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Chapter 1

Effective Field Theories: an
Introduction

The study of effective field theories (EFT) [24] arises from a necessity. In principle,
one could evaluate the relevant quantities for some weak processes on the lattice.
However, the presence of many different energy scales for any given process makes
this approach impractical. What one can do for renormalizable theories is to separate
the different contributions coming from the different energy scales and evaluate the
high-energy part perturbatively while the low-energy contributions can be evaluated
on the lattice. This separation is made possible by EFTs. One such process where
EFTs are essential is for the study of non-leptonic decays of light mesons such as
pions and kaons.

The fundamental idea behind effective field theories (EFT) started in the opposite
manner as we are used to today. We can think of the Fermi theory of Weak
interactions as really the first effective theory in the history of the SM. In reality,
Fermi developed his theory of Weak interactions [I3] in the 1930s, well before we
knew that a more general theory was present, the now called SM. The Fermi theory
was at the time such a speculative theory that even a prestigious peer-reviewed
journal like Nature rejected Fermi’s paper. We now know that his theory is in fact a
low energy equivalent of the SM weak interactions!

In this chapter, we are going to introduce the idea behind EFTs with the
pedagogical example of the Fermi theory. Then we’re going to make a more rigorous
definition through the use of the Operator Product Expansion (OPE) which will
divide the problem into two main chunks: the Wilson coefficients which encode all
the short distance physics and the effective operators matrix elements which deal
with the low energy part of the theory. Moreover, we're going to see that QCD
corrections give large-log contributions to the amplitude and how we can deal with
these large-logs using the RGEs.

1.1 A Historical Example: the Fermi Theory of Weak
Interactions

A first historical example that we need to give to set up the background, which we
will later develop in more detail, is the Fermi theory of Weak interactions. This
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theory was developed by Fermi in the 30s to explain the phenomena of beta decay.
He did this by postulating that the decay process can be described by adding to the
free Hamiltonians of the particles in the beta process an interaction term containing
the wave functions of the four free particles

Hp=H+ HY + B+ HY + Y C; / @ (@0, ) (20m,). (1)

Here wp, up, ue, u, denote the wave functions of the four particles.
We now concentrate solely the interaction term which is given by the Hamiltonian
density

HF = Z Cz (’ELPOAlun) (ﬂe@uy) . (1.2)

A question arises: what are the operators 0;? The answer was found in the deep
experimental evidence in the years following the proposed theory.

Firstly, the Hamiltonian needs to be a Lorentz scalar, which implies that the operators
need to be one of the fermionic bilinear covariants

w_ 4

10U R e I (1.3)

1 ~H o
In principle, one does not know which combination of bilinears enters the Hamiltonian.
In the beginning, Gell-Mann and Feynman thought that, like electromagnetism, the
interactions should be vectorial in nature. Moreover, from experimental evidence, it
was found that only a single helicity appears: electrons and neutrinos are always
left-handed while positrons and anti-neutrino are always right-handed. This is
a consequence of parity violation in Weak decays. Therefore, the part of the
Hamiltonian containing electrons and neutrino spinors should only contain the
part of the wave function with negative helicity. This is found by using the chiral
projectors like the ones in equations ?7. Through this process, it was found that
only the V' — A combination gives a meaningful contribution

1
Ov_y4 = 5(7“ —7Hs5). (1.4)

For neutrinos the chiral form of the operators is exact. For the electron, being
massive, they are good if the electron momentum is high enoughﬂ According to
these considerations, we must replace the spinors by their components with negative
chirality. Lorentz invariance requires that even the nucleonic part of the Fermi
Hamiltonian has to be V' — A type. Extensive experimental analysis has led to the
conclusion that the correct form for the nucleonic part is given by

_ _ A
UM”(QV + QAVS)un = gVup<1 - ;/75) Un (15)

with
ga/gv = —1.255 & 0.006 (1.6)

!This implies that the statement that electrons have only positive helicity is only approximately
correct.
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This takes into a fact that protons and neutrons are composite particles and that
the axial symmetry is broken.
The complete expression for the Hamiltonian interaction term is therefore given by

Hp = —?/ggv {ﬁv“ (1 - %75)71] [evu(1 = 5)vel- (1.7)

This result can be exploited to find effective Hamiltonians for all kinds of processes
like for the muon decay, in which the Hamiltonian takes the form

Gr _ __
Hp = —ﬁ’ﬁﬂ“(l —¥s5)pe Yu(l —v5)ve. (1.8)

The only problem is now that the theory is clearly non-renormalizable since it is
made up of dimension six operators. But fear not, we can circumvent this problem
by means of the renormalization group improved perturbation theory which we will
explain later.

Here comes the fundamental step: since we know that the SM explains so well weak
processes but also does the Fermi theory, the two need to be linked in some way.
We will see now that the Fermi theory is a low energy limit of the SM.

1.2 Effective Hamiltonians for Weak Decays

We can start by looking at a simpler case of the leptonic decay of a pion m — fuvp,
we will see that such a process comes with a much simpler QCD structure due to
the presence of quarks only in the initial state.

In the 't Hooft-Feynman gaug at tree level, this process is governed by two
diagrams

d Vg d Vg

The ’t Hooft-Feynman is more useful when dealing with loop diagrams since the
W propagator does not have the p#p* term like in 7?7 which would give a complicated
ultraviolet behaviour. Moreover, this gauge makes the process of expanding the
amplitude more straightforward. The problem is now that we have to deal with
Goldstone boson exchange. But since the coupling of the latter is proportional to
the light fermion masses, we can ignore them for the following. The amplitude of
the W diagram is therefore

. 2 .
. 192 * = Y v
_ 174 (1 = g )vp—— 1 ) 1.9
tA <2\/§) udth 7" ( 5)Ws — M3, + ie 4V (=) (1.9)

2Which is a particular Re gauge with & = 1.




1.2 Effective Hamiltonians for Weak Decays 4

Given that the typical energy of the process is s ~ O(m,) < Ma,, we can perform
an expansion of the W propagator in powers of s, leading to

| g — S :
iA= 187\222 Uy, Y (1 = ¥5)vebavu(l = ¥5)tu <>
W

2
k=0 MW
_’57 uduV57 (1 - V5)U€’Dd'ﬂ¢(1 75)’U,u + O <M2 >, (110)
where we introduced the Fermi constant as
Gr 93
— = . 1.11
\/i SMI%V ( )

As we can see eq. (1.10) is exactly of the same form as eq. (1.8). This is a first
simple example of operator product expansion (OPE)[35]: the dominant term in the
decay m — fuyp is given by the matrix element of a six dimensional effective operator

75 -, (1= 1-—
Qduué — d,y,u( QVS)UD’YM( 275)6 (112)
while subsequent orders k£ > 0 correspond to the matrix elements of higher dimen-
sional operators containing 2k derivatives.

From a Feynman diagram point of view, the process of expanding the W propagator,

thus making its effects local, amounts to contracting the W propagator to a point

d vy d vy

Keeping only dimension six operators in this OPE we obtain that the amplitude
is given by
4G

A= (Hegr) + O <M2 ) Hett = ol

where Heg is the effective Hamiltonian governing the m — fv, transition. The process
of equating the full amplitude with the one given by the effective Hamiltonian is
called matching.

The effects of the exchange of the heavy W boson are encoded in the expansion
coeflicients, which are known as Wilson coefficients.

