≠ AµAµW +

‹ (W ≠)‹
2

+ e2 cot ◊W

1
ZµW +

µ Z‹W ≠
‹ ≠ ZµZµW +

‹ (W ≠)‹
2

+ e2 cot ◊W

1
W +

µ W ≠
‹ AµZ‹ + W ≠

µ W +

‹ AµZ‹
≠ 2W +

µ (W ≠)µA‹Z‹

2

(1.42)

1.3.3 Higgs Sector
We can now return to the field h, the Higgs Boson. This boson remains in the
spectrum of the theory even after the choice of the unitary gauge fi = 0 by the Higgs
mechanism.
The part of the Lagrangian which gives us the dynamics of the Higgs field is given
by the expansion of the covariant derivative after symmetry breaking

LH = 1
2(ˆµh)(ˆµh) ≠

m2

h

2

2

≠ g
m2

h

4MW

h3
≠

g2m2

h

32M2

W

h4+

+ 2h

v

3
M2

W W +

µ (W ≠)µ + 1
2m2

ZZµZµ

4
+ h2

v2

3
M2

W W +

µ (W ≠)µ + 1
2m2

ZZµZµ

4
,

(1.43)

where mh =
Ô

2 µ and µ is the initial symmetry breaking parameter in the unbroken
Higgs doublet Lagrangian and v is the induced VEV.

As we can see from eq. (1.43), the Higgs field interacts with itself in cubic and
quartic interactions and with the other gauge bosons, again, with cubic and quartic
interactions. As in all the other interaction terms, the strength of the interaction is
proportional to the masses.

1.3.4 Lepton Sector
Let’s study the interactions between the electroweak gauge bosons and the leptons.
As seen in table (1.3) we have classified leptons into left-handed Li = (2, 1)≠1 and
right-handed ei

R
= (1, 1)≠2

Li =
A

‹e

e≠

B

L

,

A
‹µ

µ≠

B

L

,

A
‹·

·≠

B

L

, ei

R = {eR, µR, ·R} i = 1, 2, 3. (1.44)

We see that the left-handed field shows up as an isospin doublet, whereas the right-
handed field as singlet. In equation eq. (1.44) we highlighted the three generations
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left SU(2) doublets and right singlets of leptons. These all transform as a left/right-
handed Weyl spinors. From now on we consider only one generation of leptons for
simplicity’s sake, but the argument can be easily generalized to all three.

The coupling between the leptons and the gauge boson is given by the covariant
derivative in the fermion Lagrangian eq. (1.5)

L = iL̄ /D
(¸)

L + iēR /D
(e)

eR, (1.45)

where the covariant derivatives are di�erent between the left-handed part and the
right-handed one. All leptons couple to the hypercharge gauge boson as we stated
in table (1.3). We denote YL the left-handed hypercharge and YR the right-handed
one. So the expanded Lagrangian will be

L = iL̄
3

/̂ ≠ ig /W
a
·a

≠ i
gÕ

2 YL /B
4

L + iēR

3
/̂ ≠ i

gÕ

2 YR /B
4

eR. (1.46)

To be clear, the L or R subscript in the Lagrangian are just for convenience, since
they indicate the implicit chirality of the field. But since all leptons are all left- or
right-handed Weyl spinors, it would be technically correct to replace

L̄R
/̂L æ L†‡̄µˆµL,

ēR
/̂eR æ e†

R
‡µˆµeR,

(1.47)

where ‡µ = (1, ‡i) and ‡̄µ = (1, ≠‡i). However, since we’ll almost always deal with
the fields in the broken phase, where the left- and right-handed spinors combine into
Dirac spinors, for simplicity we’ll always write everything in the Dirac rep where9

L̄ /̂L = L†“0“µ
1 ≠ “5

2 ˆµL,

ēR
/̂eR = e“0“µ

1 + “5

2 ˆµe.
(1.48)

As it is clear, there are still no masses for the leptons. To find them we have to
build the Yukawa sector of the Lagrangian where the fields interact with the Higgs
doublet. This will give mass to the leptons after symmetry breaking.
From the transformation rule of the lepton fields and the Higgs doublet, it is easy
to see that the only scalar quantities we can construct are the ones in Lagrangian
eq. (1.7)

L = Y
Ë
L̄eHeR + ēRH†Le

È
. (1.49)

After symmetry breaking, this part will give us the mass for the electrons with the
following term

≠ me (ēLeR + ēReL) , me = Y
Ô

2
v. (1.50)

9Sometimes we will use the notation where the chirality projector are written as

PL = 1 ≠ “5

2 PR = 1 + “5

2
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Again, only after electroweak symmetry breaking, together with the diagonalization
of the masses for the gauge bosons, the Lagrangian eq. (1.46) becomes

L = L̄e

5
g·3 (Zµ cos ◊W + Aµ sin ◊W ) + gÕ

2 YL (≠Zµ sin ◊W + Aµ cos ◊W )
6

“µLe+

+ YR

gÕ

2 ēR (≠Zµ sin ◊W + Aµ cos ◊W ) “µeR.

(1.51)

The terms proportional to the photon field are

Aµ

5
L̄e

3
g·3 sin ◊W + gÕ

2 YL cos ◊W

4
Le +

3
gÕ

2 cos ◊W

4
YR (ēR“µeR)

6
, (1.52)

and using the fact that g sin ◊W = gÕ cos ◊W = ggÕ/


g2 + gÕ2, we get to the expected
result for the QED interaction between photons and charged leptons

Aµg sin ◊W

5
L̄e“µ

3
·3 + YL

2

4
Le + YR

2 (ēR“µeR)
6

= Aµg sin ◊W [≠ēL“µeL ≠ ēR“µeR]
= g sin ◊W AµJµ

em,

where we used the unbroken generator in eq. (1.27) and

Jµ

em = Qe(ē“µe), (1.53)

with Qe = e = g sin ◊W . As expected, the electromagnetic interaction does not
di�erentiate between left and right-handed chirality.

The terms proportional to the Z0 boson are

Zµ

5
g cos ◊W L̄e“µ·3Le ≠

YL

2 gÕ sin ◊W L̄e“µLe ≠
YR

2 gÕ sin ◊W ēR“µeR

6

= Zµ

Ë
(g cos ◊W + gÕ sin ◊W )L̄e“µ·3Le ≠ gÕ sin ◊W qJµ

em

È

= Zµ

g

cos ◊W

1
Jµ

3
≠ q sin2 ◊W Jµ

em

2
.

(1.54)

Therefore the Z0 boson not only couples to the EM current but even with an axial
current

Jµ

3
= L̄e“µ·3Le. (1.55)

There remain only the interaction terms between the leptons and the W ± bosons.
Recalling eq. (1.34) we get, from the Lagrangian eq. (1.46)

gW a

µ L̄e“µ·aLe = g
5 1

Ô
2

W +

µ L̄e“µ·≠Le + 1
Ô

2
W ≠

µ L̄e“µ·+Le + W 3

µ L̄e“µ·3Le

6

(1.56)
and we can directly see that the charged currents are

J+

µ = L̄e“µ·+Le =
1
‹̄e ē≠

2

L
“µ

A
0 1
0 0

BA
‹e

e≠

B

L

=
1
‹̄e ē≠

2

L
“µ

A
e≠

0

B

L

= ‹̄eL“µe≠
L

= ‹̄e“µ

1 ≠ “5

2 e≠
(1.57)
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and

J≠
µ = (J+

µ )† = ē“µ

1 ≠ “5

2 ‹e. (1.58)

The axial part for W 3 goes into the photon and Z0 boson.
The full interaction Lagrangian between the leptons and the gauge boson after

electroweak symmetry breaking becomes

L = qeAµJµ

em + g

cos ◊W

Zµ (Jµ

3
≠ q sin ◊W Jµ

em) + g
Ô

2

1
W +

µ Jµ≠ + W ≠
µ Jµ+

2
. (1.59)

1.4 Quark Mixing and CKM
Now that we talked about the electroweak sector

SU(2)L ◊ U(1)Y æ U(1)em (1.60)

of the Standard Model, we’re ready to add one of the missing part: the quarks.
We will not talk about QCD in this section, which is the remaining SU(3) of the
full symmetry of the Standard Model, but only how quarks enter in the electroweak
theory and how we can give masses to them with the help of the Higgs mechanism.
It will turn out that whenever we try to diagonalize the mass spectrum, we’ll
introduce some kind of mixing between the quarks which will be mediated by the
electroweak gauge bosons.

1.4.1 The Quarks
The quarks that enter in the Standard Model and their representations are summa-
rized in table (1.3). To be more specific, quarks come in three flavours, just like
leptons, and appear in the theory in their chiral basis

Qi

L =
A

u
d

B

L

,

A
c
s

B

L

,

A
t
b

B

L

ui

R = {uR, cR, tR}, dR = {dR, sR, bR}.

(1.61)

Their name are: up, down, charm, strange, top and bottom quarks. In the case of
the quarks, we now consider all three families since, as we will see, they can mix
with themselves, while leptons do not. Whenever using the notation ui we’ll mostly
mean the up row of quarks in the SM which are up and have electric charge, in units
of e, 2/3, charm and top quarks, the others are the dis which have electric charge
≠1/3.
Their irrep in the full SM gauge group is

QL ≥ (2, 3) 1
3
, uR ≥ (1, 3) 4

3
, dR ≥ (1, 3)≠ 2

3
. (1.62)

Quarks carry a lot of indices: one index for the isospin charge, one index for the
color charge, one family index and a Lorentz index. We’ll omit them, as per usual,
since the notation would be too cluttered with them. But remember still that to
construct invariant quantities all indices must be saturated in such a way to have a
singlet for any of the possible symmetries.
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1.4.2 Interactions and Lagrangian
In the same way as we did with the leptons, we start from the following Lagrangian
given in equation eq. (1.5)10

L = iQ̄L

3
/̂ ≠ ig /W

a
·a

≠ i
gÕ

2 YQL
/B

4
QL

+ iūR

3
/̂ ≠ i

gÕ

2 YuR
/B

4
uR + id̄R

3
/̂ ≠ i

gÕ

2 YdR
/B

4
dR.

(1.63)

By direct comparison with the leptons, we can easily see that the calculations will
be the same and so we give directly the results for the various currents that one
expects to find, coupled to the respective gauge bosons.
The full fermion currents will be the following

Jµ

em = ≠ē“µe + 2
3 ūa“µua ≠

1
3 d̄a“µda (1.64)

is the EM current coupled to the photon11,

J3

µ = ‹̄e“µ

1 ≠ “5

2 ‹e ≠ ē“µ

1 ≠ “5

2 e + ūa“µ

1 ≠ “5

2 ua + d̄a“µ

1 ≠ “5

2 da (1.65)

is the axial current coupled to the Z0 boson, and the charged ones

J+

µ = L̄e“µ·+Le + Q̄a“µ·+Qa, (1.66)
J≠

µ = L̄e“µ·≠Le + Q̄a“µ·≠Qa (1.67)

which are coupled to the charged W ± bosons.

1.4.3 Yukawa Sector
From the irreps eq. (1.62) and the Higgs we need to construct all the possible
renormalizable scalar quantities. As stated in the previous sections, to do so we’ll
need however another form of the Higgs field since Hú won’t cut it. The field we’ll
use is the charge conjugate of H defined by equation eq. (1.15).

