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Chapter 1

E�ective Field Theories: an
Introduction

The study of e�ective field theories (EFT) [24] arises from a necessity. In principle,
one could evaluate the relevant quantities for some weak processes on the lattice.
However, the presence of many di�erent energy scales for any given process makes
this approach impractical. What one can do for renormalizable theories is to separate
the di�erent contributions coming from the di�erent energy scales and evaluate the
high-energy part perturbatively while the low-energy contributions can be evaluated
on the lattice. This separation is made possible by EFTs. One such process where
EFTs are essential is for the study of non-leptonic decays of light mesons such as
pions and kaons.
The fundamental idea behind e�ective field theories (EFT) started in the opposite
manner as we are used to today. We can think of the Fermi theory of Weak
interactions as really the first e�ective theory in the history of the SM. In reality,
Fermi developed his theory of Weak interactions [13] in the 1930s, well before we
knew that a more general theory was present, the now called SM. The Fermi theory
was at the time such a speculative theory that even a prestigious peer-reviewed
journal like Nature rejected Fermi’s paper. We now know that his theory is in fact a
low energy equivalent of the SM weak interactions!

In this chapter, we are going to introduce the idea behind EFTs with the
pedagogical example of the Fermi theory. Then we’re going to make a more rigorous
definition through the use of the Operator Product Expansion (OPE) which will
divide the problem into two main chunks: the Wilson coe�cients which encode all
the short distance physics and the e�ective operators matrix elements which deal
with the low energy part of the theory. Moreover, we’re going to see that QCD
corrections give large-log contributions to the amplitude and how we can deal with
these large-logs using the RGEs.

1.1 A Historical Example: the Fermi Theory of Weak
Interactions

A first historical example that we need to give to set up the background, which we
will later develop in more detail, is the Fermi theory of Weak interactions. This
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theory was developed by Fermi in the 30s to explain the phenomena of beta decay.
He did this by postulating that the decay process can be described by adding to the
free Hamiltonians of the particles in the beta process an interaction term containing
the wave functions of the four free particles

HF = H0

n + H0

p + H0

e + H0

‹ +
ÿ

i

Ci

⁄
d3x

1
ūpÔiun

21
ūeÔiu‹

2
. (1.1)

Here up, un, ue, u‹ denote the wave functions of the four particles.
We now concentrate solely the interaction term which is given by the Hamiltonian
density

HF =
ÿ

i

Ci

1
ūpÔiun

21
ūeÔiu‹

2
. (1.2)

A question arises: what are the operators Ôi? The answer was found in the deep
experimental evidence in the years following the proposed theory.
Firstly, the Hamiltonian needs to be a Lorentz scalar, which implies that the operators
need to be one of the fermionic bilinear covariants

1 “µ ‡µ‹ = i

2[“µ, “‹ ] “µ“5 “5. (1.3)

In principle, one does not know which combination of bilinears enters the Hamiltonian.
In the beginning, Gell-Mann and Feynman thought that, like electromagnetism, the
interactions should be vectorial in nature. Moreover, from experimental evidence, it
was found that only a single helicity appears: electrons and neutrinos are always
left-handed while positrons and anti-neutrino are always right-handed. This is
a consequence of parity violation in Weak decays. Therefore, the part of the
Hamiltonian containing electrons and neutrino spinors should only contain the
part of the wave function with negative helicity. This is found by using the chiral
projectors like the ones in equations ??. Through this process, it was found that
only the V ≠ A combination gives a meaningful contribution

ÔV ≠A = 1
2(“µ ≠ “µ“5). (1.4)

For neutrinos the chiral form of the operators is exact. For the electron, being
massive, they are good if the electron momentum is high enough

1. According to
these considerations, we must replace the spinors by their components with negative
chirality. Lorentz invariance requires that even the nucleonic part of the Fermi
Hamiltonian has to be V ≠ A type. Extensive experimental analysis has led to the
conclusion that the correct form for the nucleonic part is given by

ūp“µ(gV + gA“5)un = gV ūp

3
1 ≠ gA

gV
“5

4
un (1.5)

with
gA/gV = ≠1.255 ± 0.006 (1.6)

1This implies that the statement that electrons have only positive helicity is only approximately
correct.
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This takes into a fact that protons and neutrons are composite particles and that
the axial symmetry is broken.
The complete expression for the Hamiltonian interaction term is therefore given by

HF = ≠GFÔ
2

gV

5
p̄ “µ

3
1 ≠ gA

gV
“5

4
n

6
[ē “µ(1 ≠ “5)‹e]. (1.7)

This result can be exploited to find e�ective Hamiltonians for all kinds of processes
like for the muon decay, in which the Hamiltonian takes the form

HF = ≠GFÔ
2

‹̄µ“µ(1 ≠ “5)µē≠“µ(1 ≠ “5)‹e. (1.8)

The only problem is now that the theory is clearly non-renormalizable since it is
made up of dimension six operators. But fear not, we can circumvent this problem
by means of the renormalization group improved perturbation theory which we will
explain later.
Here comes the fundamental step: since we know that the SM explains so well weak
processes but also does the Fermi theory, the two need to be linked in some way.
We will see now that the Fermi theory is a low energy limit of the SM.