In general, let us consider the ampliture A of a given process. Thanks to the OPE
we can put this in the form

A= (Hett) ZC (ks My )(Qi (1)) (1.14)

Qduuf (113)

when the process takes place at an energy scale y < Myy. We say that the W
is being integrated out. The expansion C;Q; can be seen as an effective theory
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Figure 1.1. Factorization of an observable into short-distance (red) and long-distance
(blue) contributions. The panels differ by the choice of the factorization scale. The figure
is taken from [26] with the permission of the author.

whose vertices are given by the local operators @); and the coupling constants by the
expansion coefficients C;, the Wilson coeflicients.
By doing so, we can separate the problem into two main chunks: the Wilson
coefficients which contain the short-distancd?®| contribution to the amplitude and can
therefore be evaluated using ordinary perturbation theory and the effective operator
matrix elements which contain the low-energy physics and have to be evaluated by
means of lattice QCD or other techniques like the large N [31] expansion or chiral
perturbation theory (ChPT) [27].

One may roughly think of this process as splitting up the contributions from virtual

particles , , ,

M, 2 2 2

/ de:/Mde"f'/u ar (1.15)

—p2 k2 w2 k2 —p2 k2
where the first term is sensitive to UV physics and is found into the Wilson coefficients,
while the second is sensitive to IR physics and is absorbed into the operator matrix
elements. This can be seen pictorially in fig. .
We note that on a more formal basis, the procedure of the OPE may be given
by considering the generating functional for Green functions in the path integral
formalism. Then we “integrate out” the heavy degrees of freedom associated with
the high scale M from the generating functional of Green’s functions and obtain
a non-local action functional, which can be expanded in an infinite tower of local
operators an) [28].

1.3 QCD Effects

The required QCD corrections to the full theory, in the case of the leptonic decays
just mentioned, are the same as the ones in the effective theory since they are just
given by external legs corrections and vertex corrections. So under the process of

3High energy.
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matching, those won’t influence the Wilson coefficients but are going to be contained
in the operator matrix element and so we don’t need to take them into account.

1.3.1 Large Logarithms

If we now turn to non-leptonic decays, the situation changes drastically. Consider
for example the process ¢s§ — ud. At tree level, after the OPE, we get a dimension
six operator which is similar to the one in eq. (1.12)

p(l _75)
2

(1 —’Ys)d
2

§cd7u_f
2 =87

cuy, = spyFeruryudr, (1.16)
where we used the shorthand notation of the chiral spinors. After matching we get

that e i
As for the case of the leptonic decay, the Wilson coefficient is trivial at tree level.
When we go to O(ay) the situation changes drastically. External legs corrections as

well as vertex corrections like the ones following

c U s d
w
, 1.18
~ (1.18)
s d c U

won’t affect the matching since at this order the current are conserved and so
they will not generate large-logs. But now, we can have gluon exchange between the
initial and the final legs like the following

c U c U
+ + permutations
w w
S d s d

(1.19)
In the full theory this correction will affect the momentum propagating in the W
boson, which will make the overall diagram convergent, but proportional to terms of

the form A )
d=¢ M.
s ~ aglog | =X 1.2
“ /52[(19—5)2—1\4%] ) Og<—P2> 20

which taken at face value would imply the breakdown of perturbation theory. In
fact, when the quark momenta become of the order or Aqcp, the effective expansion
coefficient becomes O(1). This is the problem of large logarithms. Fortunately, the
effective theory can save us from this problem.

Let us consider the effective operator for the case at hand Q35¢“?. The O(ay)
corrections are given by the following Feynman diagrams
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C u Cc u

+ + permutations

wl

d s d

Having removed the W propagator is not a surprise that once we evaluate such
diagrams, they come out to be divergent. The effective theory has therefore a much
different ultraviolet behaviour with respect to the full SM amplitude. But we know
that the EFT is going to be valid up to a cutoff A of the order O(My/). We can
regulate the diagrams by introducing such cutoff, obtaining terms of the form

A2
as log (_p2> (1.21)

In reality when dealing with perturbation theory, rather than introducing a specific
cutoff, we regulate the theory using dimensional regularization, which introduces a
scale 1, and logarithmic terms are going to be of the form log (,u2 / — pz). When we
match the amplitudes of diagrams in eq. with the ones in section any
infrared logs cancel and we are left with terms of the form

M2 /LZ M2
log | =2 ) —log [ = | =log [ =2 |. 1.22
g<_p2> g<—p2> g( w 22

We have now the liberty of choosing the matching scale in order to get rid of large
logs. In this case, setting p ~ My, we get back the ordinary expansion coefficient «s,
without the log. On the other hand, the non-perturbative part of the hadronic matrix
elements needs to be evaluated on the lattice which intrinsically introduces a hard
energy cutoff tied to the lattice spacing a ~ 1/A. Then the renormalization of the
operators is done, mostly, by the RI-SMOM scheme [25] which is a non-perturbative
renormalization scheme suitable to evaluate renormalized quantities on the lattice.
Moreover, as we will see in more detail in the following chapter, QCD corrections
enlarge the operator basis due to the presence of the gluon which can mix the color of
the external quarks, and so a different color structure arises. Not only that but even
more complex operators are generated which have the required quantum numbers
and therefore have to be taken into account.

Up the here, the point of the situation is as follows: we encounter large logs in the full
theory which are a consequence of the many energy scales which enter the process.
There is no way to get rid of these large logs. Then, we go to the effective theory
where the loop diagrams are divergent and large logs appear with a dependence on
the renormalization scale. Through matching, we can get rid of large logs, but only
in the Wilson coefficients, which can therefore be evaluated, at a scale y ~ My,
with ordinary perturbation theory. The operator matrix elements still contain large
logs. We see in the next chapter how the Renormalization Group can help us solve
this problem.
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1.4 Wilsonian Renormalization

The Wilson coefficients now carry an explicit dependence on the renormalization
scale p which has to cancel out with the renormalization scale dependence of the
effective operators, since the full amplitude does not depend on p

1 dC Q)

0= = .
dlog u dlog u dlog u

(Qi(w) + Ci(p) (1.23)
Here Q;(u) are the renormalized composite operators defined in dimensional regular-
ization and the MS scheme, while C;(u) are the corresponding renormalized Wilson
coefficients.

What we need to find is the dependence on the renormalization scale of the composite
operators.

1.4.1 Renormalization of the Effective Operators

At any order, the basis of effective operators {Q;}i=1.... » can be renormalized in the
usual way, as discussed in section 77, by allowing however that the operators can
mix under renormalization

n

Qi =Y Zij(1)Qj (). (1.24)

j=1

Note that the renormalization constants Z;; contain not only the renormalization
factors absorbing the UV divergences of the loop corrections to the operator matrix
elements, but even a wave-function renormalization factor Z;/ ? for every field
contained in the composite operator.