Now let’s see what kind of scalars we can build up. If we start from Q̄LH we
can easily see that this we’ll be

Q̄LH ≥ (2̄, 3̄)≠ 1
3
(2, 1)1 = (2̄ ◊ 2, 3̄ ◊ 1)

1≠ 1
3
. (1.68)

We know that 2̄ ◊ 2 contains a singlet state. What’s missing is the hypercharge
singlet since 1 ≠

1

3
= 2/3 and the color singlet. If we search in eq. (1.62) for a

suitable quantity, we see that the dR quark serves our purpose and so a suitable
renormalizable operator for our Yukawa sector will be

Q̄LHdR + h.c. = Q̄RHdR + d̄RH†QL, (1.69)
10Again the computations are given for only one family of quarks if not else specified. The

arguments can be easily extended to three.
11Note the color index a = 1, 2, 3 on the quarks which is saturated.
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where we added the Hermitian conjugate, as always, to include the reality of the
Lagrangian. And this settles down the down part of the Lagrangian. For the up part
we’ll use the charge conjugate Higgs since, if you try, we cannot construct scalar
quantities between up quarks with the normal Higgs doublet.
it is easy to see that the only renormalizable scalar quantity we can construct using
uR is

Q̄LH̃uR + ūRH̃†QL (1.70)
Therefore, if we now put in all the families and the Yukawa coupling we get the
Yukawa sector for quarks

LY = Y ij

U

1
Q̄i

LHdj

R
+ d̄j

R
H†Qi

L

2
+ Y ij

D

1
Q̄i

LH̃uj

R
+ ūj

R
H̃†Qi

L

2
(1.71)

which is exactly the one which was given without explanation in equation eq. (1.7).
Again here we consider all three quark families since in the end quark will mix among
themselves. This is not true for leptons since in the SM we are considering there
are no right-handed neutrinos, which means that they will always be massless and
therefore the mixing matrix can always be "rotated away" and go back to a diagonal
matrix. There cannot be any mixing among neutrinos without their right-handed
counterpart.

1.4.4 Symmetry Breaking
For example, given the Yukawa sector, we can use symmetry breaking and, by going
in the unitary gauge12, we get for the down quarks

1
ūL d̄L

2A
0

v+hÔ
2

B

dR = d̄LdR

3
v + h
Ô

2

4
. (1.72)

Thus the mass for the down quarks is given by a SU(2) symmetry breaking Dirac
term and, with several generations of down-like quarks, we expect

Y ij

D

v
Ô

2
d̄i

Ldj

R
=∆ M ij

D
= v

Ô
2

Y ij

D
(1.73)

For the up quarks is the same but the mass matrix is given in terms of the Yukawa
of the up quarks

M ij

U
= v

Ô
2

Y ij

U
(1.74)

With this, we see that the mass terms in the Lagrangian for the quarks are

L = d̄i

LMD

ij dj

R
+ d̄j

R
MD†

ij
di

L + ūi

LMU

ij uj

R
+ ūj

R
MU†

ij
ui

L (1.75)

Nobody assures us that the mass matrices will be diagonal, but we would like them
to be diagonal since we expect the quarks, just like any other particle, to have a
definite mass13. Since we don’t have any constraint on the specific form of the mass
matrix we just found, we do not know if it is possible to diagonalize it.

12Remember that whenever we speak about unitary gauge we’re implying that we set the Goldstone
boson "to zero", which is a way of saying that the gauge field eats the Goldstone boson gaining a
new degree of freedom.

13The values of the masses of the quarks are quite di�cult to define since they cannot be
experimentally measured due to confinement.
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1.4.5 On the Diagonalization of Matrices
We now prove that there exist a method through which we can diagonalize any
matrix. This process is called singular value decomposition and it provides two
unitary matrices L, R such that

L†MR = M̂, (1.76)

where we’ll use the hatted matrix for the diagonal form of M .
From the generic matrix M we can construct two Hermitian matrices

MM † M †M (1.77)

which in general do not commute. Provided that there is no singular eigenvalue and
that the determinant is non-zero, we can easily prove that these matrices have the
same eigenvalues. Indeed we gave

PMM† = det
1
MM †

≠ ⁄
2

= det{M} det
1
M †

≠ ⁄M≠1
2

= det
1
M †

≠ ⁄M≠1
2

det M = det
1
M †M ≠ ⁄

2
= PM†M , (1.78)

and since both matrices have the same characteristic polynomial, they’ll have the
same eigenvalues. Being both Hermitian, we know that they can be diagonalized
thanks to the spectral theorem and so there exist two matrices L and R which
diagonalize the matrices to the same diagonal form since they have both the same
eigenvalues

L(MM †)L† = D̂ = R(M †M)R† (1.79)

Starting from this we define the following

M Õ = LMR† (M Õ)† = RM †L†, (1.80)

from which it is easy to see that

M Õ(M Õ)† = (M Õ)†M Õ = D̂. (1.81)

We know that we can always decompose a matrix into two Hermitian matrices as

M Õ =
A

M Õ + M Õ†

2

B

+ i

A
M Õ

≠ M Õ†

2

B

= H1 + iH2 (1.82)

The two matrices we just defined H1, H2 are obviously diagonalizable since they hare
Hermitian but we would like them to be diagonalizable by the same unitary matrix.
From linear algebra, we know that this is possible if the two matrices commute!
And it is easy to see that

[H1, H2] = 1
4i

Ë
M Õ + M Õ†, M Õ

≠ M Õ†
È

= 1
2i

1
M ÕM Õ†

≠ M Õ†M Õ
2

= 0 (1.83)

Therefore there exists a unitary matrix W such that W †M ÕW = M̂ Õ is a complex
diagonal matrix and therefore, being complex diagonal we can put it in the form

M̂ Õ = M̂ÛÏ, (1.84)
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where ÛÏ = diag
1
e„1 , e„2 , · · · , e„N

2
is a matrix of phases. Moreover

W †M ÕW = M̂ÛÏ = W †L†MRW (1.85)

and therefore if we define

L̃ = LW R̃ = RWÛ≠1

Ï (1.86)

we found the matrices that diagonalize M .

1.4.6 The CKM Matrix
Now that we know a way for diagonalizing any matrix, we can use it for the mass
matrix for the quarks. Take the up quarks for example

ūi

Lm̂u

ijuj

R
= ūiÕ

L(U †
uL

)ikMU

kl(UuR)kjujÕ
R

, (1.87)

where

m̂u =

Q

ca
mu 0 0
0 mc 0
0 0 mt

R

db (1.88)

and the new mass eigenstates are written in terms of the old ones as

ui

L = (UuL)ijujÕ
L

ui

R = (UuR)ijujÕ
R

. (1.89)

To distinguish the quarks in the two basis, we put a prime on the current basis
quarks.
Same thing goes for the down quarks where the diagonal form of the mass matrix
will be

m̂d =

Q

ca
md 0 0
0 ms 0
0 0 mb

R

db (1.90)

and the mass eigenstates

di

L = (UdL)ijdjÕ
L

di

R = (UdR)ijdjÕ
R

. (1.91)

The kinetic terms do not change under this change of basis. In fact it is easy to see
that, if we start from the original current base lagrangian

L =
1
ūÕ

L
d̄Õ

L

2
i

S

Ui /̂ + “µ

Q

a
g

Õ

6
Bµ + g

2
W 3

µ

gÔ
2
W +

µ

≠
gÔ
2
W ≠

µ

g
Õ

6
Bµ ≠

g

2
W Õ

µ

R

b

T

V
A

uÕ
L

dÕ
L

B
i

+ ūiÕ
R

3
i /̂ + gÕ 2

3
/B

4
uiÕ

R + d̄iÕ
R

3
i /̂ ≠ gÕ 1

3
/B

4
diÕ

R,

(1.92)

when we do the change of basis the unitarity of the transformation makes the
matrices drop out since the hypercharge interactions are generation diagonal

i
ÿ

i

ūi

R
/Dui

R ©
flavour

ūR1uR æ ūR U †
uR

1UuR¸ ˚˙ ˝
1

uR = ūR1uR (1.93)
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Moreover the same happens on the Bµ and W 3
µ terms since these do not mix up and

down-type quarks. This in turn makes the interaction with the photon unchanged.
The mass term, as we expect, becomes diagonal

Lmass = d̄iÕ
LMD

ij djÕ
R

+ ūiÕ
LMU

ij ujÕ
R

+ h.c.

= d̄i

L

1
UdLMdU †

dR

2

ij
dj

R
+ ūi

L

1
UuLMuU †

uR

2

ij
uj

R
+ h.c.

= d̄i

Lm̂D

ij dj

R
+ ūi

Lm̂U

ijuj

R
+ h.c.

(1.94)

The interesting bit comes out from the isospin doublet, the left part, where the two
components change with di�erent unitary matrices

Qi

L =
A

ui

L

di

L

B

æ

Q

a
U ij

uL
uj

L

U ij

dR
dj

L

R

b, (1.95)

whenever the interaction mixes the two quark types. This happens with the W ±

couplings
g

Ô
2

W +

µ ūÕ
L“µ1dÕ

L ©
flavour

ūÕ
L1dÕ

L = ūL UuL1U †
dL¸ ˚˙ ˝

VCKM

dL, (1.96)

where a new matrix in flavour space appears since we cannot use unitarity to reduce
the UuLU †

dL
term to the identity. This matrix is known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. The CKM matrix is a complex unitary matrix, and thus
has nine real degrees of freedom, or three complex degrees of freedom. If VCKM were
real, it would be a O(3) matrix, i.e. with three degrees of freedom. This means that
out of the nine parameters of the complex CKM, three are angles and six are phases.
However since the quark fields as mass eigenstates have a residual U6(1) symmetry

di

L/R
= ei–idi

L/R
, ui

L/R
= ei—iui

L/R
. (1.97)

Thus, we can use this freedom to set some phases to zero. Under these transfor-
mations, VCKM generally transforms. However, if the two rotations are the same
–i = —i, the matrix remains unchanged. Therefore out of the 6 possible phases we
could have set to zero, there remain only 5 possible combinations that e�ectively
change the CKM matrix. Therefore there remain only one free phase in the CKM.
The total remaining degrees of freedom are: three angles ◊12, ◊23, ◊13, corresponding
to rotations in the ij-flavour planes, and a phase ”. The angle ◊12 is called the
Cabibbo angle ◊C .

One possible representation of the CKM matrix is the following

V =

Q

ca
Vud Vuc Vub

Vcd Vcs Vcb

Vtd Vts Vtb

R

db. (1.98)

The presence of the phase reflects the CP violation of the weak charged currents.
We will see other representations of the CKM matrix in later sections.

For completeness we give here the full interaction Lagrangian between the four
gauge bosons “, Z0 and W ±. Starting from the diagonal interactions, which are the
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ones between the photon “

LqA = i
ÿ

k

3
ūk

L“µ

5
ˆµ + ie

2
3Aµ

6
uk

L + ūk

R“µ

5
ˆµ + ie

2
3Aµ

6
uk

R

+ d̄k

L“µ

5
ˆµ ≠ i

e

3Aµ

6
dk

L + d̄k

R“µ

5
ˆµ ≠ i

e

3Aµ

6
dk

R

4 (1.99)

and the Z0 boson

LqZ =
ÿ

k

3
≠ ūk

L“µuk

L

5
eZµ

sin 2◊W

65
1 ≠

4
3 sin2 ◊W

6
+ ūk

R“µuk

R

5
eZµ

sin 2◊W

64
3 sin2 ◊W

+ d̄k

L“µdk

L

5
eZµ

sin 2◊W

65
1 ≠

2
3 sin2 ◊W

6
≠ d̄k

R“µdk

R

5
eZµ

sin 2◊W

62
3 sin2 ◊W

4
.

(1.100)

The non-diagonal interactions with the W ± bosons are given by

LqW = ≠
e

Ô
2 sin ◊W

ÿ

ij

3
V ij

CKM
ūLi“

µdLjW +

µ +
1
V ij

CKM

2†
d̄Li“

µuLjW ≠
µ

4
. (1.101)

We note also that in the SM there are no Flavour Changing Neutral Currents (FCNC)
at tree level. At loop level these are highly suppressed by the GIM mechanism [27].