1.2 E�ective Hamiltonians for Weak Decays
We can start by looking at a simpler case of the leptonic decay of a pion fi æ ¸‹¸,
we will see that such a process comes with a much simpler QCD structure due to
the presence of quarks only in the initial state.
In the ’t Hooft-Feynman gauge2, at tree level, this process is governed by two
diagrams

W

u

d

¸

‹¸

+
„

u

d

¸

‹¸

The ’t Hooft-Feynman is more useful when dealing with loop diagrams since the
W propagator does not have the pµp‹ term like in ?? which would give a complicated
ultraviolet behaviour. Moreover, this gauge makes the process of expanding the
amplitude more straightforward. The problem is now that we have to deal with
Goldstone boson exchange. But since the coupling of the latter is proportional to
the light fermion masses, we can ignore them for the following. The amplitude of
the W diagram is therefore

iA =
3

ig2

2
Ô

2

42

V ú
udū‹¸“

µ(1 ≠ “5)v¸
igµ‹

s ≠ M2

W + i‘
v̄d“‹(1 ≠ “5)uu. (1.9)

2Which is a particular R› gauge with › = 1.
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Given that the typical energy of the process is s ≥ O(mfi) π M2

W , we can perform
an expansion of the W propagator in powers of s, leading to

iA = ≠i
V ú

udg2
2

8M2

W

ū‹¸“
µ(1 ≠ “5)v¸v̄d“µ(1 ≠ “5)uu

Œÿ

k=0

A
s

M2

W

Bk

ƒ ≠i
GFÔ

2
V ú

udū‹¸“
µ(1 ≠ “5)v¸v̄d“µ(1 ≠ “5)uu + O

A
s

M2

W

B

, (1.10)

where we introduced the Fermi constant as

GFÔ
2

= g2
2

8M2

W

. (1.11)

As we can see eq. (1.10) is exactly of the same form as eq. (1.8). This is a first
simple example of operator product expansion (OPE)[35]: the dominant term in the
decay fi æ ¸‹¸ is given by the matrix element of a six dimensional e�ective operator

Qd̄u‹̄¸ = d̄“µ (1 ≠ “5)
2 u ‹̄“µ

(1 ≠ “5)
2 ¸ (1.12)

while subsequent orders k > 0 correspond to the matrix elements of higher dimen-
sional operators containing 2k derivatives.
From a Feynman diagram point of view, the process of expanding the W propagator,
thus making its e�ects local, amounts to contracting the W propagator to a point

W

u

d

¸

‹¸

≠æ

u

d

¸

‹¸

Keeping only dimension six operators in this OPE we obtain that the amplitude
is given by

A = ÈHeftÍ + O
A

s

M2

W

B

Heft = 4GFÔ
2

V ú
udQd̄u‹̄¸, (1.13)

where Heft is the e�ective Hamiltonian governing the fi æ ¸‹¸ transition. The process
of equating the full amplitude with the one given by the e�ective Hamiltonian is
called matching.
The e�ects of the exchange of the heavy W boson are encoded in the expansion
coe�cients, which are known as Wilson coe�cients.
In general, let us consider the ampliture A of a given process. Thanks to the OPE
we can put this in the form

A = ÈHeftÍ =
ÿ

i

Ci(µ, MW )ÈQi(µ)Í (1.14)

when the process takes place at an energy scale µ π MW . We say that the W
is being integrated out. The expansion CiQi can be seen as an e�ective theory
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Figure 1.1. Factorization of an observable into short-distance (red) and long-distance
(blue) contributions. The panels di�er by the choice of the factorization scale. The figure
is taken from [26] with the permission of the author.