Note that dimensional regularization rules out the possibility of operator mixing
between operators of different dimensions. This is one of the reasons why dimensional
regularization is the most convenient renormalization scheme in perturbation theory.
Given that the bare operators in eq. are independent on the renormalization
scale, it follows that

dZij(n) dQ;(w)
; Zii = 1.25
which can be rearranged to give
dQi(p) 145k (1)
=—-Z. — =— , 1.2
dlog 1 i (W) dlog Qr(p) Yik (1) Qi (12) (1.26)
where we defined the anomalous dimension matrix of the effective operator
_ dZ dlogZ
() = 771 (u) 2 _ (1.27)

dlogp  dlogp’

Therefore, the renormalization scale dependence of the effective operator is governed
by the Renormalization Group Equation (RGE) in terms of its anomalous dimension

dlogy ~ T Q(w). (1.28)
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In analogy with the mass anomalous dimension found in 7?7, the anomalous dimension
matrix of the effective operators can be obtained from the coefficients of the 1/e
pole term in Z

07
Oas

v = —204 (129)

1.4.2 Getting Rid of the Renormalization Scale

Now that the dependence on the renormalization scale of the effective operators is
sorted out, we can get back to eq. (1.23). From that, we find that

dQi(p) _ [dCi(p)

dCi(p) Qi(p) + Ci(p) 0ij — CZ‘(,U)%]'(M) Qj('u) =0 (1.30)

dlog u dlogp  |dlogu
from which follows .
dCw) _ 7/ \&
= C(u). 1.31
o =" (€ (1.31)

This is the differential equation governing the RG evolution of the Wilson Coeflicients.
In order to solve this equation, we first need to change variable and express the scale
dependence of the various quantities via the running QCD coupling g(u). Given the
definition of the beta function in 77

d dg d d

— - — — 1.32
dlogu  dlogpdg B(Q)dg ( )
then . .
dCy(w) _ 7" (9) &
= - C(g(p))- 1.33
D =2 () (13
This can be solved by means of an integral evolution matrix U defined as
C(n) = U(p,m) - C(m) (1.34)

which can be found iteratively

g ~AT(gy) 9(k) 9 Y (g91) 7" (92)
Ulu,m) =1+ /g(m) 9" B(gr) * /g(m) 9 /g(m) P Bg1) Blg2) " (1:35)

This is exactly the same solution as the Dyson series for the Schrodinger evolution
matrix. In fact, eq. has the exact same form as Schrodinger’s equation, where
~T' /3 takes the place of the Hamiltonian. The series expression can be put in a
more compact form by introducing the notion of g-ordering

9w vT(g’)]
d
(m) g B(g')

U(p,m) =Tyexp l/g (1.36)
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1.5 RG Improved Perturbation Theory

With the evolution matrix, we can now run down from the scale uy ~ My to a
low renormalization scale up closer to the physical scale at which the process we are
interested in takes place

2N gew) AT | A
C(un) = Tgexp ngh) dg 5(9,)1C(uw) (1.37)

and then compute the relevant matrix elements without encountering large logs
since at the scale uj, ~ p; ~ py the matrix element

(f(pp)| Hetli(pi)) = Ci(un) (f (p)|Qili(pi)) (1.38)

is finite. But where have the large logs gone? They have been resummed by means
of the renormalization group! Thus, the effective theory allows us to perform the
matching using ordinary perturbation theory and then resum the large logs using the
RGE. In general, if we expand the Wilson coefficients and the anomalous dimension
matrix in powers of ag

&) = kZ:O (52) e = kg (52) "0 (1.39)

then we can differentiate the perturbative expansion not on the order at which as
appears, but on the orders resummed by the RGE.

A leading order (LO) calculation resums all terms of the form O (o log(M3,/ — p?))".
In the LO case, we have that

0
Aro = O () {QUun)) (1.40)
where (@)™ denotes the matrix element computed at n-th order in strong interaction
which are needed to do calculations, and

0)T

CO(up) = U0 (g, i) CO ) UO (g, pw) = (O;j(&v:)))%. (1.41)

A (next-to-)"leading order (N™LO) calculation resums all terms of the form
O(a™™log™ (M3, /(—p?)). We now briefly discuss the general result for the NLO
case [4]. At NLO we need to evaluate the full and the effective amplitude at O(as)

Anpo = c© (,uh)<Q(uh))(1) + asiih) C(l)(ﬂh)<Q(Mh)>(0)7 (1.42)
where again B .
CW (i) = U, pw)CD (). (1.43)

To this order, the evolution matrix is given by [§]

UM (p,m) = <1 + a‘;(:) J)U(O)(u,m)(l - asz(;n) J), (1.44)
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where U is the leading order evolution matrix of eq. l) The matrix J contains
the informations about the next-to-leading order corrections. By means of the
expansion of the anomalous dimension matrix in eq. , we define the J matrix
starting from diagonalizing the tree-level anomalous dimension

A = v-1yOTy, (1.45)

This transformation makes the LO evolution matrix diagonal as well. Then, if we
define the following matrix
G=v 14Ty (1.46)

and another matrix whose elements are

B Gij
i Ji

the matrix J is given by
J=VHV L (1.48)

There is still an important thing to note. From the basic idea of an EFT, whenever
we go below some energy threshold, heavy degrees of freedom have to be integrated
out. Therefore, what happens when we evolve the Wilson coefficients from the scale
of My, to the scale of my, and then we go even below to the scale of m. and so
on? One after the other, quarks become heavy and have to be integrated out. To
account for this we need to include a threshold matrix. Following the same principle
as in the case of integrating out the W boson, we require that at the scale of the
transition py

6?(#0«3)‘(#1‘/» = é?—1(#t)<Qf—1(Mt)>a (1.49)

where f is the number of active flavours, which changes from f to f — 1 in the
transition.

This behaviour can be encompassed in a new evolution matrix which contains a
suitable matching matrix T [L1]

U(p, Mw) = Uy, mp) TU5(mp, M), (1.50)
where U  is the evolution matrix with f active flavours and
T o1 ST (1.51)
4dr

Equation (1.51) is valid when only strong corrections are present. We will see later
the generalization when electroweak corrections are added.

1.6 Electroweak Corrections

We give now a brief summary of the general results that one gets when adding not
only strong corrections but electroweak ones. These corrections enter in Penguin-like
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operators [33] [34] at leading order. When EM corrections are added, the anomalous
dimension matrix at NLO will have the form

_ % _(0) © ( ) (1), Qe Qs _(1)

where we ignored a2 corrections. Even the evolution matrix will contain corrections
of order a,
U (g1, m) = M) U (i, m)M (m), (1.53)

(o 556) (1 25) 1450,
(o )i

where the running of . is not considered. The matrices K,J and P are solutions of
the equations [10, [11]

where

(1.54)

7(0)T 7(0)T
P+ P, == 1.55
2%, | = 2, (1.55)

(o r

Vs B1 oT Vs

J— 1|7, = 2L ,0T _ , 1.56
[ 260 ] 258" 260 (1.56)
K, AOT] = 07T 4075 4 TP 4 4O 3P| — 25, P — gngg’)T. (1.57)

Besides the more complicated analytical form of the expressions, the theory stays
the same. Once we have the evolution matrix, if we cross a quark mass threshold we
need the matching matrix, which in the case of QED+QCD corrections is given by

as(p) sor | Qe s r
T=1+—""6r Qe s 1.58
+ 2 y + 08T, (1.58)
where the nature of the two matrices dr and ds is given by the matching condition
at the threshold scale.
Contributions from the Z° boson must also be added, but the general form of the
solutions given up to now stays the same.
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Chapter 2

AF =1 & AF =2 Effective
Hamiltonians and Kaon Decays

Using the techniques highlighted in the previous chapter of the OPE and the RGE
improved perturbation theory, we are now ready to apply them to the more specific
case of AF =1 and AF = 2 processes. These two effective theories will describe the
non leptonic decays of mesons like K, D, B mesons, and in the case of the AF = 2
the oscillation of the neutral mesons such as K9 — K9 | B; — B, and so on.