1.4.7 Wolfenstein Parametrization and Standard Parametrization
The CKM matrix is usually parametrized in some specific way. The purpose of a
specific parametrization is to incorporate in some way the unitarity condition of
the CKM. A property that is used throughout all parametrization is the so-called
rephasing invariance which is the possibility of changing the overall phase of any
row, or any column, of the CKM matrix, without changing the physics contained
in that matrix. Using this invariance, one usually sets Vud and Vus to be real and
positive14.
As we discussed in the previous sections, we know that the CKM matrix depends on
four parameters: three angles and one phase. This is, of course, independent of the
specific parametrization used. One such parametrization, which does not highlight
the number of free parameters, is the one given in equation eq. (1.98). There are
better parametrizations that make clearer the nature of the CKM matrix. One
such parametrization is the standard parametrization: the free parameters are three

14The reason for this choice has to do with a particular parameter that comes into play in the
physics of the neutral kaon system.
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angles ◊12, ◊13, ◊23 and one complex phase ” and the CKM has the form

V =

Q

ca
1 0 0
0 cos ◊23 sin ◊23

0 ≠ sin ◊23 cos ◊23

R

db

◊

Q

ca
cos ◊13 0 sin ◊13ei”

0 1 0
≠ sin ◊13ei” 0 cos ◊13

R

db

Q

ca
cos ◊12 sin ◊12 0

≠ sin ◊12 cos ◊12 0
0 0 1

R

db

=

Q

ca
c12c13 s12c13 s13e≠i”

≠s12c23 ≠ c12s23s13ei” c12c23 ≠ s12s23s13ei” s23c13

s12s23 ≠ c12c23s13ei”
≠c12s23 ≠ s12c23s13ei” c23c13

R

db,

(1.102)

where we used the notation sij = sin ◊ij and cij = cos ◊ij .
From the physical point of view, this matrix does not give us much more

information than the original form of equation eq. (1.98). From this prospective
the Wolfenstein parametrization is better suited. This parametrization incorporates
some experimental informations from the measured moduli of the matrix elements,
which we gave in equations eqs. (1.121) to (1.128). This parametrization it is based
on the approximation of the various matrix elements in terms of ⁄ = sin ◊C ¥ 0.22
and is given, up to third order in ⁄, by

V =

Q

ca
1 ≠ ⁄2/2 ⁄ A⁄3(fl ≠ i÷)

≠⁄ 1 ≠ ⁄2/2 A⁄2

A⁄3(1 ≠ fl ≠ i÷) A⁄2 1

R

db + O(⁄4), (1.103)

where, with respect to the standard parametrization, we define [12, 15, 63]

s12 = ⁄ = |Vus|
Ò

|Vud|
2 + |Vus|

2

, s23 = A⁄2 = ⁄

----
Vcb

Vus

----,

s12ei” = V ú
ub = A⁄3(fl + i÷) = A⁄3(fl̄ + i÷̄)

Ô
1 ≠ A2⁄4

Ô
1 ≠ ⁄2[1 ≠ A2⁄4] (fl̄ + i÷̄)]

(1.104)

which are called, together with ⁄, Wolfenstein parameters. These relations ensure
that fl̄ + i÷̄ = ≠(VudV ú

ub
)/(VcdV ú

cb
) is phase convention independent and that the

CKM matrix written in terms of the four parameters A, ⁄, fl̄, ÷̄ is unitary to all orders
in ⁄.
While ⁄ = 0.220658 ± 0.00044 and A = 0.818 ± 0.012 [11] are relatively well known,
the parameters fl and ÷ are much more uncertain. The main goal of CP-violation
experiments is to over-constrain these parameters and, possibly, to find inconsistencies
suggesting the existence of physics beyond the SM.

1.4.8 Unitarity Triangle
The condition on unitarity poses a strong constrain on the physics of the CKM
matrix. In fact, from the unitarity condition V †V = 13◊3 we can write six equations
for the o�-diagonal elements. For example, one such equation is of the form

3ÿ

i=1

VidV ú
is = 0. (1.105)
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Every one of these equations define a triangle in the complex plane where each one of
the legs of the triangle is one of the elements of the sum. These are called unitarity
triangles. The Wolfenstein parametrization comes in very handy since from that of
equation eq. (1.103) we can see that of the six unitary triangles, only two come with
the same power of ⁄

O(⁄3) :
VudV ú

ub + VcdV ú
cb + VtdV ú

tb = 0
VtdV ú

ud + VtsV ú
us + VtbV

ú
ub = 0.

(1.106)

These two specific triangles are useful for the study of the B-meson decay. The other
four triangles contain terms with di�erent powers of ⁄ and so they make up some
squeezed triangles.
Above all this unitarity triangle there is The Unitarity Triangle (UT). This is given
by the first of the relations in equation eq. (1.106) with the sides normalized by
VcdV ú

cb

VudV ú
ub

VcdV ú
cb

+ 1 + VtdV ú
tb

VcdV ú
cb

= 0. (1.107)

We can draw this relation in the complex plane as follows: we start from (0, 0)
and then we move to (1, 0) using the second factor of eq. (1.107), then we take
either one of the other two factors and go back to the origin. This process leaves
us with the triangle in the complex plane in figure (1.2) alongside the experimental
determination of (fl̄, ÷̄)

(a) Theoretical Unitarity Triangle.
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(b) Experimental determination of (fl̄, ÷̄), courtesy of the UTfit collabora-
tion.

Figure 1.2. The Unitarity Triangle

The parameters fl̄ and ÷̄ can be expressed in terms of the Wolfenstein parameters
fl and ÷ by means of the following relations

fl̄ = fl

A

1 ≠
⁄2

2

B

+ O(⁄4) ÷̄ = ÷

A

1 ≠
⁄2

2

B

+ O(⁄4). (1.108)

The angles in the Unitarity Triangle are defined15 as

– © arg
C

≠
VtdV ú

tb

VcdV ú
cb

D

, — © arg
C

≠
VcdV ú

cb

VtdV ú
tb

D

,

“ © arg
C

≠
VudV ú

ub

VcdV ú
cb

D

, —s © arg
C

≠
VtsV ú

tb

VcsV ú
cb

D

.

(1.109)

15Note this important feature: the definition of the angles are independent of any additional
phase since any added phase to some quark is going to get cancelled by the ratio with the other
elements. Equivalently, any CKM triangle can be rotated or scaled in the complex plane without
modifying the angles that make them up.
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1.5 Just a Taste: Flavour in the Standard Model
1.5.1 Global Symmetries
This peculiarity of the Yukawa interaction sparks an immediate question: what
would be the full symmetry group of the SM if there wasn’t any Yukawa interaction?
To answer this, let us set for now all the Yukawa couplings to zero Y¸, YU , YD = 016.
Under this assumption, the whole global symmetry group of the SM is huge, in
particular

GSM(Y = 0) = U(3)5 = U(3)3

q ◊ U(3)2

¸ = SU(3)3

q ◊ SU(3)2

¸ ◊ U(1)5, (1.110)

where we defined

U(3)3

q = U(3)QL ◊ U(3)uR ◊ U(3)dR , U(3)2

¸ = U(3)L ◊ U(3)e. (1.111)

For the second equality of eq. (1.110) the isomorphism17 U(3) ƒ SU(3) ◊ U(1) is
used, together with the definition

U(1)5 = U(1)B ◊ U(1)L ◊ U(1)Y ◊ U(1)PQ ◊ U(1)e. (1.112)

Of the residual five charges we identify the first three with the baryon number, the
lepton number and the hypercharge. These are the ones that are not broken by the
Yukawa interactions. The remaining two are identified by the Peccei-Quinn symmetry.
The important thing is that the Lagrangians eqs. (1.5) and (1.6) are invariant under
the flavour symmetry group SU(3)3

q ◊ SU(3)2

¸
. The Yukawa interactions break this

symmetry, leaving us with the residual global symmetry

GSM(Y ”= 0) = U(1)B ◊ U(1)e ◊ U(1)µ ◊ U(1)· . (1.113)

Therefore the SM is not flavour invariant.

1.5.2 Counting the Physical Parameters
The discussion made until here may seem arbitrary but in fact is very useful if
we want to count the number of independent parameters in the Yukawa coupling
matrices.
Let us start with the Yukawa sector for the quarks: how many independent parame-
ters does L

q

Y
have? Consider a more general theory where the number of flavours is

n. The two Yukawa matrices YU , YD are two 3 ◊ 3 complex matrices, which means
that they both have n2 real parameters and n2 imaginary ones. The kinetic part

16Physically we can think of this as studying the theory at an energy where the Yukawa couplings
are negligible.

17This isomorphism is not given by the direct product. In fact there is a short exact sequence of
Lie groups

1 æ SU(n) æ U(n) det≠æ U(1) æ 1
and therefore U(n) is given by the semidirect product

U(n) ƒ SU(n) o U(1).
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of the Lagrangian for the quarks has a global U(n)3 symmetry that enables us to
constrain 3n2 parameters. But the baryon number is a broken symmetry, which
means that we need to remove one constrain from the global symmetry. So in the
end we have

Nindep. = 2 ◊ 2n2
≠ 3n2 + 1 = n2 + 1. (1.114)

How many independent parameters are imaginary? To find them consider the limit
in which Y = 0. In this limit, the Lagrangian is SO(n)3 symmetric which implies
that we can remove 3n(n≠1)/2 parameters. Therefore the number of real parameters
is just

NRe = 2n2
≠

3n(n ≠ 1)
2 = n + n + n(n ≠ 1)

2 . (1.115)

The division in equation eq. (1.115) is not at random: the first n real parameters
are the masses of the n d-type quarks while the other n is the number of the masses
for the u-type quarks. The third factor is the number of mixing angles. We can find
now the number of complex phases

Nindep. = NRe + (n ≠ 1)(n + 1)
2 . (1.116)

Taking the limit of n æ 3 we get that the Yukawa matrices YD, YU , can be expressed
in terms of 9 real parameters (three masses for the down quarks, three masses for
the up quarks and three mixing angles) and one complex phase. This complex phase
is crucial since it cannot be eliminated by any change of basis and, as we will see
later, enables the possibility of CP violation in weak decays.

Now we do the same for the Yukawa coupling of the leptons. Here we have only
one Yukawa matrix Y¸ that has in principle n2 real parameters and n2 imaginary
ones. In the limit where no Yukawa interaction is present, the kinetic term for the
leptons has a global U(n)2 symmetry which constrains 2n2 parameters. In analogy
with what we have done for the quarks, we can use the residual SO(n) symmetry to
eliminate n(n ≠ 1) parameters in such a way that the number of real independent
parameters becomes

NRe = n2
≠ n(n ≠ 1) = n. (1.117)

These n parameters are exactly the n masses of the charged leptons. Since in the
broken phase we still have a residual U(1)n symmetry (one for every lepton) the
total number of parameters becomes

Nindep. = 2n2
≠ 2n2 + n = n = NRe. (1.118)

This means that no matter what, in the lepton sector there are no complex phases.
This means that in the lepton sector there cannot be any CP violation and mixing!

Based on the arguments given in the previous sections, this is exactly what
we expected. After symmetry breaking the leptons all got a mass matrix which
was diagonal while the quarks didn’t. By diagonalizing the quarks mass matrix
we introduced the possibility of mixing in the weak sector and, buy the nature of
the initial mass matrix, we could not require that the mixing matrix be real. By
an analogous computation we found that the number of parameters in the mixing
matrix was four: three angles and one complex phase. Plus we had the six masses of
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the quarks. The complex CKM matrix is pivotal in the analysis that we will carry
in the following sections. By this mean, we can now complete the discussion with an
in-depth study of the CKM matrix.

1.6 What’s so Special About the CKM Matrix?
1.6.1 Interaction Vertices
Now that we have a complete theory of weak interactions we can start constructing
Feynman diagrams and evaluating some measurable quantities. It turns out that
whenever we have a flavour changing current we’ll need now to insert in the interaction
vertex one of the possible elements of the CKM matrix.