whose vertices are given by the local operators Qi and the coupling constants by the
expansion coe�cients Ci, the Wilson coe�cients.
By doing so, we can separate the problem into two main chunks: the Wilson
coe�cients which contain the short-distance3 contribution to the amplitude and can
therefore be evaluated using ordinary perturbation theory and the e�ective operator
matrix elements which contain the low-energy physics and have to be evaluated by
means of lattice QCD or other techniques like the large N [31] expansion or chiral
perturbation theory (ChPT) [27].
One may roughly think of this process as splitting up the contributions from virtual

particles ⁄ M2
W

≠p2

dk2

k2
=

⁄ M2
W

µ2

dk2

k2
+

⁄ µ2

≠p2

dk2

k2
, (1.15)

where the first term is sensitive to UV physics and is found into the Wilson coe�cients,
while the second is sensitive to IR physics and is absorbed into the operator matrix
elements. This can be seen pictorially in fig. (1.1).
We note that on a more formal basis, the procedure of the OPE may be given
by considering the generating functional for Green functions in the path integral
formalism. Then we “integrate out” the heavy degrees of freedom associated with
the high scale M from the generating functional of Green’s functions and obtain
a non-local action functional, which can be expanded in an infinite tower of local
operators Q(n)

i [28].

1.3 QCD E�ects
The required QCD corrections to the full theory, in the case of the leptonic decays
just mentioned, are the same as the ones in the e�ective theory since they are just
given by external legs corrections and vertex corrections. So under the process of

3High energy.
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matching, those won’t influence the Wilson coe�cients but are going to be contained
in the operator matrix element and so we don’t need to take them into account.

1.3.1 Large Logarithms
If we now turn to non-leptonic decays, the situation changes drastically. Consider
for example the process cs̄ æ ud̄. At tree level, after the OPE, we get a dimension
six operator which is similar to the one in eq. (1.12)

Qs̄cd̄u
2 = s̄“µ (1 ≠ “5)

2 cū“µ
(1 ≠ “5)

2 d © s̄L“µcLūL“µdL, (1.16)

where we used the shorthand notation of the chiral spinors. After matching we get
that

He� = 4GFÔ
2

V ú
csVudC2Qs̄cd̄u

2 C2 = 1. (1.17)

As for the case of the leptonic decay, the Wilson coe�cient is trivial at tree level.
When we go to O(–s) the situation changes drastically. External legs corrections as
well as vertex corrections like the ones following

W

s

c

d

u

,

W

c

s

u

d

· · · (1.18)

won’t a�ect the matching since at this order the current are conserved and so
they will not generate large-logs. But now, we can have gluon exchange between the
initial and the final legs like the following

W

s

c

d

u

+
W

s

c

d

u

+ permutations

(1.19)
In the full theory this correction will a�ect the momentum propagating in the W

boson, which will make the overall diagram convergent, but proportional to terms of
the form

–s

⁄ d4¸

¸2
#
(p ≠ ¸)2 ≠ M2

W

$ ≥ –s log
A

M2

W

≠p2

B

(1.20)

which taken at face value would imply the breakdown of perturbation theory. In
fact, when the quark momenta become of the order or �QCD, the e�ective expansion
coe�cient becomes O(1). This is the problem of large logarithms. Fortunately, the
e�ective theory can save us from this problem.
Let us consider the e�ective operator for the case at hand Qs̄cūd

2 . The O(–s)
corrections are given by the following Feynman diagrams
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s

c

d

u

+

s

c

d

u

+ permutations

Having removed the W propagator is not a surprise that once we evaluate such
diagrams, they come out to be divergent. The e�ective theory has therefore a much
di�erent ultraviolet behaviour with respect to the full SM amplitude. But we know
that the EFT is going to be valid up to a cuto� � of the order O(MW ). We can
regulate the diagrams by introducing such cuto�, obtaining terms of the form

–s log
A

�2

≠p2

B

. (1.21)

In reality when dealing with perturbation theory, rather than introducing a specific
cuto�, we regulate the theory using dimensional regularization, which introduces a
scale µ, and logarithmic terms are going to be of the form log

!
µ2/ ≠ p2

"
. When we

match the amplitudes of diagrams in eq. (1.19) with the ones in section 1.3.1, any
infrared logs cancel and we are left with terms of the form

log
A

M2

W

≠p2

B

≠ log
A

µ2

≠p2

B

= log
A

M2

W

µ2

B

. (1.22)