We will mostly concentrate on the AS processes since they are the relevant ones to
study the direct and indirect CP-violation in the Kaon system, but the discussion
can be easily generalized to different mesons. In particular, we will focus on the
following

e The K — 27 decays, a AS =1 process, where at the quark level the relevant
transition is su — ud. This is the process that governs direct CP-violation.

e The K% — K9 oscillation, a AS = 2 process. This is the process that governs
indirect CP-violation.

The discussion of the phenomenology of CP-violation in the Kaon system will be
given in the subsequent chapter.

2.1 Effective Hamiltonian for AS = 1 Processes

As stated in the previous chapter, when we want to analyze low energy processes,
due to the appearance of large-logs in the perturbative expansion, we employ the
toolkit of effective Hamiltonians.

Consider the process of K — 2w. At tree-level the interactions is mediated by a
W-boson exchange with a typical energy of the order k? ~ O(mp). Therefore, the
OPE in this case gives

- 2 2
W ey g i (1 — _ Gy Ll
4(k‘2 — MI%V) VusVUd[USfV (1 '75)uu] [uu’Yu(l 75)”6!] Z\/QVUSVUdQQ—i_O(M‘%V)

(2.1)
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where we find the first effective, current-current, operator
Qs = Sy i, (2.9

We wrote explicitly how the color indices are summed for reasons that will be obvious
in a moment.

After this, we might also need to consider QCD corrections which will enlarge the
operator basis. When we do so, we need to evaluate the Feynman diagrams in
perturbation theory, both in the full and effective theory as shown, at first order in
o in fig. .

One might then think that once these diagrams are taken into account, then there
would not be any others. But the reality is that another class of operators needs
to be considered, the so-called penguin operators |29} 32]. These diagrams play a
central role particularly for € /e and can be mainly divided into three categories:
gluonic penguins, electroweak penguins, and magnetic penguins. We will see later in
more detail the operators that are generated by such diagrams.

2.1.1 Current-Current Operators

There are two current-current operators. The first one is the operator of eq. .
The fact that is called )2 instead of Q1 is just a convention.

The second current-current operator is generated by the diagrams in fig , and
we will give now the explicit computation. The diagrams we need to consider are
just (2.1g) and (2.1h), with their mirror diagrams, since diagram (2.1f), and its
mirror, cancel against the renormalization constant of the quark field.

To study the generation of the new operator, we just need to analyze the Dirac
structure of the diagram. If we consider all external quark momenta to be zer
then the diagram gives in dimensional regularization

d ; : _ ;v sab
= %VJSVM/%E? (igswt?j) Z%PLU?@E’YPPLZ(igs%tzl)u}‘ngé’
(2.3)
where we used the shorthand notation P /g = (1 4 75)/2. Given that /T'f =
02 /dy°Ty, since there are no other scales involved, we can take out the Dirac
structure

iAg

4GFg§ 4—dya ja (~u d\ (=8P o, U dd‘g 1
— 7 i thith (ul f)/ufya'prLUJ-)(kay Pr~%y ut)/wﬂ. (2.4)

We need to manipulate the Dirac structure a bit and to do so we will heavily use the
Fierz identities [14], B0] which are just a fancy way of expanding the Dirac algebra
on the basis of the matrices Py, Pr,~v" P,V Pr,o"”. In fact, take the following
structure

PL’U;-i’f)]i’}/pPL = PLU?@ZPR’YP - (PLU?@ZPR)%B (2.5)

where the equality follows from the Clifford algebra of the 75 and we made explicit
the Dirac indices. Not considering the v”, we can project it on the v Pr element by

!This will introduce an additional IR divergence which we just ignore since this can be done at
the level of accuracy (LO) at which we are working.
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s u s "
w w
" (a) d ! (b) d
s u s u
7% w
! (c) d " (a) d
s u s u
Yoe) d Yo d
u " u "
° (g) d ° (h) d

Figure 2.1. Relevant current-current Feynman diagrams for the s — @ud process in the
full and effective theory up to O(as).
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using the trace

1 . 1 P 1 L
~ Ty (y”PLPijlv,‘zPR> = Tr (7 PLU;?U;PR) = = Tr (P’ PLogts)
2 2 . 2 (2.6)

— v d
= —§UI§PRW Prvj,

which simply follows from the usual rules for projectors and the anticommuting
spinors. Therefore

(PLost Pr)as = — 557" Prod (o Pras. (2.7)
If we put this in the spinor structure of eq. we obtain
(ﬂ%‘vwavaLv?) (V" Py v uf)
= - %@EVB Prod wyuvapy” Pry?y vy (2.8)
= - %5;‘373 Prof afyvayey 7Py Prug!
where we can now use the usual rules for the d-dimensional gamma matrices

Wuva 107V VA = (2 = d) ey A
—— ———

(2.9)
= (2 - d)*a = 2 - D)y’
to get
—Uu P d\ (s 12 MNP TN __(Q_d)gfs ﬁP d=-u Prut
Uy Y YaYpL LY (0P Ppy“yfuy') = 9 VY LU UYL
o0l ap (2.10)

= — Tl_)}z’yﬁ (PL’U?’E?PR> ’y/guz“b.

Since the order of the spinors is inverted with respect to Q2 we can again use the
Fierz trick for the bracketed quantity, obtaining
(2-a)°
4

henceforth the relevant Dirac structure is back to being

B - 2—d)t,_ _
Y PLof iy Progu = (Zl)(uf-‘wPLv?) (0" Pruf) — (2.11)

ﬂqg”'yuPLU?T),‘ﬁ“PLu}L. (2.12)

But now comes the important step: the presence of the gluon added an additional
SU(N) generator structure that we need to take into account. As we see in eq. (2.4)
we have

a .a 1 1

which mixes the color structure of the operator in eq. (2.12)) and creates a new
operator with the same Dirac structure but mixed color structure

1
a ja ~u d~s U —u d=s U —u d~s U

=(Q1) (Q2).

. (2.14)
N
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This makes it clear why before we made the color structure of Q2 evident. The
diagram has generated another operator which needs to be considered for the
renormalization procedure. Doing a similar calculation for diagram gives the
same answer but obviously with a different divergent behaviour due to the loop
integral and the different Fierz.

Therefore we have two current-current operators

Q1 = Spy ' upupdy, Qo = Sy upugudy. (2.15)

2.1.2 Wilson Coefficients and Renormalization

Before we did not evaluate the integral of diagram since we only needed to
control the Dirac structure to find the new effective operator. If we then want to
find the Wilson coefficients and the anomalous dimension matrix for the RGE, we
need to evaluate the various loop integrals, find the 1/¢ poles do to the OPE and
then match the full and effective theory for the Wilson coefficients.

This is a tremendous task when one takes into account all possible operators since,
as we will see later, there are not only current-current ones. Fortunately, the theory
for these calculations has been carried out many times before even at NLO including
also electromagnetic corrections [4} [, 11] in the two different regularization schemes
NDR and HV. NNLO calculations are also available [6] [I7]. Therefore we give here
only a summary of the main results with some simple pedagogical calculations.