Let’s take for example the pion decay. At the level of the hadrons, the decay is
given by

fi+
æ µ+‹µ (1.119)

which, at the level of the quarks is given at tree-level by the following Feynman
diagram

W +

u

d̄

‹µ

µ+

Vud

Figure 1.3. Pion decay at tree level mediated by a W + boson

The amplitude for such Feynman diagram is given, in the unitary gauge, by
3

g

2
Ô

2

4
2

V ú
udv̄d“µ(1 ≠ “5)uu

1
q2 ≠ M2

W

A

≠gµ‹ + qµq‹

M2

W

B

ūµ“‹(1 ≠ “5)v‹ , (1.120)

where an additional Vud term appears with respect to the naive amplitude and
q =

Ô
s. This factor can greatly suppress some processes for which the CKM matrix

element is very small.

1.6.2 How to Measure the CKM Elements
The CKM matrix elements are usually measured from leptonic and semileptonic
decays. With the top quarks the processes are a little bit more di�cult since it is
mass prevents it from forming bound states with other quarks. In that case we use
hadron mixing; we won’t go into much detail about it. Due to the fact that in the
theoretical predictions, only the square of the amplitude for the process appears,
it is not possible to measure experimentally the precise value of the CKM matrix
elements but rather we can measure either the moduli of them or the di�erence in
phases between two.
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Here we give some details on how the CKM moduli are measured experimentally
and their values as they appear in the PDG [66]. All of the processes governed by
weak decays are proportional to some power of the Fermi constant GF =

Ô
2g

2
2

8M
2
W

. This
is precisely measured from the decay of the muon to the electron.

|Vud| This matrix element involves only quarks of the first generation and is thus the
one which can be best determined. There are basically three ways of measuring
it. The first one involves superallowed Fermi transitions, which are beta decays
connecting two JP = 0+ nuclides in the same isospin multiplet. The second
one is by using the neutron decay which at tree level is given by the diagram
in figure (1.4).

u

d

d

u

d

u

W ≠

‹̄µ

µ≠

n p
Vud

Figure 1.4. Neutron decay at tree level.

The moduli of this matrix element, as given by the PDG [33], comes out to be

|Vud| = 0.97370 ± 0.00014 (1.121)

|Vus| This matrix element can be extracted from the analysis of semileptonic decays
of the K-meson such as the one in figure (1.5).

s

ūū

u
W ≠

‹̄µ

µ≠

K≠ fi0Vus

Figure 1.5. K≠
æ fi0µ≠‹̄µ at tree level

This matrix element comes out to be [6]

|Vus| = 0.2245 ± 0.0008. (1.122)

Another interesting way to measure the value of this matrix element is by
hyperon decays [14].

|Vub| This matrix element can be measured from the semileptonic decay of B meson
such as the one in figure (1.6).
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b

ūū

u
W ≠

‹̄µ

µ≠

B≠ fi0Vub

Figure 1.6. B≠
æ fi0µ≠‹̄µ at tree level

From these processes, we find a value for the moduli of this matrix element of
[44]

|Vub| = 0.00382 ± 0.00024. (1.123)

|Vcd| This matrix element can be measured from the semileptonic decay of charmed
particles like the D meson. One such process can be found in figure (1.7).

c

d̄d̄

d
W +

‹µ

µ+

D+ fi0Vcd

Figure 1.7. D+
æ fi0µ+‹µ at tree level

The moduli of such matrix element come out to be [41, 24]

|Vcd| = 0.221 ± 0.004. (1.124)

|Vcs| This matrix element can be found by semileptonic decays of charmed particles
like the D meson in which the c quark goes into a s quark. The lightest meson
which contains an s quark is the K meson. Such decay is depicted at tree level
in figure (1.8)

c

ūū

s
W +

‹µ

µ+

D̄0 K≠Vcs

Figure 1.8. D̄0
æ K≠µ+‹µ at tree level

This matrix element comes out to be [18, 65, 2, 3, 5]

|Vcs| = 0.978 ± 0.011. (1.125)

|Vcb| This matrix element is determined by the decay B0
æ Dú≠l+‹l like the one in

figure (1.9).
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d

c̄

d

b̄
W +

‹e

e+

B0 Dú≠Vcb

Figure 1.9. D̄0
æ K≠µ+‹µ at tree level

For these decays, we gathered a lot of measurements that got us a value of [44]

|Vcb| = 0.041 ± 0.0014. (1.126)

|Vtd|

|Vts|
These are two of the three matrix elements which involve the top quark.
These matrix elements are measured by neutral meson mixing like B0

≠ B̄0

and Bs ≠ B̄s. The diagrams describing these oscillations, which will be of
fundamental importance for CP violation in later sections, are so-called box
diagrams. One such diagram is depicted in figure (1.10).

b

s

W≠

t

s

b

W+

tB0 B
0

Figure 1.10. Relevant box diagram for the measurement of |Vtd| and |Vts|.

By evaluating these processes on the lattice assuming Vtb = 1

|Vtd| = 0.0080 ± 0.0003 |Vts| = 0.0388 ± 0.0011. (1.127)

|Vtb| This matrix element has been found by the CDF [4] and D0 [1] collaborations
by measuring the branching ratio Br(t æ Wb)/Br(t æ Wq) assuming three
generations of quarks. The value they gave is

|Vtb| = 1.013 ± 0.030. (1.128)

1.6.3 CP-violation in the SM
We can now briefly discuss how the complex phase in the CKM breaks CP-invariance
in the weak charged currents.
First, we need to see how the two discrete symmetries, parity and charge conjugation,
act on the relevant fields for our analysis. These fields are bosonic vector fields, for
the W ±, and four-spinors �, for the quarks. Starting from parity, let us define a
state of a single particle A with momentum p and other quantum numbers ‡ as
|A, p, ‡Í. The parity operator will act on this state as

P |A, p, ‡Í = ÷A |A, ≠p, ‡Í (1.129)
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since, at the classical level, parity just inverts the coordinates. On the antiparticle
state the operator will act similarly, but with another rephasing

P

---Ā, p, ‡
f

= ÷
Ā

---Ā, ≠p, ‡
f

. (1.130)

Given the creation operator a†
‡ we have

Pa†
‡(p) |0Í = a†

‡(≠p) |0Í ÷A (1.131)

henceforth

Pa†
‡(p)P≠1

P |0Í = Pa†
‡(p)P≠1

|0Í = ÷Aa†
‡(≠p) |0Í

=∆ Pa†
‡(p)P≠1 = ÷Aa†

‡(≠p).
(1.132)

Similarly for the antiparticle. Now let us consider a scalar field �(x) and its expansion
in creation and annihilation operators, then

P�(x)P≠1 =
⁄ d3p

(2fi)32Ep

Ë
PapP

≠1e≠ipx + Pb†
pP

≠1eipx
È

=
⁄ d3p

(2fi)32Ep

Ë
÷ú

Aa≠pe≠ipx + ÷
Ā

b†
≠peipx

È .= ÷ú
��(Px).

(1.133)

In order for the equality to hold, we need to have ÷ú
A

= ÷
Ā

= ÷ú
�

which implies
÷A÷A = 1. What we need to define still is the intrinsic phase ÷ú

�
. Doing a similar

thing for a spinor field, defining its transformation property under parity as

P„(x)P≠1 .= ÷ú
A“0Â(Px) (1.134)

we get a slightly di�erent result

PÂ(x)P≠1 =
⁄ d3p

(2fi)3


2Ep

Ë
÷ú

Aa‡(≠p)u‡(p)e≠ipx + ÷
Ā

b†
‡(≠p)v‡(p)eipx

È

=
⁄ d3p

(2fi)3


2Ep

Ë
÷ú

Aa‡(≠p)“0u‡(≠p)e≠ipx
≠ ÷

Ā
b†

‡(≠p)“0v‡(≠p)eipx
È

(1.135)

which implies ÷
Ā

= ≠÷ú
Ā

, which depends only on the choice of ÷
Ā

. For a vector field
we get a similar result as for the calar field PAµ(x)P≠1 = ≠÷ú

A
P

µ
‹ A‹(Px).

Next, there is charge conjugation. This can be found by imposing that the following
conditions hold: take a spinor field Â and denote its charge conjugate as Âc = CÂ̄T ,
then

Â̄cÂ̄c = Â̄Â Â̄c /̂Âc = Â̄ /̂Â. (1.136)

From the first condition, we get that
1
Â†

c

2

–

1
“0

2

–—
(Âc)—

= Â“

1
C

†
2

“–

1
“0

2

–—
(C)

—‡
Â†

‡ = ≠Â†
‡

1
C

†“0
C

2

“‡
Â“

= Â†
‡

1
“0

2

‡“
Â“ = Â†

‡

1
“0

2
T

“‡
Â“
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from which we can extract
C

†“0
C = ≠“0. (1.137)

From the second condition we get
1
Â†

c

2

–

1
“0“µ

2

–—
(ˆµÂc)—

= Â‡

1
C

†
2

‡–

1
“0“µ

2

–—
(C)

—“

1
ˆµÂ†

2

“

= Â†
“

1
“0“µ

2

“‡
(ˆµÂ)

‡
. (1.138)

By comparison, we can say

C
†
1
“0“µ

2
C =

1
“0“µ

2
T

= (“µ)T “0 (1.139)

For µ = 0 it is easy to show from equation 1.139 that the operator C is Hermitian.
Adding the unitary quantity “0“0, from equation 1.139 we get

C

1
“0“µ“0“0

2
C = C“µ†“0

C = (“µ)T “0 (1.140)

Now we multiply both the sides by “0 and we exploit the anticommutation between
C and “0 since the equation 1.137 is true, so we get

C“µ†“0
C“0 = (“µ)T

≠ C“µ†
C = (“µ)T

C“µ
C = ≠“µú (1.141)

The only thing to do now is to determine the operator. We know that “0, “1, “3 are
real and symmetric (like also “5) whereas “2 is imaginary. Since C anticommutes
with “0, “1, “3 and commutes with “2, imposing the condition C

2 = 1 we can define
the operator up to a sign

C = i“2. (1.142)
With this definition of charge conjugation we get that a scalar and a pseudovector
are unchanged under charge conjugation, vectors and tensors change sign.
Therefore we have

CP W +

µ CP
≠1 = ≠ei›W ÷‹

µW ≠
‹

CP W ≠
µ CP

≠1 = ≠ei›W ÷‹

µW +

‹

CP Zµ
CP

≠1 = ≠÷Z÷µ

‹ Z‹

CP h CP
≠1 = ÷hh

CP ui
CP

≠1 = ei„ui “0
CūiT

CP di
CP

≠1 = ei„di “0
Cd̄iT

(1.143)

The question is now: is it possible to choose the phases ›W , ÷Z , ÷h, „ui , „di in such a
way that the weak Lagrangian is CP invariant? Let’s go directly to the culprit, the
W boson interactions with quarks. What we have is the following

CP

5
g

Ô
2

W +

µ ūi

L“µdj

L
Vij + V ú

ij d̄j

L
“µui

LW ≠
µ

6
CP

≠1

= g
Ô

2
Vij

1
W ≠

µ e≠i›W

2
ei(„

j
d≠„

i
u)

1
≠d̄j

L
“µui

L

2
+ g

Ô
2

V ú
ij(W +

µ ei›W )ei(„
i
u≠„

j
d)

1
≠ūi

L“µdj

L

2
.

(1.144)
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The condition for invariance is given by

V ú
ije≠i(›W +„

j
d≠„

i
u)/2 = Vijei(›W +„

j
d≠„

i
u)/2 (1.145)

which can only be true if we can choose the phases such that the product between
the phase and the CKM matrix elements is real. But we know that the CKM matrix
has a complex phase that cannot be reabsorbed in any way and that is present in
every choice of basis. This means that the equality eq. (1.145) cannot hold and
therefore we have CP violation.