We have now the liberty of choosing the matching scale in order to get rid of large
logs. In this case, setting µ ≥ MW we get back the ordinary expansion coe�cient –s,
without the log. On the other hand, the non-perturbative part of the hadronic matrix
elements needs to be evaluated on the lattice which intrinsically introduces a hard
energy cuto� tied to the lattice spacing a ≥ 1/�. Then the renormalization of the
operators is done, mostly, by the RI-SMOM scheme [25] which is a non-perturbative
renormalization scheme suitable to evaluate renormalized quantities on the lattice.
Moreover, as we will see in more detail in the following chapter, QCD corrections
enlarge the operator basis due to the presence of the gluon which can mix the color of
the external quarks, and so a di�erent color structure arises. Not only that but even
more complex operators are generated which have the required quantum numbers
and therefore have to be taken into account.
Up the here, the point of the situation is as follows: we encounter large logs in the full
theory which are a consequence of the many energy scales which enter the process.
There is no way to get rid of these large logs. Then, we go to the e�ective theory
where the loop diagrams are divergent and large logs appear with a dependence on
the renormalization scale. Through matching, we can get rid of large logs, but only
in the Wilson coe�cients, which can therefore be evaluated, at a scale µ ≥ MW ,
with ordinary perturbation theory. The operator matrix elements still contain large
logs. We see in the next chapter how the Renormalization Group can help us solve
this problem.
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1.4 Wilsonian Renormalization
The Wilson coe�cients now carry an explicit dependence on the renormalization
scale µ which has to cancel out with the renormalization scale dependence of the
e�ective operators, since the full amplitude does not depend on µ

0 = d
d log µ

A = dCi(µ)
d log µ

ÈQi(µ)Í + Ci(µ)dÈQi(µ)Í
d log µ

. (1.23)

Here Qi(µ) are the renormalized composite operators defined in dimensional regular-
ization and the MS scheme, while Ci(µ) are the corresponding renormalized Wilson
coe�cients.
What we need to find is the dependence on the renormalization scale of the composite
operators.

1.4.1 Renormalization of the E�ective Operators
At any order, the basis of e�ective operators {Qi}i=1,··· ,n can be renormalized in the
usual way, as discussed in section ??, by allowing however that the operators can
mix under renormalization

Qi,B =
nÿ

j=1

Zij(µ)Qj(µ). (1.24)

Note that the renormalization constants Zij contain not only the renormalization
factors absorbing the UV divergences of the loop corrections to the operator matrix
elements, but even a wave-function renormalization factor Z1/2

q for every field
contained in the composite operator.
Note that dimensional regularization rules out the possibility of operator mixing
between operators of di�erent dimensions. This is one of the reasons why dimensional
regularization is the most convenient renormalization scheme in perturbation theory.
Given that the bare operators in eq. (1.24) are independent on the renormalization
scale, it follows that

dZij(µ)
d log µ

Qj(µ) + Zij(µ)dQj(µ)
d log µ

= 0 (1.25)

which can be rearranged to give

dQi(µ)
d log µ

= ≠Z≠1

ij (µ)dZjk(µ)
d log µ

Qk(µ) © ≠“ik(µ)Qk(µ), (1.26)

where we defined the anomalous dimension matrix of the e�ective operator

“(µ) = Z≠1(µ) dZ(µ)
d log µ

= d log Z
d log µ

. (1.27)

Therefore, the renormalization scale dependence of the e�ective operator is governed
by the Renormalization Group Equation (RGE) in terms of its anomalous dimension

dQ̨(µ)
d log µ

= ≠“ · Q̨(µ). (1.28)
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In analogy with the mass anomalous dimension found in ??, the anomalous dimension
matrix of the e�ective operators can be obtained from the coe�cients of the 1/‘
pole term in Z

“ = ≠2–s
ˆZ(1)

ˆ–s
. (1.29)

1.4.2 Getting Rid of the Renormalization Scale
Now that the dependence on the renormalization scale of the e�ective operators is
sorted out, we can get back to eq. (1.23). From that, we find that

dCi(µ)
d log µ

Qi(µ) + Ci(µ)dQi(µ)
d log µ

=
5dCi(µ)

d log µ
”ij ≠ Ci(µ)“ij(µ)

6
Qj(µ) = 0 (1.30)

from which follows
dC̨(µ)
d log µ

= “T (µ)C̨(µ). (1.31)

This is the di�erential equation governing the RG evolution of the Wilson Coe�cients.
In order to solve this equation, we first need to change variable and express the scale
dependence of the various quantities via the running QCD coupling g(µ). Given the
definition of the beta function in ??

d
d log µ

= dg

d log µ

d
dg

= —(g) d
dg

(1.32)

then
dC̨(g(µ))

dg
= “T (g)

—(g) · C̨(g(µ)). (1.33)

This can be solved by means of an integral evolution matrix U defined as

C̨(µ) = U(µ, m) · C̨(m) (1.34)

which can be found iteratively

U(µ, m) = 1 +
⁄ g(µ)

g(m)

dg1

“T (g1)
—(g1) +

⁄ g(µ)

g(m)

dg1

⁄ g1

g(m)

dg2

“T (g1)
—(g1)

“T (g2)
—(g2) + · · · . (1.35)