Where we left off for diagram (2.1g) was, beside the spinors,

AGp 2u4‘d(2—d)4/ di 1
Zﬁvusvudgs S d (27.‘-)d€4' (2.16)

As we know, the integral vanishes in dimensional regularization, but this is only
an artifact of the fact that we chose the external quarks to have zero momentum.
Therefore, to solve this integral, as we did in 7?7, we introduce a fictious scale and
solve the integral with it. After we do so, we set d = 4 — 2¢ to get, beside the
4GV Via/ V2 factors,

i (4mrp\ (2e —2)4 i

which in the limit of e = 0
4 ‘ 4y 9
<m2 ) =1+¢clog 2 +(9(e>

D)= - +%(1) + §

vo(@) (218)

(2 — 2)*

T :4—14e+0(62),
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eq. (2.17) becomesﬂ
as |1 drple™
— | — —14+41 —
47 [26 +alg ( m?

+6V—14—4yﬂog<igi>-+2§—272—2¢%D

(2.19)

+0 (62) .
Retrieving only the 1/e pole we get that the divergent part of the diagram (2.1g) is

. 4Gp _ ,
Z.Ag: T2F usVud4 % (Ql QQ), (2.20)

where we set N = 3.
We can do a similar calculation for diagram (2.1h)) that reads

' 4Gy, d?/ if if u—ig*P P
Z'Ah \f V V / (2 ) VNPL 02 (295 1J75)U Uk'YHPL 02 (ngtkl’)/a) T
(2.21)

Under the usual simpliﬁcations, we get

4GF * A—d _ 6 ddf
- V/—‘/ Vud dli tatu(u VuPLYp8Y5 )(viv“Pivpi U?)‘/‘Chﬂd- (2.22)
Proceeding on with the Dirac structure simplification, which is a bit more involved
in this case when dealing with d-dimensional Clifford algebra, we get

@78 (PLodon Pr ) vy Py

1_ _
= — §UZ’}/QPLU?U;J 'Yu’Yp’VB’Ya’V'u ’YP'YBPLutu (2.23)
——

_ _ d—4)
::vivafiv?u?va75vp7pvﬁfiu?-+( 5 )viv“Piv?U?wpvﬁvavpvﬁfiug-
The first bit becomes
Uiy Profulya 177"y Pruft
2 >
= d*“v (PLU u; PR)fyaut = —?u ’y“PLv VY Y PrYa U (2.24)
ﬁz—d _ _

=~ PO D (b)) (i P,

while the second bit

(d-4)
2

d—4)?
:(2)@WHﬁWW%w&W+%ﬁAwﬁﬂﬂw%&ﬁ (2.25)

(d—4)?*2-d)
B 4

Uiy Proful vpvp7a7” ¥’ Pruy

-—M—4ﬂ2—®]@?mﬂmﬂ@%WHﬂ%-

2The scale m? is not physical. When taking the limit m? — 0 to get beck to the original result,
we find another divergence which is the IR divergence noted before due to the zero quark momenta.
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Therefore the whole expression becomes

(2 -4d) N (d—4)%2(2—d)?

. —(d—4)(2 - d>] (o Pro) (o# Prat). (2.26)

When taking into account the 1/d factor from the amplitude in eq. (2.22)) and
substituting d = 4 — 2¢, we obtain

—4(e —1)%(2 4+ € —4)
4 — 2¢

=16 - 36c + O(¢?). (2.27)

Taking only the 1/e pole in eq. (2.22) together with the previous expansion, we find

4GF Qg 1 ( 1 )

— Vo Via—(—2)- - = . 2.28
\/é us Ud4ﬂ_( )6 Q1 NQ2 ( )
Summing the contribution from diagrams (2.1g) and (2.1h) with their mirrors, we
get the final amplitude

4G F Qg -3 1
A= —V' Vig—— - — . 2.29
In order to compute the two-by-two anomalous dimension matrix, we need to
compute the one-loop renormalization of the operator (01 inserting it in diagrams
(2.1g) and (2.1h) and their mirrors. The only difference between this and the ones
evaluated before for @ is the color structure given by the SU(N) generators being

1 1
ith; = 5 <5ij5kl - N5iz5kj>- (2.30)

It is clear that this does not generate other operators, therefore if we consider only
current-current operators, the discussion ends here. With this, we renormalize the
operators as prescribed in eq. 1D to obtain, in the MS scheme,

Qs as1(3/N =3
z=14+%7, =14 %2 2.31
T +4m<—3 3/N>’ (2:31)

which gives the following anomalous dimension matrix, from its definition in eq. ((1.27)

40) <_66/N _66/ N>‘ (2.32)

In this simple case, the evolution matrix can be found by diagonalizing the anomalous
dimension, defining

+ NF1
Qu= D@ 5 L o0 0= i6—; : (2.33)
therefore o
a (MW T+ /2Bo
=) (2:34)
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where (' /o are the Wilson coefficients which, at LO, are just C1 = 0 and Cy = 1.
Note that, as we discussed before, Sy depends on the number of active flavours which
means that if we want to evaluate the Wilson coefficients at a scale pj, ~ 2 GeV we
need to take into account the bottom quark threshold at a scale p, ~ mg

© /260(4) 7 /260
o os(w) >7i/ 0 ( as(pw) > *
Ce(2 GeV) = (as(2 GeV) as(2 GeV) ' (2:35)

At NLO the situation becomes more complicated. The anomalous dimension matrix
needs to be evaluated at O(a?) and the Wilson coefficients start at

as(NW) llN + 1
47 2N

Ce(pw) =1+ (2.36)

in the NDR scheme. A complete discussion can be found in [4} [11].

2.1.3 QCD Penguin Operators

Up until now, we found that the effective Hamiltonian for the AS = 1 processes,
like the decay K — 27, is built up by two operators

.7 4G
Higd = TQFV;sVud[ClQl + CyQo). (2.37)

But looking at the quark content of the operators, it is clear that when evaluating
their renormalization, additional diagrams arise from the contraction of the v and «
fields in @12 by attaching a gluon, as seen in fig (2.2).

s d s d

\\@/

q (a) q q (b) q
Figure 2.2. Effective QCD Penguins for the 5 — d transition.
The form of these operators can be easily found by considering that they are
FCNC and therefore must be of the form $;I'*#{;d; which cannot be generated at

tree-level by the SM Lagrangian. If we take the momenta of the quark to be g, then
the possible form of these operators must be

siT % d; = A(g”)sin"t5d; + B(q°)siq"t3;d; + C(q%)si0" qutdd;. (2.38)

Given that gauge invariance assures us that g, 5;1''t{;d; = 0, we have that

A(*)sidtdd; + C(¢*)siq td; = 0 (2.39)
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by choosing, without loss of generality, A(¢?) = ¢* and B(¢?) = —q, we have
st d; = 5 (qzv“ - gq“) ti;d; + C(q2)§i0“”ql,t?jdj. (2.40)

The second operator connects spinors with different helicity and therefore must be
proportional to the quark mass, so for massless quarks cannot be generated.
By using the equations of motion, we see that the first structure corresponds to the

matrix elements of the operator s;vy"¢{;d; D" G, in fact

DG, = gs Z cjjc'y#t?jq} (2.41)
f
where f is any active quark flavour, gives

Svutsd; > A5y tud (2.42)
7

Consider diagram (2.2a)) with the insertion of the operator of eq. (2.40)), roughly
speaking

_ 1_
qf’y“taqf?s(qgfyu — qug)tad (2.43)

since the quarks gy carry momentum ¢, due to the equation of motion ¢,q5 = 0,
therefore there remain just