1.6.4 The Jarlskog Invariant
Now that we’re familiar with the existence of the CP-violating phase, we would like
to be able to quantify it in a meaningful way that is manifestly basis-independent.
What we need is some kind of invariant that identifies CP violation. Such an object
exists and it is called the Jarlskog invariant, J [19, 28, 40, 39, 64]. It is defined by

Im
Ë
VijVklV

ú
i¸V

ú
kj

È
= J

ÿ

mn

‘ikm‘j¸n,

where there is no implicit sum on the left-hand side. In terms of the Wolfenstein
parametrization, this corresponds to

J = c12c23c2

13s12s23s13 sin ” ¥ ⁄6A2÷

This parametrization-independent quantity measures the amount of CP violation in
our model. The most remarkable observation is that it depends on every physical
mixing angle. Thus if any of the mixing angles are zero, there would be no CP
violation. In fact, we can see that the amount of CP violation in the Standard
Model is small, but it is not small because the CP phase ” is small. Quite on the
contrary, it is small because of the mixing angles. We can see this in the Wolfenstein
parametrization where the Jarlskog invariant comes along with six powers of ⁄.
The experimental value of J is [66]

J = (3.0+0.15

≠0.09
) ◊ 10≠5. (1.146)
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Chapter 2

Quantum Chromodynamics and
Strong Interaction

The strong interaction is the missing piece of the Standard Model which is described
by the SU(3) symmetry group. Of the three fundamental forces that the SM can
explain, the strong force is by far the most complicated. This force governs the
behaviour of quarks and how they bind together to form composite particles which
we call hadrons. Not only that, but on a larger scale, it also governs how the nuclei
of di�erent atoms bind together and their stability. At these two di�erent scales,
the particles that mediate the interactions are di�erent: on the smaller, hadronic,
scale the force mediator is called gluon, while at the larger scale the carriers are light
mesons such as the pion. Quantum chromodynamics is the Quantum Field Theory
that describes the interactions of colored particles. Color is the quantum number of
the SU(3) symmetry group in the SM.
What makes the strong force so di�cult to work with and to do actual calculations,
it its highly non-perturbative structure at low enough energy scales. Perturbation
theory is an essential bit of mathematics that enables us to carry out specific
computations and without it, unless the model is exactly solvable1, we cannot go any
further. But then, how come that we in fact do calculations which depend on strong
dynamics? We use a tool called lattice QCD2. This approach was introduced by
Wilson [62] and is an approximation scheme in which the continuum gauge theory is
replaced by a discrete statistical mechanical system on a four-dimensional Euclidean
lattice. The basic idea of lattice QCD is to employ a specific ultraviolet regulator,
i.e. the lattice, on which we can do computations exactly. Of course, such a tool
comes with its benefits and with its drawbacks. One such drawback is that by
discretizing space-time, we lose one of the foundations of QFT which is Lorentz
invariance. Moreover, a lattice calculation requires some very intensive computations
which, in turn, requires a very powerful computer. Although we are going to use
heavily the ideas of lattice QCD and lattice regularization, we won’t go into much
details on how such lattice computations are done, what is important is that even in

1Sadly we know far too well that most of the actual physical models are not exactly solvable by
analytical methods.

2This is not the only tool. There are also other theories like the 1/Nc [57] expansion or Chiral
Perturbation Theory (ChPT).
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the non-perturbative regime, physicist know how to do calculations.
The fundamental property of QCD, which causes all the problems we write up until
now, is asymptotic freedom. What this means is that, at high enough energy, QCD
can be treated perturbatively: the theory becomes asymptotically free gs(�) �æŒ

≠æ 0,
where � is some energy scale. That’s right, the coupling depends on the energy at
which the process takes place. This is a general feature of any QFT and comes from
the process of reabsorbing infinities in a process called renormalization. We will see
how this process will come into play in this chapter.

2.1 The QCD Lagrangian
The QCD Lagrangian is constructed by taking the kinetic term of the relevant gauge
field and the kinetic term for the fermions. This leaves us with a Lagrangian of the
form

LQCD = ≠
1
4Ga

µ‹Gaµ‹ + Â̄a

q

1
i /D

ab
≠ m”ab

2
Âb

q , (2.1)

in which the field Ga
µ are the gluons and the fields Âq are the quarks. But reality, as

always, is more complicated than this. What we glossed over up until now is that
gauge freedom completely breaks down our possibility to do calculations. This is due
to the fact that when studying QFTs one makes use of an object called generating
functional Z[J ]. The generating functional is a functional3 which is used to find, in
any order in perturbation theory, the value of some Feynman diagram: it "generates"
at any order, the relevant perturbative terms and is in this bit of mathematics that
the problem lies. Take a general gauge field Aa

µ associated with some gauge group
G. Let S[A] be the action4 functional, then the generating functional is defined in
Minkowski space as

Z[Jµ

a ] =
⁄

DA exp
5
iS[A] ≠ i

⁄
d4x Aa

µ(x)Jµ

a (x)
6
, (2.2)

where Jµ
a are dim G external currents. Then, green functions can be found by

functionally deriving Z[J ] and setting the external current to zero. For example,
the two-point function (propagator) of the gauge field, is found by

Gab

µ‹(x) = È0|Aa

µ(x)Ab

‹(0)|0Í = 1
Z[0]

”

”Jµ
a

”

”J‹

b

Z[J ]
-----
J=0

. (2.3)

If we have some additional fields which interact with the gauge field, just like our
initial QCD Lagrangian, equation like eq. (2.3), gives the complete two-point function
which incorporates all the possible corrections to the free propagator. But what is
the integration measure in the definition of the generating functional of equation
eq. (2.2)? Broadly speaking it means that we need to integrate over all possible field
configurations. But here’s the catch: gauge freedom makes any configuration part of
an infinite equivalence class of configurations where the physics is unchanged and
we need to integrate over all of them. It is not di�cult to see that even naively,

3Incredible!
4The action is defined as the integral over spacetime of the Lagrangian density.
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this makes the integration measure divergent. To solve this problem we need to
fix the gauge in such a way that the physical result is independent of such a fix
but such that makes the integration well defined. The procedure to fix the gauge
in a non-Abelian theory was found by Fadeev and Popov5 [21]. Without going
into much more details, what they discovered is that by fixing the gauge there
appeared some new fictitious particles which we call Ghosts. Ghosts are in no way
physical particles, they cannot be measured, they are not real, but they are only a
result of the mathematical process of fixing the gauge. This particles appear in the
Lagrangian as a bosonic term but they are described by Grassman variables and so
obey Fermi-Dirac statistic.
There are a whole plethora of possible gauges: covariant gauges, axial gauges, non-
linear gauges, and so on. In the simplest case of the covariant gauge-fixing ˆµGa

µ = 0,
the full QCD, gauge-fixed, Lagrangian in all of its glory is given by

LQCD = ≠
1
4Ga

µ‹Gaµ‹
≠

1
2–

1
ˆµGa

µ

2
2

+ (ˆµ‰a)úDab

µ ‰b + Â̄q

!
i /D ≠ m

"
Âq, (2.4)

where – is the gauge parameter, ‰i are the Ghost fields and Dab
µ = ”abˆµ ≠ gsfabcAc

µ

is the covariant derivative in the adjoint representation of SU(3).

2.2 Perturbative QCD
We are now ready to start the analysis of QCD in the perturbative regime. To
employ perturbation theory, we need to choose an energy scale such that quarks and
gluons become the asymptotic states of the theory instead of the hadrons.
Given the Lagrangian eq. (2.4) we can extrapolate the various interaction vertices.
The non-Abelian nature of the SU(3) symmetry group adds some interesting inter-
actions such as three- and four-gluon vertices which in a simpler theory like QED
are not present. We now give a short list of the Feynman rules for the vertices and
their mathematical counterpart a, µ

i j = igs“µta (2.5)

k

a, µ

b c = ≠igsfabckµ (2.6)

5There is still a problem with this approach since fixing an orbit in the guage configuration space
can result in ambiguities, the so-called Gribov ambiguity [29]
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p

k

q
b, ‹

a, µ

c, fl = gfabc[gµ‹(k ≠ p)fl + g‹fl(p ≠ q)µ + gflµ(q ≠ k)‹ ] (2.7)

b, ‹a, µ

c, fl d, ‡

=

≠ig2

Ë
fabef cde(gµflg‹‡

≠ gµ‡g‹fl)
+facefdbe(g‹µgfl‡

≠ gµ‡g‹fl)

+fadefbce(gµ‹gfl‡
≠ gµflg‹‡)

È
(2.8)

For the later chapters, we also need the free propagators of both the quarks and
the gluon derived from the associated free Lagrangian and come out to be

p
i j = ≠i

/p ≠ m
”ij =

i(/p ≠ m)
p2 ≠ m2

”ij (2.9)

k
a b = i”ab

k2
(2.10)

ka, µ b, ‹ = i”ab

k2

3
≠gµ‹ + (1 ≠ –) kµk‹

k2 + i‘

4
, (2.11)

where – is the covariant gauge-fixing constant appearing in the Lagrangian eq. (2.4).

2.3 Renormalization of QCD
A general feature of most QFTs is the presence of divergences in the perturbative
series when evaluating loop diagrams. Since we know, experimentally, that the
results should be finite we need a way to systematically eliminate the unphysical
divergences. This is done by means of renormalization [17]. In order to deal with
divergences that appear at the quantum6 corrections to Green functions, the theory
has to be regularized to have an explicit parametrization of the singularities and
subsequently renormalized to render the Green functions finite. There are many

6I will use quantum and loop corrections interchangeably.
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ways of regularizing Green functions, but what we will employ is Dimensional Regu-
larization (DR)7 [7, 10, 16, 59] by analytically continuing the spacetime dimensions
to d = 4 ≠ 2‘; the physical limit is taken by letting ‘ æ 0.
There are also many ways upon which we can subtract the singularities. For our
interest, we will mostly employ the modified Minimal Subtraction, or MS for short.
To eliminate the divergences we firstly need to renormalize the fields and parameters
in the Lagrangian eq. (2.4) defining several renormalization constants

Ga

Bµ
= Z1/2

3
Ga

µ ÂqB = ZqÂq ‰a

B
= Z̃1/2

3
‰a

gB = Zggµ‘ –B = Z3– mB = Zmm
(2.12)

in which the index B denotes the bare quantities. Note that a scale µ has been
added to the coupling constant g to make it dimensionless in D = 4 ≠ 2‘ spacetime
dimensions.
In the next sections, we are going to evaluate the 1-loop renormalization of QCD
within the given framework. In general, the Green functions are going to depend
on the gauge-fixing parameter –, but the physical results are gauge-independent.
Therefore we are going to use the Feynman gauge – = 1 for the following calculations.

2.3.1 Vacuum Polarization
The first loop corrections that we are going to evaluate are the ones to the gluon
propagator. At one loop there are four corrections, plus the counterterm which
depends on the renormalization constants and absorbs the divergences.