This is exactly the same solution as the Dyson series for the Schrödinger evolution
matrix. In fact, eq. (1.33) has the exact same form as Schrödinger’s equation, where
“T /— takes the place of the Hamiltonian. The series expression can be put in a
more compact form by introducing the notion of g-ordering

U(µ, m) = Tg exp
C⁄ g(µ)

g(m)

dgÕ “T (gÕ)
—(gÕ)

D

. (1.36)
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1.5 RG Improved Perturbation Theory
With the evolution matrix, we can now run down from the scale µW ≥ MW to a
low renormalization scale µh closer to the physical scale at which the process we are
interested in takes place

C̨(µh) = Tg exp
C⁄ g(µW )

g(µh)

dgÕ “T (gÕ)
—(gÕ)

D

C̨(µW ) (1.37)

and then compute the relevant matrix elements without encountering large logs
since at the scale µh ≥ pi ≥ pf the matrix element

Èf(pf )|He�|i(pi)Í = Ci(µh) Èf(pf )|Qi|i(pi)Í (1.38)

is finite. But where have the large logs gone? They have been resummed by means
of the renormalization group! Thus, the e�ective theory allows us to perform the
matching using ordinary perturbation theory and then resum the large logs using the
RGE. In general, if we expand the Wilson coe�cients and the anomalous dimension
matrix in powers of –s

C̨(µ) =
nÿ

k=0

3
–s

4fi

4n

C̨(n)(µ) “ =
nÿ

k=1

3
–s

4fi

4n

“(0) (1.39)

then we can di�erentiate the perturbative expansion not on the order at which –s

appears, but on the orders resummed by the RGE.
A leading order (LO) calculation resums all terms of the form O

!
–s log

!
M2

W / ≠ p2
""n.

In the LO case, we have that

ALO = C(0)

i (µh)ÈQ(µh)iÍ(0), (1.40)

where ÈQÍ(n) denotes the matrix element computed at n-th order in strong interaction
which are needed to do calculations, and

C̨(0)(µh) = U(0)(µh, µW )C̨(0)(µW ) U(0)(µh, µW ) =
3

–s(µW )
–s(µh)

4 “(0)T

2—0
. (1.41)

A (next-to-)
m

leading order (NmLO) calculation resums all terms of the form
O

!
–n+m

s logn(M2

W /(≠p2)
"
. We now briefly discuss the general result for the NLO

case [4]. At NLO we need to evaluate the full and the e�ective amplitude at O(–s)

ANLO = C(0)(µh)ÈQ(µh)Í(1) + –s(µh)
4fi

C(1)(µh)ÈQ(µh)Í(0), (1.42)

where again
C̨(1)(µh) = U(µh, µW )C̨(1)(µW ). (1.43)

To this order, the evolution matrix is given by [8]

U(1)(µ, m) =
3

1 + –s(µ)
2fi

J
4

U(0)(µ, m)
3

1 ≠ –s(m)
2fi

J
4

, (1.44)
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where U(0) is the leading order evolution matrix of eq. (1.41). The matrix J contains
the informations about the next-to-leading order corrections. By means of the
expansion of the anomalous dimension matrix in eq. (1.39), we define the J matrix
starting from diagonalizing the tree-level anomalous dimension

“(0)

D = V≠1“(0)T V. (1.45)

This transformation makes the LO evolution matrix diagonal as well. Then, if we
define the following matrix

G = V≠1“(1)T V (1.46)

and another matrix whose elements are

Hij = ”ij

1
“(0)

D

2

ij

—1

2—2
0

≠ Gij

2—0 +
1
“(0)

D

2

ii
≠

1
“(0)

D

2

jj

(1.47)

the matrix J is given by
J = VHV≠1. (1.48)

There is still an important thing to note. From the basic idea of an EFT, whenever
we go below some energy threshold, heavy degrees of freedom have to be integrated
out. Therefore, what happens when we evolve the Wilson coe�cients from the scale
of MW to the scale of mb, and then we go even below to the scale of mc and so
on? One after the other, quarks become heavy and have to be integrated out. To
account for this we need to include a threshold matrix. Following the same principle
as in the case of integrating out the W boson, we require that at the scale of the
transition µt

C̨T
f (µt)ÈQ̨f (µt)Í = C̨T

f≠1(µt)ÈQf≠1(µt)Í, (1.49)

where f is the number of active flavours, which changes from f to f ≠ 1 in the
transition.
This behaviour can be encompassed in a new evolution matrix which contains a
suitable matching matrix T [11]

U(µ, MW ) = U4(µ, mb)TU5(mb, MW ), (1.50)

where Ųf is the evolution matrix with f active flavours and

T = 1 + –s(mb)
4fi

”rT . (1.51)

Equation (1.51) is valid when only strong corrections are present. We will see later
the generalization when electroweak corrections are added.