_ 1_
q" gy qﬁsqzwtad, (2.44)

where the ¢2 cancels with the pole of the propagator, leaving just the matrix element
of the local operator in eq. (2.42)

syFtdgryuttq. (2.45)

These diagrams are log-divergent which means that they need to be renormalized
forcing us to enlarge the operator basis again. When inserting operators ()1 /2 in the
effective vertex of the gluonic penguin a total of four more operators is generated

Q3 = giLV'udiL Z qg;LVuQ;La
f

Qu = Sy d), > Q}L'Yuq}u
f

Qs = Sp7"dL > T vuip
f

Qs = sp7"d) Yy C.Y;RWQ?R‘
f

(2.46)

As a matter of fact, we give a little computation to see how these operators are
generated by considering the diagram ([2.2al) with the insertion of operator ()2 in
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the effective vertex. Again we consider the external quark momenta to be zero and
the momentum flowing in the gluon to be gq.

dde _ i(f —4) if sqd (i 900"
ZA / d M J(ngt”'y > 27uPLUjUZ(ngtkl7ﬂ) 726

(E - Q) 14 q (247)
9 _
= —ip'” dqs (v VPPt "y 'mPij) (ufvatyu]) oo,
where the integral, without going into much details, is just
_ b (G 7 1 0
Ipa - 167’[‘2 ( + QPQU) 6e + 0(6 ) (248)

Putting this into the amplitude, we find, besides constant factor

_ 9po 1
(09" PLye ey T Pros ) (i vathyuf) (; + QpQU> o
) ﬁva d (2.49)
50 tm“PL (7 YV + 27—~ >7uPLU U yatiug-

Given that 1y%y, = ~29” and that 7°¢ = {¥*.¢} — f7° = 2¢* — ¢7°, the
parenthesis becomes

(197 + 25E) =~ - ) (2.50)
and therefore the Dirac structure is
oty P (a7 — q° ) 1 Povj i natiyuy (2.51)
which gives back the FCNC vertex we conjectured earlier.

It is clear now that in the quark loop of the penguin diagram there can also run
the charm quark, but not the top quark since it has been integrated out by the OPE.
In the full theory even the top quark is present, but not in the low energy one. This
means that we should add to the effective Hamiltonian for the § — d transition even
the current-current operators with the charm quark, leading to

st—>d _ 4Gp [V* " (Cleuud + Oy quud) + V* Vid (Cleccd 1 Cy Qsccd)}.

\[
(2.52)

When these operators are inserted into the penguin diagrams, they will give exactly
the same divergent part since it does not depend on the mass of the quarks. Therefore
the penguin diagram is going to be generated with a coefficient

VisVud + VesVea = =VisVia (2.53)

3For simplicity we go back to d = 4 since we just want to understand the Dirac structure.
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due to the unitarity relation of the CKM matrix. All in all, the full effective
Hamiltonian including current-current operators and QCD penguins becomes
Y Te. - _ - _
Her ! = = { ViVl o (@1 - Qi) + (@5 - Q57))
6 (2.54)
—ViVia [@f@‘“ + CoQ5 + ) ciQf‘d] } :
i=1

where again the CKM unitarity has been used to eliminate the factor V. V,4.

2.1.4 Wilson Coefficients and Renormalization

Since we have now a total of six operators, the RGE is governed by a 6 x 6 anomalous
dimension matrix which has to be evaluated by inserting all the current-current as
well as QCD penguin operators in diagrams (2.1e) to and in the penguin
diagrams ([2.2a)) and (2.2b)).

To perform the matching for the Wilson coefficients, one needs also to evaluate the
full theory equivalent of the penguin diagram in fig. @ where now even the top
quark can run in the loop.

S

q
Figure 2.3. QCD penguin in the full theory.

At LO the anomalous dimension matrix (%) has the explicit form [2 5] [16] 18] [32]

= 6 0 0 0 0
6 =6 =2 2 =2 2
A S 0 1
0) — 3Noe 63 9p 3N 5 2.55
K 0 0 6-7F F+¥ I ¥ ’ (2.55)
0 0 0 0 2 -
—92 2 —92 —6(—1+N2) )
o0 H ¥ ¥ Gy

while at NLO the second order expansion coefficient of the anomalous dimension
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matrix reads [} [11]
1
,7( )‘
_21 _ 2f T4 2f 79 _T _65 _T
2 9 2 3 9 3 9 3
T4 2f _21 _ 2f & 1354 _ 1192 904
2 3 2 ? 59112 71f 598381 f 2384243 71f 180881 f
0 0 I I R W7t P TR
0 0 379 56f 91", 808/ 130 _ 502f _ 14, odos
18 243 6 81 9 243 3 81
0 0 =Ll L o489 g9+ LS
6% i 106f 225 1676f 1343 | 1348f
0 0 243 81 +on 6 s
(2.56)

where f is the number of active quark flavours at the scale u. Both matrices are
given in the NDR scheme; the HV scheme results can be found in the sources just

cited.

The fact that the top quark can run in the penguin loop in the full theory is
fundamental since when performing the matching, one finds that the top quark
contribution generates a non-trivial contribution to the Cs5_g(uy ) Wilson coefficients,
while the contributions from w and ¢ quarks cancels up to a constant and corrections
of order p? /M3, [8,22]. After matching, one finds the following Wilson coefficients

at NLO
11 o (M)
Ci (My) = ————=~
1(Mw) = 5=
11 Qg (Mw)
CoMyw)=1— ———=
( W) 6 A )
o (M) =
Cs (Mw) = —MEO (1),
241
o (M) (2.57)
Cy (M) = 887WE0 ()
T
_ Og (Mw) ~
Cs (Mw) = _WEO (1),
as (M) =
Co (Mw) = (7TVV)E0 (@),
where
2 r(18 — 11z — 2?)  2%(15 — 162 + 422)
Eo(z) = —-logx + log x,
Ey(z) = Eo(z) — 3
with xz; = m% /M%, It is easy to see that coefficients C5_g are directly related to the

top quark as stated before.
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2.1.5 Electroweak Penguin Operators

q (b) q

Figure 2.4. Electroweak penguin diagrams for the 5§ — d process.

One may now ask the question of what would happen if the gluons in the QCD
penguin diagrams of figs. and were to be replaced by a photon exchange.
Then, electromagnetic corrections will also get log-enhanced making them comparable
with the NLO-QCD corrections alog(u#,/pu3) ~ as. These contributions do not
need to be resummed but should be included when working with NLO-QCD [7, [11].
The relevant diagrams that we need to consider when dealing with EW contributions
are given in fig. .