+ + +

We consider now a general SU(nf ) Yang-Mills theory with nf flavours. Let us start
from the fermion bubble contribution: after the sum over the nf flavours

k
k + l

k

l

aµ b‹

7In dimensional regularization there is some liberty when defining “5. In our particular case we will
use Naive Dimensional Regularization (NDR) where the “5 is such that the usual anticommutation
rules hold {“µ, “‹} = 2gµ‹ and {“µ, “5} = 0. Another useful definition is given by the ’t Hooft-
Veltmann scheme [59]



2.3 Renormalization of QCD 38

= ≠nf

⁄ dd¸

(2fi)d
Tr

51
≠igµ‘ta

ij

2
“µ

i

¸+ ” k

1
≠igµ‘tb

ji

2
“‹

i

¸

6

= ≠g2µ2‘nf TF”ab Tr
Ó

“µ“–“‹“—
Ô ⁄ dd¸

(2fi)d

(¸ + k)–¸—

¸2(¸ + k)2

= ≠g2µ2‘nf TF”ab4
Ë
gµ–g‹—

≠ gµ‹g–— + gµ—g‹–
È Ë

B
–—(k) + k–

B
—(k)

È

= ≠g2µ2‘nf TF”ab4
Ë
gµ–g‹—

≠ gµ‹g–— + gµ—g‹–
È C

dB0(k)
4(d ≠ 1)k–k—

≠
k2B0(k)
4(d ≠ 1)g–—

≠
B0(k)

2 k–k—

D

= g2µ2‘nf TF”ab
B0(k)
(d ≠ 1)

Ë
gµ–g‹—

≠ gµ‹g–— + gµ—g‹–
È Ë

k2g–— + (d ≠ 2)k–k—
È

= g2µ2‘nf TF”ab
B0(k)
(d ≠ 1)2(d ≠ 2)

1
kµk‹

≠ k2gµ‹
2

,

(2.13)

where B0(k) is the master massless loop integral given in appendix A.2 and TF is the
Dinkin label of the fundamental rep of SU(nf )8. We also used the PV decomposition
explained in appendix A.3. If we now choose d = 4 ≠ 2‘ and expand the scalar loop
integral B0(k) around its pole in ‘ = 0 we find

= g2nf TF”ab
2(2 ≠ 2‘)
(3 ≠ 2‘)

i

16fi2

�2(1 ≠ ‘)
�(2 ≠ 2‘)

C
1
‘

≠ log
A

≠
p2

4fiµ2e≠“E

BD1
kµk‹

≠ k2gµ‹
2

= i
g2

16fi2
nf TF”ab2(2 ≠ 2‘)

31
3 + 2

9‘
4C

1
‘

≠ log
A

≠
p2

4fiµ2e≠“E

BD1
kµk‹

≠ k2gµ‹
2

= i
g2

16fi2
nf TF”ab

34
3 ≠

4
9‘

4C
1
‘

≠ log
A

≠
p2

4fiµ2e≠“E

BD1
kµk‹

≠ k2gµ‹
2

= i
g2

16fi2
nf TF”ab

C
4
3

1
‘

≠
4
9 + 4

3 log 4fiµ2e≠“E

≠p2

D

+ O(‘).

(2.14)

Since we are doing renormalization, we are only interested in the divergent part,
which is

i
–s

4fi

3
≠

4
3nf TF

1
‘

4
(k2gµ‹

≠ kµk‹) + O(‘0). (2.15)

In the MS scheme, besides the divergent part, the factors of log 4fi ≠ “E get also
reabsorbed into the renormalization constant.
The second relevant diagram is the gluon bubble correction:

k
l

k

k + l

aµ b‹

8As a convention TF = 1/2.
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= 1
2

⁄ dd¸

(2fi)d

1
≠gµ‘facd [gµfl(k ≠ ¸)‡ + gfl‡(2¸ + k)µ + g‡µ(≠2k ≠ ¸)fl]

2
◊

◊

1
≠gµ‘fd

Õ
c

Õ
b

Ë
g‡

Õ
fl

Õ(k + 2¸)‹ + gfl
Õ
‹(≠¸ + k)‡

Õ + g‹‡
Õ(≠2k ≠ ¸)fl

ÕÈ2
◊

◊
≠ig‡‡Õ”dd

Õ

(k + ¸)2

≠igflflÕ”cc
Õ

¸2
,

(2.16)

where the prime indices are related to the internal gluon propaghators. The 1/2
factor comes from the symmetry factor of the Feynman graph. Then, one has

= 1
2g2µ2‘CA”ab

⁄ dd¸

(2fi)d
[gµfl(k ≠ ¸)‡ + gfl‡(2¸ + k)µ + g‡µ(≠2k ≠ ¸)fl] ◊

◊

Ë
g‡fl(k + 2¸)‹ + g‹

fl(≠¸ + k)‡ + g‹

‡(≠2k ≠ ¸)fl

È 1
¸2(¸ + k)2

= g2µ2‘
CA

2 ”ab

⁄ dd¸

(2fi)d

Ë
(d ≠ 6)kµk‹ + 5k2gµ‹ + (2d ≠ 3)kµ¸‹+

+(2d ≠ 3)k‹¸µ + (4d ≠ 6)¸µ¸‹ + 2gµ‹k–¸– + 2gµ‹¸2
È 1

¸2(¸ + k)2

= g2µ2‘
CA

2 ”ab
Ë
B0(k)

1
(d ≠ 6)kµk‹ + 5k2gµ‹

2
+ (2d ≠ 3)kµ

B
‹(k)+

+(2d ≠ 3)k‹
B

µ(k) + (4d ≠ 6)Bµ‹(k) + 2gµ‹k–B
–(k) + 2gµ‹A0]

= g2µ2‘
CA

2 ”abB0(k)
Ë
(d ≠ 6)kµk‹ + 5k2gµ‹

≠ (2d ≠ 3)kµk‹
≠ k2gµ‹+

+ 4d ≠ 6
4(d ≠ 1)

1
dkµk‹

≠ k2gµ‹
26

= g2µ2‘
CA

2 ”abB0(k)
5
≠

7d ≠ 6
2(d ≠ 1)kµk‹ + 6d ≠ 5

2(d ≠ 1)k2gµ‹

6

= g2µ2‘CA”ab
B0(k)

4(d ≠ 1)
Ë
(6 ≠ 7d)kµk‹ + (6d ≠ 5)k2gµ‹

È
,

(2.17)

where A0 is the massless vacuum bubble integral given in appendix A.2 and CA

is the Casimir for the adjoint representation9. Proceeding exactly as before by
substituting d = 4 ≠ 2‘ and expanding around the pole ‘ = 0 and taking only the
divergent contribution, we find

i
–s

4fi
CA”ab

1
‘

519
12k2gµ‹

≠
11
16kµk‹

6
+ O(‘0). (2.18)

9For SU(nf ) we have CA = (n2
f ≠ 1)/nf .
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The gluon tadpole graph is the simplest one since it is just proportional to

Ã

⁄ dd¸

(2fi)d

1
¸2

= A0 = 0 (2.19)

since there is no scale involved.
The last contribution is from the ghost loop where we find

k
k + l

k

l

aµ b‹

= ≠

⁄ dd¸

(2fi)d
gµ‘facd(¸ + k)µgµ‘f bdc¸‹

i

¸2

i

(¸ + k)2

= ≠g2µ2‘CA”ab

⁄ dd¸

(2fi)d

¸µ¸‹ + kµ¸‹

¸2(¸ + k)2

= ≠g2µ2‘CA”ab [Bµ‹(k) + kµ
B

‹(k)]

= ≠g2µ2‘CA”abB0(k)
C

dkµk‹

4(d ≠ 1) ≠
k2gµ‹

4(d ≠ 1) ≠
kµk‹

2

D

= g2µ2‘CA”ab
B0(k)

4(d ≠ 1)
Ë
k2gµ‹ + (d ≠ 2)kµk‹

È

Same, but di�erent, we take d = 4 ≠ 2‘ and expand around ‘ = 0. Taking only the
divergent part, we get

i
–s

4fi
CA”ab

1
‘

5 1
12k2gµ‹ + 1

6kµk‹

6
+ O(‘0). (2.20)

We can now define the renormalization constant Z3 at 1-loop by summing the three
divergent contributions to the gluon propagator in eqs. (2.15), (2.18) and (2.20)

Z3 = 1 + –s

4fi

1
‘

35
3CA ≠

4
3nf TF

4
. (2.21)

2.3.2 Quark Self-Energy
The next part in the renormalization of QCD is finding the 1-loop corrections to the
quark propagator. In this case we have only one contribution from the quark loop
since ghosts couple only to gluons and so they only enter in higher-order corrections
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to the quark propagator. So we need to evaluate the following Feynman graph

p p + l p

l

i j =
⁄ dd¸

(2fi)d
(≠igµ‘ta

jk“µ) i
/̧ ≠ /p

(≠igµ‘ta

ki“µ)≠i

¸2

= ≠g2µ2‘ta

jkta

ki

⁄ dd¸

(2fi)d
“µ

/̧ + /p

(¸ + p)2
“µ

1
¸2

= (d ≠ 2)g2µ2‘ta

jkta

ki

⁄ dd¸

(2fi)d

/̧ + /p

(¸ + p)2

1
¸2

,

(2.22)

where the identity “µ“–“µ = (2 ≠ d)“– has been used. Using the properties of the
SU(nf ) generators and the integrals given in appendix A.2 we find

= (d ≠ 2)g2µ2‘”ijCF“–

⁄ dd¸

(2fi)d

¸– + p–

(¸ + p)2

1
¸2

= (d ≠ 2)g2µ2‘”ijCF“–[B–(p) + pµB0(p)]

= g2µ2‘”ijCF/p
3

d ≠ 2
2

4
B0(p),

(2.23)

where we have assumed that the quark momenta is p2
”= 0 otherwise the integral

would be zero in dimensional regularization.
As before, we can now expand around the pole in ‘ = 0

= i
g2

16fi2
CF”ij/p(1 ≠ ‘)

C
1
‘

+ log 4fiµ2e≠“

≠p2
+ O(‘)

D

= i
g2

16fi2
CF”ij/p

C
1
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≠ 1 + log 4fiµ2e≠“

≠p2

D

+ O(‘)

ƒ i
–s

4fi

1
‘

CF”ij/p + O(‘0).

(2.24)

Summing the virtual correction to the bare propagator, we find that the renormal-
ization constant involved is given by

Z2 = 1 ≠
–s

4fi

1
‘

CF. (2.25)

2.3.3 Quark-Gluon Vertex Correction
The 1-loop corrections to the qqg vertex are two. The first one is given by the
following Feynman diagram

p

l + p

l ≠ pÕ
l

pÕ

j

i

a, µ
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=
⁄ dd¸

(2fi)d
(≠igµ‘tb

jk“‹)
i(/̧ ≠ /pÕ)
(¸ ≠ pÕ)2

(≠igµ‘ta

kl“
µ)

i(/̧ + /p)
(¸ + p)2

(≠igµ‘tb

li“‹)≠i

¸2

= ≠

3
CF ≠

CA

2

4
ta

jig
3µ3‘

⁄ dd¸

(2fi)d

“‹(/̧ ≠ /pÕ)“µ(/̧ + /p)“‹

¸2(¸ ≠ pÕ)2(¸ + p)2
,

(2.26)

where the color factors come from the SU(nf ) algebra10. To perform this integral,
since we are only interested in the UV behaviour, we make the simplification
p = pÕ = 0 with a caveat that we’ll see later. In this limit, we have

≠ g3µ3‘ta

ji

3
CF ≠

CA

2

4 ⁄ dd¸

(2fi)d

“‹ /̧“µ/̧“‹

(¸2)3
. (2.27)

Inside the integral, the following equality is valid

¸–¸— = g–—

d
¸2 (2.28)

which gives us

≠ g3µ3‘ta

ji

3
CF ≠

CA

2

4 ⁄ dd¸

(2fi)d

1
d

“‹“–“µ“–“‹

(¸2)2
. (2.29)

Using the Cli�ord algebra in d-dimensions

“‹“–“µ“–“‹ = (2 ≠ d)“‹“µ“‹ = (d ≠ 2)2“µ. (2.30)

Therefore
≠ g3µ3‘

3
CF ≠

CA

2

4(d ≠ 2)2

d
“µ

⁄ dd¸

(2fi)d

1
(¸2)2

. (2.31)

The last integral may seem to be zero, but this is only because we have taken out the
relevant scales. Therefore we need to introduce a scale back in a sort of Pauli-Villard
regularization

⁄ dd¸

(2fi)d

1
(¸2)2

æ

⁄ dd¸

(2fi)d

1
(¸2 ≠ m2)2

= i

(4fi)d/2

�
1
2 ≠

d

2

2

�(2) (m2)
d
2 ≠2. (2.32)

Now we can put d = 4 ≠ 2‘ and expand around the pole ‘ = 0, taking only the
divergent part

≠ igta

ji“
µ

–s

4fi

1
‘

3
XF ≠

CA

2

4
. (2.33)

The second diagram which contributes to the correction is given by

l, k

c, –

b, —
p + pÕ

a, µ

p, i

pÕ, j

10In practice tatbta = (CF ≠ CA/2)tb.
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=
⁄ dd¸

(2fi)d
(≠gµ‘fabc)

Ë
gµ—(≠2p ≠ pÕ + ¸)– + g—–(≠2¸ + p ≠ pÕ)µ

+ g–µ(¸ + 2pÕ + p)–)
$ ≠i

(¸ ≠ p)2

≠i

(¸ + pÕ)2
(≠igµ‘“–tc

jk) i/̧

¸2
(≠igµ‘“—tb

ki).