1.6 Electroweak Corrections
We give now a brief summary of the general results that one gets when adding not
only strong corrections but electroweak ones. These corrections enter in Penguin-like
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operators [33, 34] at leading order. When EM corrections are added, the anomalous
dimension matrix at NLO will have the form

“ = –s

4fi
“(0)

s + –e

4fi
“(0)

e +
3

–s

4fi

42

“(1)

s + –e

4fi

–s

4fi
“(1)

se , (1.52)

where we ignored –2
e corrections. Even the evolution matrix will contain corrections

of order –e

U(1)(µ, m) = M(µ)U(0)(µ, m)MÕ(m), (1.53)

where

M(µ) =
3

1 + –e

4fi
K

43
1 + –s(µ)

4fi
J

43
1 + –e

–s(µ)P
4

,

MÕ(m) =
3

1 ≠ –e

–s(m)P
43

1 ≠ –s(m)
4fi

J
43

1 ≠ –e

4fi
K

4
,

(1.54)

where the running of –e is not considered. The matrices K,J and P are solutions of
the equations [10, 11]

P +
C

P,
“(0)T

s

2—0

D

= “(0)T
e

2—0

, (1.55)

J ≠
C

J,
“(0)T

s

2—0

D

= —1

2—2
0

“(0)T
s ≠ “(1)T

s

2—0

, (1.56)

Ë
K, “(0)T

s

È
= “(1)T

e + “(0)T
e J + “(1)T

s P +
Ë
“(0)T

s , JP
È

≠ 2—1P ≠ —1

—0

P“(0)T
s . (1.57)

Besides the more complicated analytical form of the expressions, the theory stays
the same. Once we have the evolution matrix, if we cross a quark mass threshold we
need the matching matrix, which in the case of QED+QCD corrections is given by

T = 1 + –s(µ)
4fi

”rT + –e

4fi
”sT , (1.58)

where the nature of the two matrices ”r and ”s is given by the matching condition
at the threshold scale.
Contributions from the Z0 boson must also be added, but the general form of the
solutions given up to now stays the same.
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Chapter 2

�F = 1 & �F = 2 E�ective
Hamiltonians and Kaon Decays

Using the techniques highlighted in the previous chapter of the OPE and the RGE
improved perturbation theory, we are now ready to apply them to the more specific
case of �F = 1 and �F = 2 processes. These two e�ective theories will describe the
non leptonic decays of mesons like K, D, B mesons, and in the case of the �F = 2
the oscillation of the neutral mesons such as K0 ≠ K̄0 , Bd ≠ B̄d and so on.
We will mostly concentrate on the �S processes since they are the relevant ones to
study the direct and indirect CP-violation in the Kaon system, but the discussion
can be easily generalized to di�erent mesons. In particular, we will focus on the
following

• The K æ 2fi decays, a �S = 1 process, where at the quark level the relevant
transition is s̄u æ ūd. This is the process that governs direct CP-violation.

• The K0 ≠ K̄0 oscillation, a �S = 2 process. This is the process that governs
indirect CP-violation.

The discussion of the phenomenology of CP-violation in the Kaon system will be
given in the subsequent chapter.

2.1 E�ective Hamiltonian for �S = 1 Processes
As stated in the previous chapter, when we want to analyze low energy processes,
due to the appearance of large-logs in the perturbative expansion, we employ the
toolkit of e�ective Hamiltonians.
Consider the process of K æ 2fi. At tree-level the interactions is mediated by a
W -boson exchange with a typical energy of the order k2 ≥ O(mK). Therefore, the
OPE in this case gives

ig2
2

4(k2 ≠ M2

W )V ú
usVud[v̄s“µ(1 ≠ “5)uu][ūu“µ(1 ≠ “5)vd] = ≠i

GFÔ
2

V ú
usVudQ2 +O

A
k2

M2

W

B

(2.1)
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where we find the first e�ective, current-current, operator

Q2 = s̄i
L“µui

Lūj
L“µdj

L. (2.2)

We wrote explicitly how the color indices are summed for reasons that will be obvious
in a moment.
After this, we might also need to consider QCD corrections which will enlarge the
operator basis. When we do so, we need to evaluate the Feynman diagrams in
perturbation theory, both in the full and e�ective theory as shown, at first order in
–s in fig. (2.1).
One might then think that once these diagrams are taken into account, then there
would not be any others. But the reality is that another class of operators needs
to be considered, the so-called penguin operators [29, 32]. These diagrams play a
central role particularly for ‘Õ/‘ and can be mainly divided into three categories:
gluonic penguins, electroweak penguins, and magnetic penguins. We will see later in
more detail the operators that are generated by such diagrams.