When introducing also EW contributions, the operator basis needs to be enlarged
again. While FCNC of diagram @ is equivalent to the gluonic one, the equation
of motion introduces an explicit charge dependence giving rise to the operator
structures

3. P A
Q7 = §3L7MdZL Z qu;L’YMQ;La

f
3 . . Py )
Qs = §SL7“dJL Z qu}L'YMQ}La
, (2.59)
Qo = 5327udlL Z eqqng'Y/LQ;Ry
f

3. y .
Qi = 5827“% > el 1udyr:
f

When performing the matching for the new EW-penguin operators, as in the case
for the gluonic one, one gets a contribution also from the top quark running in the
loop. But in this case, this is not the only contribution. One must also consider the
diagram where a Z° boson is exchanged and the box diagrams @ where two W
bosons are exchanged so that one can obtain a gauge-invariant result.
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2.1.6 Wilson Coefficients and Renormalization

The RGE is now governed by a 10 x 10 anomalous dimension matrix, whose LO
form is given by

(0)

Ys =
6 2 2 2 2
v O N 3 IV 3 o 0 0 0
6 —x 0 0 0 0 0 0 0 0
o0 -Z 2 — e 0 0 0 o0
2n, 6 2n 2n 2n
0 0 -3 —wt3 N =5 0 0 0 0
0 0 0 0 = —6 0 0 0 0
2ng 2n, 2n, 1-N2 | 2ny
o 0 —38- 5 - Gxc+3t 0 0 00|
0 0 0 0 0 0 ~ 6 0 0
0 0 72(77,;;&:101/2) 2(71,“7377,(1/2) 72(71,5];:”/2) 2(77“737%/2) 0 GI;VJZICZ 0 0
2 2 2 2 6
o 2o/ nu—naf2)  —Boona/2)  Bma—na/2) .. X
—2(ny—n, Ny —N, —2(nqy—n, Ny —MN, 6
0 0 N 3 T — 0 0 6 -
(2.60)

where ng is the number of active down-like quarks and n,, the one of up-like quarks.
Moreover ny = n, + ng. The NLO anomalous dimension will have contributions
from O(ag) corrections, but also O(«) and O(asa), like in eq. . The specific
form of the other coefficients can be found in [7, [11].

The NLO Wilson coefficients at the high scale are found by the matching procedure
to be

Cy (M) = %7% (i\:w)
Ca () = ~ 20D B 20) o+ o 2B () + Co (0]
Cy (Mw) = aS(SJ\T/{W)EO (t)
Cs () = =2 By 0 (2.61)
Cs (Myy) = O‘ngW)Eo (1)
Cr (Mw) = = [4C0 (1) + Do ()]
08 (MW) = 07

Co (M) = 2= [400 () + Do () + 3 (10Bo (1) — 4Ch (1)

T sin“ Oy

Cio (Mw) =0,
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where

1 T rlnzx
4[1 x 1‘—1)2]
T [x 6 33:—1—2
g Lv 1
4
9

x — 1)2 lnx}

—1923 + 2522 N 2% (522 — 2z — 6)
36(z —1)3 18(z — 1)*

(2.62)

Inx

Dy(x) = Inz
Do (2;) = Do (z4) — =

2.1.7 Magnetic Penguin Operators

Figure 2.5. Magnetic penguin operators.

In principle, two additional operators contribute to the AS = 1 transitions. These
are known as chromomagnetic and electromagnetic penguin operators and have the
following form

Cd ——ms50" Fy,, (1 —v5)d. (2.63)

16 Qmssz oty Ga o(L=5)d;, Q12 =

However their contribution for the K — 27 transitions are chiral suppressed two
times: one from the strange mass term and one from the operator matrix element
[3, 12], therefore we will not consider them from now on. Even in the RBC lattice
analysis, [I] this operator was excluded.

2.1.8 A Note on the Operator Basis

What we found until now is that the |AS| =1 transitions can be described by an
effective Hamiltonian containing ten operators

¢ Current-Current Operators:
Q1 = (57" Prug) (7, Prds) Q2 = (7" Ppu)(un,Prd) (2.64)
¢ QCD-Penguins Operators

Qs = (39" Prd) Y (qvuPrq) Qs = (5" Prd;) > (G, Pra:)
q q

Qs = (57" Prd) Y (37 Prq) Qs = (3:7"d;) > (G, Pras)  (2.65)
q q
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¢ Electrowark-Penguins Operators

3 i 3 i
Qr =55 Ped) D _eq(@nuPra) Qs =5 (57" Prd;) Y eq(d;7:Prai)
q q
3 i 3 ]
Qo = 5(57"Prd) > eq(qvuPrq) Quo = 5 (5:7"d;) > a7 Prai)
q q

(2.66)

where Pr,/r = (1F75)/2 are the chiral projectors and e, is the quark charge in units
of e.

These operators are useful in the lattice calculations but when it comes to renormal-
ization, another basis is better suited for the task: the so-called chiral basis. This
comes in handy since in the usual 10-operator basis, the operators are not linearly
independent. In fact, by Fierz transforming operators 01, @2 and Q3

Q1 = (59" Prd)(uy,Pru),
QQ = (gi'yuPLdj)(ajf)/uPLui)a (267)

Qs = > (57" Pra;) (@ Prd;),
q

we can eliminate operators (4, Q9 and Q19 in such a way
Qs =02+ Q3 —Q1,
3 - 1
Qo = 5@1 - 5@3, (2.68)
1 _ _
Q10 = 5(@1 —Q3) + Q2.

The remaining seven operators can then be recombined according to irreducible
representations (irrep) of the chiral flavour-symmetry group SU(3);, ® SU(3)r. All
the details of the decomposition can be found in the literature [23]. The chiral
operator basis, which we will indicate with a primed, is thus given by

(27,1) Q) =3Q1 +2Q2 — Q3,

8,1) Q= %(2621 —2Q + Q3),
(81) Q3= é(—:%@l +3Q5+ Q3), (2.69)
(8’ 1) Q/5,6 = Q5,6a

(8,8) Q75=0Qrs

where (L, R) denotes the respective irrep of SU(3)r ® SU(3)g.
The conversion from the 7-operators chiral basis and the usual 10-operator basis is
simply given by
Q=Y T,Q, (2.70)
(2
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d u, ¢, t s
W+ W~
s u, c, t d
(b)
Figure 2.6. Box diagrams contributing to the AS = 2 transitions.
where 1 <i <10 and j € {1,2,3,5,6,7,8} and the matrix T is given by
1/5 1 0O 0 0 0O
1/5 0 1 0 0 0 0
0 3 2 0 000
0 2 3 00 00
0 0 0O 1 .0 0 O
= 0 0 0 01 00 (2.71)
0 0 0O 00 10
0 0 0 0 0 0 1
3/10 0 -1 0 0 0 O
3/10 =1 0 0 0 0 O

2.2 Effective Hamiltonian for AS = 2 Processes

Now we would like to do similar computations for AF = 2 processes like the
oscillations K° — K°, which specifically are a AS = 2 process since the underlying
quark transition is given by 5d — ds.

Such FCNC process cannot arise at tree-level in the SM so we must consider one-
loop contributions that, not considering the Goldstone boson exchange for now, are
just the ones in fig. . Let us give now the computation for diagram .
Considering the external quark momenta to be zero, the amplitude can be easily
found to be

, A% (iga i(f —my) (iga

- s HPLVE (2 )y PLViav?

Z-Aa /(27{')du <\/§>7 LVu;s 62—m§ (\/5)7 LVu;dV
2

_g igg % Z(E — ml) d —1

’ <\/§>%PLVWS @z Ved\

\ (2.72)
.99 1 % *
= 192V ViaVis, Viga /

e
(2m)*(€% — My, )?

2
J

_ _ f —m;
u*y"Pp, VVPLUdUS’YuPLm%LPLUda
(]

2 —m

where m; is the mass of the up-like quark u; between the initial quarks and m; the
mass of the up-like quark u; between the final quarks. The terms proportional to
the mass in eq. (2.72) vanish because of the chiral projectors

mjﬁsyuPL%PLvd = m;u’y, Yy PrPrL vl =0, (2.73)
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therefore the amplitude simplifies to

4
g * * —S oV
ZZQVuisVuiqu]'sVuj-d(u Y Pry®y PLvd) (U Py Y Pru )Ia57 (2.74)
where 4y w
19, = / p . 2.75
0~ ] G (@~ (@~ m2PE A 27

Let us consider for now the tensor integral I;ZB We can simplify its structure by
means of partial fractioning as follows

1 A B

(02 —m2)(£2 —m;)2 2 —m? TEC m?