(2.34)

Using the color algebra equality ifabctctb = CA/2ta and by, again, neglecting the
momenta p and pÕ, we get

≠ g3µ3‘
CA

2 ta

ji

⁄ dd¸

(2fi)d

1
gµ—¸–

≠ 2g—–¸µ + g–µ¸—

2
“–“fl“—¸fl

(¸2)3
. (2.35)

With the additional Cli�ord algebra equality “µ“µ = d, we find that the integral
becomes ⁄ dd¸

(2fi)d

“µ + 2 (d≠2)

d
“µ + “µ

(¸2)2
= 4d ≠ 1

d
“µ

⁄ dd¸

(2fi)d

1
(¸2)2

. (2.36)

The integral is the same as before, so we can proceed exactly in the same manner,
obtaining

≠ igta

ji“
µ

–s

4fi

1
‘

3
2CA. (2.37)

By summing the tree-level amplitude with the 1-loop corrections we find the renor-
malization constant Z1 via

Z≠1

1
= 1 + –s

4fi

1
‘

(CA + CF). (2.38)

Let us now concentrate for a moment on the renormalized Lagrangian, and in
particular on the strong coupling constant. The bare vertex reads

gBÂ̄qB /GBÂqB, (2.39)

where in d-dimensions, the bare coupling constant is dimensionful. If we now replace
the bare fields and coupling constant with the renormalized one by virtue of eq. (2.12)
we get

gµ‘ZgZ2Z1/2

3
Â̄q /GÂq. (2.40)

But, from the evaluation of the loop corrections to the vertex, we know that the
renormalization constant is Z≠1

1
. Hence, since what we can actually measure can only

be the vertex, we require that the divergent factors obtained by rescaling the fields
must be exactly canceled by the multiplicative factor Z≠1

1
. In this way, whenever

we extract physical quantities, they will be finite. This corresponds to choosing

Z1 = ZgZ2Z1/2

3
=∆ Zg = Z1

Z2Z1/2

3

. (2.41)

Using the results we found in eqs. (2.21), (2.25) and (2.38) we find

Zg = 1 ≠
–s

4fi

1
‘

311
6 CA ≠

4
6nf TF

4
. (2.42)

Note that this result is gauge-independent.



2.4 Renormalization Group Equations 44

2.4 Renormalization Group Equations
A general feature of renormalization is that it adds an explicit scale dependence µ on
physical quantities. But it is important to note that the initial, bare, quantities did
not depend on an energy scale. Thus, we have to require that the bare quantities do
not depend on µ. By doing so we get the so-called renormalization group equations
(RGE). These equations govern the dependence on the scale of relevant physical
quantities like the coupling constants.
By imposing that the bare coupling constant does not depend on the renormalization
scale and searching for a solution to the RGE, a peculiar thing happens: the physical
parameters will depend on the energy scale. In particular, we are interested in the
scale dependence of the coupling constant. We will see that this scale dependence
will be such that two behaviours can arise: when the energy is high then the coupling
constant is small or when the energy scale is small, then the coupling constant is
small. We call theories with such behaviours asymptotically free in the UV for the
former or in the IR for the latter. Let us be rigorous now.
Take an observable O calculated in the MS scheme. We have

O = O
MS

3
–(µ), m(µ), log s

µ2
, · · ·

4
, (2.43)

where
Ô

s is the center-of-mass energy. Here – Ã g2 is the coupling constant and
m is the physical mass of the theory. The appearance of logarithms is a general
feature of regularization as clearly underlined by the previous calculations of loop
corrections.
It is important to note that the physical observable O is µ independent assuming one
works to all orders in perturbation theory. The logarithms can be large whenever
s ∫ µ, these will be discussed on more general grounds in the following chapters.
The µ independence of the observable O can be expressed in the following form

µ
d

dµ
O = µ

d–(µ)
dµ

ˆO

ˆ–(µ) + µ
dm(µ)

dµ

ˆO

ˆm(µ) + ˆO

ˆµ
= 0. (2.44)

These equations are known as Renormalization Group Equations! In this case,
we assumed that the observable O only depends on two quantities: the coupling
constant and the mass, but a more general theory can also depend on some other
parameters, but the generalization is trivial.
We define then two very important functions

µ
d–(µ)

dµ
©

d–(µ)
d log µ

= —(–(µ))

µ
dm(µ)

dµ
©

dm(µ)
d log µ

= “m(–(µ))m(µ)
(2.45)

which we call beta function and mass anomalous dimension respectively. With these
definitions, eq. (2.44) becomes

—(–)ˆO

ˆ–
+ “m(–)mˆO

ˆm
+ ˆO

ˆµ
= 0. (2.46)
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2.4.1 The QCD Beta Function
Now, given the general definitions and the 1-loop result for Zg in eq. (2.42), we are
ready to find out if QCD is UV-free or IR-free. Given that

gB = µ‘Zg(µ)g(µ) =∆ –sB = µ2‘Z2

g (µ)–s(µ) © µ2‘Z–(µ)–s(µ), (2.47)

where
Z–(µ) = 1 ≠

–s(µ)
4fi‘

—0, —0 =
311

3 CA ≠
4
3nf TF

4
. (2.48)

From the fact that the bare parameters are scale-independent, we get the RGE for
the running coupling

d–Bs

d log µ
= 0 = µ2‘Z–(µ)–s(µ)

5
2‘ + Z≠1

–

dZ–

d log µ
+ 1

–s

d–s

d log µ

6
, (2.49)

which implies
d–s

d log µ
= –s

5
≠2‘ ≠ Z≠1

–

dZ–

d log µ

6
© —(–s(µ), ‘). (2.50)

This more general — function is defined for a finite ‘ where in the limit ‘ æ 0 we get
the usual — function.
Consider now the fact that the renormalization constants in this scheme, only contain
dependence on 1/‘n factors and thus the dependence on the scale µ is only through
the running coupling –s(µ). Thus we can recast eq. (2.50) in the more convenient
form

—(–s, ‘) = –s

5
≠2‘ ≠ —(–s, ‘)dZ–

d–s

6
. (2.51)

To solve this equation we expand

—(–s, ‘) = —(–s) +
Œÿ

k=1

‘k—(k)(–s),

Z– = 1 +
Œÿ

k=1

1
‘k

Z(k)

– (–s).
(2.52)

The solution to the equation is therefore

—(–s) = 2–2

s

dZ(1)

– (–s)
d–s

, (2.53)

which yields

—(–s, ‘) = ≠2‘–s + —(–s) = ≠2‘–s + 2–2

s

dZ(1)

–

d–s

. (2.54)

A similar relation holds for the mass anomalous dimension

“m(–s) = 2–s

dZ(1)

m (–s)
d–s

. (2.55)

These equations are really important. They state that to all orders in perturbation
theory, the —-function and the anomalous dimension can be extracted from the



2.4 Renormalization Group Equations 46

coe�cients of the single 1/‘ pole in the renormalization constants.
In our 1-loop calculation, we find that

dZ(1)

–

d–s

= ≠
d

d–s

–s

4fi
—0 = —0

4fi
, (2.56)

therefore
—0(–s) = ≠2–s

3
—0

–s

4fi

4
. (2.57)

To this date, the —-function of QCD has been calculated up to 5-loop [9, 34, 46].

2.4.2 Leading-order Solution to the RGE

αs(MZ
2) = 0.1179 ± 0.0010

α s
(Q

2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 2.1. Running coupling with experimental data. The best fit value for the MS strong
coupling constant is –s(mZ) = 0.1179 ± 0.0010. Image from Ref. [66].

Given the 1-loop solution for the —-function eq. (2.57), we can find the running of
the strong coupling constant by means of

d–s(µ)
d log µ

= ≠2—0

–2
s(µ)
4fi

. (2.58)

This can be solved by simple separation of variables

≠

–s(µ)⁄

–s(�)

d–s

–2
s

= 1
–s(µ) ≠

1
–s(�) = —0

4fi
log µ2

�2
, (2.59)
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where –s(�) is the strong coupling constant measured at some energy scale �. Often
one chooses � = mZ ¥ 91.188 GeV at which –s(mZ) = 0.1179 ± 0.0010 [66]. By
rearranging the above equation, we find the famous expression

–s(µ) = –s(�)
1 + –s(�)

4fi
—0 log µ2

�2

, —0 = 11
3 CA ≠

4
3nf TF. (2.60)

Here nf is the e�ective number of active flavours below the scale µ. Now it is possible
to see the fundamental behaviour of the strong coupling constant: being —0 > 0,
since nf < 17, when we increase the energy scale µ, –s(µ) becomes smaller. This
phenomenon is referred to as asymptotic freedom [30, 52].
At this point, it is important to fix an energy scale with respect to which we define
the UV and IR phases. We can rearrange eq. (2.60) in a suitable way as

–s(µ) =
C

—0 log
A

µ2

�2

QCD

BD≠1

, (2.61)

that defines a new constant called �QCD
11. In reality, �QCD is not completely defined

at LO. One has to evaluate at least the NLO solution to the RGE for –s which
requires the calculation of the 2-loop corrections. Without going into the specific
calculations, we give here the second order contribution to the beta function which
is needed for the NLO solution of the RGE for –s

—1 = 34
3 C2

A ≠
20
3 CATFnf ≠ 4CFTFnf . (2.62)

The solution to the RGE for –s is therefore

–s(µ) = 4fi

—0 log µ2

�2

S

U1 ≠
—1

—2
0

log log µ
2

�2

log µ2

�2

T

V. (2.63)

If we include higher-order corrections and measure the value of –s at some energy
scale like –s(mZ), one finds that �QCD ¥ 250 MeV. At energies below �QCD, the
theory becomes strongly coupled and therefore ordinary perturbation theory breaks
up and we need to use non-perturbative techniques to find meaningful results like
lattice QCD. In some regimes, there are other theories like Chiral Perturbation
Theory (ChPT) [51] and 1/N expansion [58] that contains the main features of QCD
but are not an exact solution like lattice QCD.
Note that in the MS scheme, the slope of the curve changes whenever we cross a
quark mass threshold. This is because —0 depends on the number of active flavour
below the scale µ so, if we go from µ ¥ mb to µ ¥ mc, the active flavours go from
nf = 5 to nf = 4 thus changing —0.

11Note that if we started with a mass-less theory we would have gotten the same result. Hence
a completely arbitrary energy scale has appeared even although the theory was scaleless to begin
with. This phenomenon is known as dimensional transmutation.
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Appendix A

Mathematical Tools

We give here a brief mathematical appendix on the relevant methods and integrals
which can commonly be found in field theories when evaluating loop diagrams.

A.1 Feynman Parametrization
The Feynman parametrization is a very useful tool that is employed almost every
time one has to isolate divergences from loop integrals.
The simplest Feynman parametrization is the following

1
AB

=
⁄

1

0

dx
1

[A + (B ≠ A)x]2
=

⁄
dx dy ”(x + y ≠ 1) 1

[xA + yB]2
(A.1)

which can be easily proven. The powers in the denominator can be raised by simple
derivation

1
ABn

= (≠1)n≠1

(n ≠ 1)!
ˆn≠1

ˆBn≠1

1
AB

=
⁄

1

0

dx dy ”(x + y ≠ 1) nyn≠1

[xA + yB]n+1
. (A.2)

More terms in the denominator can be added by simple iteration of eq. (A.1)

1
ABC

= 1
AB

1
C

= 2
⁄

1

0

dx dy dz ”(x + y + z ≠ 1) 1
[xA + yB + zC]3

. (A.3)

From this, one can get the most general formula which gives

nŸ

k=1

1
Ack

k

= �(
q

k
ck)

r
k

�(ck)

1⁄

0

nŸ

k=1

xck≠1

k
dxk ”

A
nÿ

k=1

xk ≠ 1
B

1
[
q

n

k=1
xkAk]

q
k

ck
, (A.4)

where �(z) is the Euler gamma function.