2.1.1 Current-Current Operators
There are two current-current operators. The first one is the operator of eq. (2.2).
The fact that is called Q2 instead of Q1 is just a convention.
The second current-current operator is generated by the diagrams in fig (2.1), and
we will give now the explicit computation. The diagrams we need to consider are
just (2.1g) and (2.1h), with their mirror diagrams, since diagram (2.1f), and its
mirror, cancel against the renormalization constant of the quark field.
To study the generation of the new operator, we just need to analyze the Dirac
structure of the diagram. If we consider all external quark momenta to be zero1

then the diagram (2.1g) gives in dimensional regularization

iAg = 4GFÔ
2

V ú
usVud

⁄ dd¸

(2fi)d
ūu

i

1
igs“µta

ij

2 i/̧

¸2
“flPLvd

j v̄s
k“flPL

i/̧

¸2

1
igs“‹tb

kl

2
uu

l
≠igµ‹”ab

¸2
,

(2.3)
where we used the shorthand notation PL/R = (1 ± “5)/2. Given that /̧�/̧ =
¸2/d“–�“– since there are no other scales involved, we can take out the Dirac
structure

≠ i
4GFÔ

2
g2

s

d
µ4≠dta

ijta

kl

1
ūu

i “µ“–“flPLvd
j

2
(v̄s

k“flPL“–“µuu
t )

⁄ dd¸

(2fi)d

1
¸4

. (2.4)

We need to manipulate the Dirac structure a bit and to do so we will heavily use the
Fierz identities [14, 30] which are just a fancy way of expanding the Dirac algebra
on the basis of the matrices PL, PR, “‹PL, “‹PR, ‡µ‹ . In fact, take the following
structure

PLvd
j v̄s

k“flPL = PLvd
j v̄s

kPR“fl =∆ (PLvd
j v̄s

kPR)–— (2.5)

where the equality follows from the Cli�ord algebra of the “5 and we made explicit
the Dirac indices. Not considering the “fl, we can project it on the “‹PR element by

1This will introduce an additional IR divergence which we just ignore since this can be done at
the level of accuracy (LO) at which we are working.
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W

u

s

d

u

(a)

W

u

s

d

u

(b)
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u
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u
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u
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u

(e) u

s
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u
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u

d

u

(g) s

u

d

u

(h)

Figure 2.1. Relevant current-current Feynman diagrams for the s æ ūud̄ process in the
full and e�ective theory up to O(–s).
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using the trace
1
2 Tr

1
“‹PLPLvd

j v̄s
kPR

2
= 1

2 Tr
1
“‹PLvd

j v̄s
kPR

2
= 1

2 Tr (PR“‹PLvkv̄s
k)

= ≠1
2 v̄s

kPR“‹PLvd
j ,

(2.6)

which simply follows from the usual rules for projectors and the anticommuting
spinors. Therefore

(PLvj v̄s
kPR)–— = ≠1

2 v̄s
k“‹PLvd

j (“‹PR)–—. (2.7)

If we put this in the spinor structure of eq. (2.4) we obtain
1
ūu

i “µ“–“flPLvd
j

2
(v̄s

k“flPL“–“µuu
t )

= ≠ 1
2 v̄s

k“—PLvd
j ūu

i “µ“–“fl“—PR“fl“–“µuu
l

= ≠ 1
2 v̄s

k“—PLvd
j ūu

i “µ“–“fl“—“fl“–“µPLuu
l

(2.8)

where we can now use the usual rules for the d-dimensional gamma matrices

“µ“– “fl“—“fl

¸ ˚˙ ˝
“–“µ = (2 ≠ d)“µ “–“—“–

¸ ˚˙ ˝ “µ

= (2 ≠ d)2“–“—“– = (2 ≠ d)3“—
(2.9)

to get
1
ūu

i “µ“–“flPLvd
j

2
(v̄s

k“flPL“–“µuu
t ) = ≠(2 ≠ d)3

2 v̄s
k“—PLvd

j ūu
i “—PLuu

l

= ≠(2 ≠ d)3

2 v̄s
k“—

1
PLvd

j ūu
i PR

2
“—uu

l .