(A4 B)E — (Am2 + Bm?) (2.76)
@ =)@ ud)
which simply implies that
1
A= -B, A= — — (2.77)
m; —m;
therefore
1 1 1 1
= — ) 2.78
(02 —m? )(€2—m32) m?—m? (W—m? €2—m§> ( )
From this, we obtain that '
pii  fan = Lo 2.79
where
aB — (2ﬂ)4 (52 _ ~2)(g2 M2 )2
_ Gap [ 4 (€2—m)+m )
T ot e Mg @ —md) (2.80)

_ Yap d*e 1 1
e [mQ/ (2m)’ ((52 “MREE —md) (@ M@V)Qﬂ'

The second term which does not depend on the quark mass cancels in the difference
in eq. (2.79), therefore we can neglect it. While the first term becomes

d4r 1 1 d*s x
/<2w>d<f2—M5V>2<e2—m% :2/“/ (2 = M3z + (2 — m3) (1 - 2))°

_2/ dx/ d% — (@M, x(1—x)mg)]3'

(2.81)

The integral in the loop momentum is convergent

/ a*e T i1 1 (2.82)
(2m)4[2 — (M2 + (1 —2)m?)]? 167222 ME, + (1 — x)m? '
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as can be easily seen by analytically continuing to d-dimensions and then taking the
limit d — 4. Hence the integral of eq. (2.81]) becomes

i /ld x
— T
1672 Jo  xME + (1 —z)m?

7

o /1 x
©16m2ME Jo x4 (1 — )

i /ld z
- - R —
167T2M3V 0 i +x(l — ;)

2.83
_ i /1 de 1—z)r 4z —x; ( )
16m2 Mg, Jo (1—a;) @ +a(l — ;)
: 1
7 —x; 1 1 )
=— dx +
16m2ME, (1 — /0 l—z)x+z; 1—x
o 1 ( 1 . x;log x; )
167T2M3V 1-— xX; (1 — {L'Z')2 ’
where x; = m% /M%V Thus, up to terms that do not depend on m; we get
i _ _Yap 1 mf( 1 +x,-logxz-)
of 4 16‘7r2 M2\ —xz; (1 — ;)2 (2.84)
_Yap _* .
=1 1@
where )
T x; log x;
J(x;) = C . 2.85
) = T T A ) (2.85)
Therefore .
ij Jap 1 o
Iys = _4M§V 167T2A($Z,J}J), (2.86)
where ; ;
Az, 7;) = Jws) = Iay) (2.87)
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This is our first, actually computed, Inami-Lim function [22] which encodes the loop
information of the diagram.
We now turn our attention to the Dirac structure of eq. (2.74)

ﬁd'y“PL*yafy”PLvdﬁsfyl,PL*ny’yuPLud. (2.88)

By using the usual projector rules and Clifford algebra, together with the g,z from
the integral, we can highlight the usual structure

wtyty” (PLUd’DsPR) Yo Yoy (2.89)

and by using the Fierz identities

_ 1_
(PLv*PR)ag = —§v5’prLvd('prR)a5 (2.90)
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we obtain ]
— U Pty PR o, (2.91)
then by jumping the Pr over the gamma matrices
— l17‘(”'ypPLvdﬂs'y“'yo‘’y"’yp'y,/yo/yuPLud = 4175’prLvdes'prLud, (2.92)
2
where we used the usual relation y¢y#~, = —2v* four times.

Putting everything together we obtain the amplitude for the diagram (2.6a) as

. ( 4—93 * * — d-—- d
iAq = “16.2 1602, Z ViVidVisVia Az, x5) 0 y* Pro®u’y, Pru

i, J=u,c,t
iG2 M3

(2.93)

1,)=u,c,t

where AL, = V*Vig4.

The computation of diagram goes along the same lines ad for diagram ,
where we just need to exchange an incoming 5§ to an outgoing s and vice-versa. If
we put the spinors in the amplitude

o =~ GBS~ 0 Al Prati P
G2 j b, =u,C,t (2.94)
3 1
iAp = o2 LN NN A, @) uy Prugtsy, Proa.
1,j=u,c,t

Both these amplitudes can be written as the matrix elements of the same local
operator, which lets us write the effective AS = 2 Hamiltonian as

HEP=? = C5y" Prdsy,Prd (2.95)

where C' is a Wilson coefficient. This effective Hamiltonian generates the following
amplitude

—iC <JS’§7"PLd§’yHPLd‘§d> = —2iC(usY" PLvgvsy Prug — sy PLuqvsy, Prvg).
(2.96)
By matching with the full amplitude, we get that

G3 MW

catb = ST NN A, ). (2.97)

i, J=u,c,t

There remains to evaluate also the box diagrams with the Goldstone boson exchange.
We do not delve into the details of the calculation but, once evaluated, the same
matching procedure as before can be done, obtaining three more Wilson coefficients,
two coming from a single Goldstone exchange and one from the double Goldstone
exchange, which are given by

_ GEMy, :
Cy=Cy = = ZuctASdA azljx])xzx]
2 " (2.98)
Cy = 52 Z )\éd)\ JA(@i xj)zix;,

i, j=u,c,t
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where ) — ) ) |
R U A € J(z) = roer 2.99
(xuajj) T _-'Ej ’ (‘/L‘) 1—2 (1 _:L‘)Q ( )
In the end, by putting everything together, we get
G%Mi%V L
C==15 ij;:ctA;dAgdA(xi, z;), (2.100)
where )
A(zi,xj) = Alwi, 1) — 2z A (4, 15) + ZmimjA(mi,xj). (2.101)

By using the CKM unitarity, we can finally write down the full AS = 2 effective
Hamiltonian as

_ G2 M? _ _
HAF=2 = S TO0)280(e) + (XS0 () + 2XegXaSolire, )| 57 P Prd,
(2.102)
where
So(x) = Az, x) + A(zy, 24) — 2A(zy, x),
b(2) = Ale,2) + Az, ) - 2A(z,0) 2103

SO('%" y) = A(x7y) + A(xmxu) - A(xm I’) - A(xmy)'

All the calculations we have done so far are in the limit of zero external quark
momenta. This is a good limit if there is no explicit dependence on the quark
momenta. This turns out to be a good approximation but with some additional
details that we will not discuss here [9] [30].

What we might want now to do, is to include LO QCD corrections in the same
fashion as done for the AS = 1 effective Hamiltonian. What changes is that the
inclusion of loop corrections, does not add a new operator with a different color
structure to the basis since, by means of Fierz identities, we can go back to the
original color structure.

This leads to the following anomalous dimension
0 N -1
~ 0 = 6= (2.104)
A complete treatment of the NLO QCD corrections is beyond the scope of this
thesis but can be found in the literature [5, 19, 20, 21]. These corrections are usually
parametrized by three factors 71,72 and n3. The effective Hamiltonian is usually
written in the following form

5= _ CEME
eff - A2

[(AL)?mSo (@) + (Asq)*mSo ()

(2.105)
+2X5gAqn380 (e, xt)} sy" Prdsy, Prd,

where 17, = 1 4+ O(ay).
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