A.2 Scalar One-Loop Integrals
Here we give a list of interesting integrals which come up in this notes. The general
scalar one loop integral with n external massive legs, with masses mi, carrying
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momentum pi is of the form

I =
⁄ dd¸

(2fi)d

1#
(¸ + p1)2 ≠ m2

1
+ i‘

$#
(¸ + p12)2 ≠ m2

2
+ i‘

$
· · · [(¸ + p12···n)2 ≠ m2

n + i‘] ,

(A.5)
where we employed dimensional regularization, ¸ is the loop momenta and p12···n =q

n

k=1
pk.

Using the Feynman parametrization eq. (A.4) we can write

I = �(n)
1⁄

0

nŸ

k=1

dxk

⁄ dd¸

(2fi)d

”(
q

n

k=1
xk ≠ 1)

[
q

n

k=1
xkAk]n , (A.6)

where
nÿ

k=1

xkAk =
nÿ

k=1

xk

Ë
(¸ + p12···k)2

≠ m2

k + i‘
È

= ¸2 + 2¸ ·

A
nÿ

k=1

xkp12···k

B

+
nÿ

k=1

xk

1
p2

12···k ≠ m2

k + i‘
2

= ¸2 + 2¸ · P + K2 + i‘.

(A.7)

Therefore, by substitution in the integral and translating the loop momentum
integration ¸ æ ¸ + P , one gets

I = �(n)
1⁄

0

nŸ

k=1

dxk ”

A
nÿ

k=1

xk ≠ 1
B ⁄ dd¸

(2fi)d

1
(¸2 ≠ m2 + i‘)n , (A.8)

where m2 = K2
≠ P 2. The integral over the loop momentum can be performed

by Wick rotating the temporal ¸0 coordinate and then using polar coordinates in
Euclidean space. Therefore the integral I becomes

I = i�(n)
1⁄

0

nŸ

k=1

dxk ”

A
nÿ

k=1

xk ≠ 1
B ⁄ d¸E

0
dd≠1¸

(2fi)d

11
≠(¸E

0
)2 ≠ |¸|2 ≠ m2

2
n

= (≠1)ni�(n)
(2fi)d

1⁄

0

nŸ

k=1

dxk ”

A
nÿ

k=1

xk ≠ 1
B ⁄

dd� d¸E

¸d≠1

E!
¸2

E
+ m2

"n

= (≠1)ni�(n)�d

2(2fi)d
B

3
d

2 , n ≠
d

2

4 1⁄

0

nŸ

k=1

dxk ”

A
nÿ

k=1

xk ≠ 1
B

(m2)
d
2 ≠n, (A.9)

where in the last step we changed variables x = 1

1+¸
2
E/m2 and used the definition of

the Beta function
B(a, b) =

⁄
1

0

dx xa≠1(1 ≠ x)b≠1. (A.10)



A.2 Scalar One-Loop Integrals 50

Ending with a few manipulations on m2

m2 = P 2
≠ K2 =

A
nÿ

i=1

xkp1···i

B
2

≠

nÿ

i=1

xk(p2

1···i ≠ m2

i + i‘)

=
nÿ

i=1

–2

i p2

1...i + 2
nÿ

i>j

–i–jp1...ip1...j ≠

nÿ

i=1

–ip
2

1...i +
nÿ

i=1

–im
2

i ≠ i‘

= ≠

nÿ

i=1

–i

ÿ

j ”=i

–jp2

1...i + 2
nÿ

i>j

–i–jp1...ip1...j +
nÿ

i=1

–im
2

i ≠ i‘

= ≠

nÿ

i>j

–i–jp2

1...i ≠

nÿ

i>j

–i–jp1...ip1...j

= ≠

nÿ

j>i

–i–jp2

1...i ≠

nÿ

j>i

–j–ip1...jp1...i +
nÿ

i=1

–im
2

i ≠ i‘

= ≠

nÿ

i>j

–i–jp1...ipj+1...i +
nÿ

j>i

–i–jp1...ipi+1...j +
nÿ

i=1

–im
2

i ≠ i‘

= ≠

nÿ

i>j

–i–jp2

j+1...i +
nÿ

i=1

–im
2

i ≠ i‘ = �.

(A.11)

In summary

I = (≠1)n
i

(4fi)d/2
�

3
n ≠

d

2

4 1⁄

0

nŸ

k=1

dxk ”

A
nÿ

k=1

xk ≠ 1
B

1
�n≠d/2

(A.12)

A.2.1 One-point Green Function
The integral for the one point Green function, which appears in tadpole diagrams, is
given by

A0(m2) =
⁄ dd¸

(2fi)d

1
¸2 ≠ m2 + i‘

=
≠i�

1
2≠d

2

2

(4fi)d/2

⁄
1

0

dx ”(x ≠ 1)(xm2
≠ i‘)

d≠2
2

=
i�

1
2≠d

2

2

(4fi)d/2
(m2

≠ i‘)
2≠d

2 .

(A.13)

When the mass of the particle propagating in the loop is zero we get that A0 = 0
which is what we expect since there are no dimensionful variables that carry the
dimension of A0 after integrating.
When m ”= 0, defining as usual d = 4 ≠ 2‘, the integral diverges as 1/‘ as ‘ æ 0, in
fact

A0(m2) = i

16fi2

(4fi)‘�(1 + ‘)
‘(1 ≠ ‘) (m2)1≠‘. (A.14)
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A.2.2 Two-point Massless Green Function
The two point function is more interesting in our case, in particular when the
particles in the loop are considered massless. If the particles in the loop are massless
m1 = m2 = 0, the external particles need to carry a non zero momentum p2

”= 0
otherwise the whole integral would be zero just like A0. The integral is given by

B0(p2) =
⁄ dd¸

(2fi)d

1
[¸2 + i‘][(¸ + p)2 + i÷]

=
i�

1
4≠d

2

2

(4fi)d/2

⁄
1

0

dx dy ”(x + y ≠ 1) 1
(≠xyp2 ≠ i÷)

4≠d
2

=
i�

1
4≠d

2

2

(4fi)d/2

⁄
1

0

dx
1
x(1 ≠ x)(≠p2

≠ i÷)
2≠ 4≠d

2

=
i�

1
4≠d

2

2

(4fi)d/2
(≠p2

≠ i÷)
4≠d

2
�2

1
d≠2

2

2

�(d ≠ 2) .

(A.15)

Choosing d = 4 ≠ 2‘ we have

B0(p2) = i

16fi2

(4fi)‘�(‘)�2(1 ≠ ‘)
�(2 ≠ 2‘) (≠p2

≠ i÷)≠‘. (A.16)

In the limit ‘ æ 0, the multiplicative factors are finite and amount to a one, while
we have to deal with the p2 term

(≠p2
≠ i÷)≠‘ = 1 ≠ ‘ log

1
≠p2

≠ i÷
2

+ O(‘2). (A.17)

When p2 < 0 the logarithm is perfectly defined while if p2 > 0, then ≠p2
≠ i÷ is a

complex negative number with a small imaginary part, so that is below the branch
cut for the definition of the logarithm. In this case

(≠p2
≠ i÷)≠‘ = 1 ≠ ‘

Ë
log

1
p2

2
≠ ifi

È
+ O(‘2). (A.18)

In general

B0(p2) = i

16fi2

�2(1 ≠ ‘)
�(2 ≠ 2‘)

C
1
‘

≠ “E ≠ log
A

≠
p2

4fi

B

+ O(‘2)
D

, (A.19)

where the factor (4fi)‘ has been absorbed into the factor (≠p2)≠‘ and the �(‘) has
been expanded

�(‘) = 1
‘

+ Â(1) + ‘

2

C
fi2

6 + Â2(1) ≠ ÂÕ(1)
D

+ O(‘2), (A.20)

where Â(1) = ≠“E is the digamma function evaluated in one and ÂÕ(1) = fi2/6 is its
derivative.
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A.3 Passarino-Veltman Tensor Integral Decomposition
Up to now, we have only dealt with scalar integrals. For tensor integrals, we can use
the Passarino-Veltmann [48] decomposition with which, in many cases, we can go
back to a scalar integral times some tensor quantity that depends on the specific
form and properties of the integrand. We will give now some useful examples that
we will use throughout the notes.

A.3.1 Vector Two-Point Function
Let us first compute the simplest tensor integral

B
µ(p) =

⁄ dd¸

(2fi)d

¸µ

¸2(¸ + p)2
, (A.21)

where p2
”= 0 and we employ dimensional regularization. We can easily see that the

only relevant 4-vector on which the integral can depend is pµ, therefore we can write

B
µ(p) = B11pµ. (A.22)

In order to find the coe�cient, we can just project onto pµ and get back to a scalar
integral

pµB
µ(p) = B11p2 =

⁄ dd¸

(2fi)d

p · ¸

¸2(¸ + p)2
. (A.23)

Since (¸ + p)2 = p2 + ¸2 + 2p · ¸ we have that

p · ¸ = 1
2

Ë
(¸ + p)2

≠ ¸2
≠ p2

È
. (A.24)

Using this in the integral we have

p2B11 = 1
2

⁄ dd¸

(2fi)d

C
1
¸2

≠
1

(¸ + p)2
≠

p2

¸2(¸ + p)2

D

, (A.25)

but this are just scalar one-loop integrals of the form of eq. (A.15), therefore

p2B11 = ≠
p2

2 B0(p2) =∆ B11 = ≠
B0(p2)

2 . (A.26)

This gives us the final result

B
µ(p2) = ≠

B0(p2)
2 pµ. (A.27)

This computation gives the basic idea behind the Passarino-Veltmann decomposition:
if we have a general p-tensor integral, we list all the possible p-tensors upon which
the integral can depend. Then we project on such tensors by simply contracting the
integral with them and one obtains a set of linear equations that can be solved to
find the coe�cients.
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A.3.2 2-Tensor Two-Point Funcion
We would like to compute now the 2-tensor two point function, which is a tensor
integral of the form

B
µ‹(p) =

⁄ dd¸

(2fi)d

¸µ¸‹

¸2(¸ + p)2
. (A.28)

The only 2-tensors we can construct are pµp‹ and gµ‹ , therefore

B
µ‹(p) = B21pµp‹ + B22gµ‹ . (A.29)

By projecting onto the two tensors

pµB
µ‹(p) = p‹

1
p2B21 + B22

2
= 1

2

⁄ dd¸

(2fi)d

¸‹

¸2(¸ + p)2

Ë
(¸ + p)2

≠ ¸2
≠ p2

È
, (A.30)

gµ‹B
µ‹(p) = p2B21 + dB22 =

⁄ dd¸

(2fi)d

¸2

¸2(¸ + p)2
= 0. (A.31)

From eq. (A.31) one obtains that

B22 = ≠
p2

d
B21, (A.32)

while from eq. (A.30)

p‹

A

p2
≠

p2

d

B

B21 = ≠p‹
p2B11

2 , (A.33)

which gives

B21 = d

d ≠ 1
B11

2 = d

d ≠ 1
B0(p2)

4 (A.34)

and consequently

B21 = ≠
p2

d ≠ 1
B0(p2)

4 . (A.35)

Therefore
B

µ‹(p) = 1
d ≠ 1

C
d

4B0(p2)pµp‹
≠

p2

4 B0(p2)gµ‹

D

. (A.36)
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