(2.10)

Since the order of the spinors is inverted with respect to Q2 we can again use the
Fierz trick for the bracketed quantity, obtaining

(2 ≠ d)3

4 ūu
i “µPLvd

j v̄s
k“—“µPR“—uu

l = (2 ≠ d)4

4
1
ūu

i “µPLvd
j

2
(v̄s

k“µPLuu
l ) (2.11)

henceforth the relevant Dirac structure is back to being

ūu
i “µPLvd

j v̄s
k“µPLuu

l . (2.12)

But now comes the important step: the presence of the gluon added an additional
SU(N) generator structure that we need to take into account. As we see in eq. (2.4)
we have

ta

ijta

kl = 1
2

3
”il”jk ≠ 1

N
”ij”kl

4
(2.13)

which mixes the color structure of the operator in eq. (2.12) and creates a new
operator with the same Dirac structure but mixed color structure

ta

ijta

klū
u
i “µPLvd

j v̄s
k“µPLuu

l = ūu
i “µPLvd

j v̄s
j “µPLuu

i ≠ 1
N

ūu
i “µPLvd

i v̄s
j “µPLuu

j

= ÈQ1Í ≠ 1
N

ÈQ2Í.
(2.14)
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This makes it clear why before we made the color structure of Q2 evident. The
diagram has generated another operator which needs to be considered for the
renormalization procedure. Doing a similar calculation for diagram (2.1h) gives the
same answer but obviously with a di�erent divergent behaviour due to the loop
integral and the di�erent Fierz.
Therefore we have two current-current operators

Q1 = s̄i
L“µuj

Lūj
L“µdi

L, Q2 = s̄i
L“µui

Lūj
L“µdj

L. (2.15)

2.1.2 Wilson Coe�cients and Renormalization
Before we did not evaluate the integral of diagram (2.1g) since we only needed to
control the Dirac structure to find the new e�ective operator. If we then want to
find the Wilson coe�cients and the anomalous dimension matrix for the RGE, we
need to evaluate the various loop integrals, find the 1/‘ poles do to the OPE and
then match the full and e�ective theory for the Wilson coe�cients.
This is a tremendous task when one takes into account all possible operators since,
as we will see later, there are not only current-current ones. Fortunately, the theory
for these calculations has been carried out many times before even at NLO including
also electromagnetic corrections [4, 8, 11] in the two di�erent regularization schemes
NDR and HV. NNLO calculations are also available [6, 17]. Therefore we give here
only a summary of the main results with some simple pedagogical calculations.

Where we left o� for diagram (2.1g) was, beside the spinors,

≠ i
4GFÔ

2
V ú

usVudg2

s
µ4≠d

8
(2 ≠ d)4

d

⁄ dd¸

(2fi)d

1
¸4

. (2.16)

As we know, the integral vanishes in dimensional regularization, but this is only
an artifact of the fact that we chose the external quarks to have zero momentum.
Therefore, to solve this integral, as we did in ??, we introduce a fictious scale and
solve the integral with it. After we do so, we set d = 4 ≠ 2‘ to get, beside the
4GF V ú

usVud/
Ô

2 factors,

≠ i

8

A
4fiµ2

m2

B‘ (2‘ ≠ 2)4

4 ≠ 2‘

i

(4fi)2
g2

s�(‘), (2.17)

which in the limit of ‘ æ 0
A

4fiµ2

m2

B‘

= 1 + ‘ log
A

4fiµ2

m2

B

+ O
1
‘2

2

�(‘) = 1
‘

+ Â(1) + ‘

2

C
fi2

3 + Â2(1) ≠ ÂÕ(1)
D

+ O
1
‘2

2

(2‘ ≠ 2)4

4 ≠ 2‘
= 4 ≠ 14‘ + O

1
‘2

2
,

(2.18)



2.1 E�ective Hamiltonian for �S = 1 Processes 18

eq. (2.17) becomes2

–s

4fi

C
1
2‘

≠ 14 + 4 log
A

4fiµ2e≠“

m2

B

+‘

C

(≠14 ≠ 4“) log
A

4fiµ2

m2

B

+ 2fi2

3 ≠ 2“2 ≠ 2ÂÕ(1)
DD

+ O
1
‘2

2
.

(2.19)

Retrieving only the 1/‘ pole we get that the divergent part of the diagram (2.1g) is

iAg = 4GFÔ
2

V ú
usVud

–s

4fi

1
2‘

3
Q1 ≠ 1

3Q2

4
, (2.20)

where we set N = 3.
We can do a similar calculation for diagram (2.1h) that reads

iAh = 4GFÔ
2

V ú
usVud

⁄ dd¸

(2fi)d
ūu

i “µPL
i/̧

¸2

1
igsta

ij“—

2
vd

j v̄s
k“µPL

i/̧

¸2

1
igstb

kl“–

2
uu

t
≠ig–—”ab

¸2
.

(2.21)
Under the usual simplifications, we get

≠ i
4GFÔ

2
V ú

usVud
g2

s

d
µ4≠dta

ijta

kl

1
ūu

i “µPL“fl“—vd
j

21
v̄s

k“µPL“fl“—uu
t

2 ⁄ dd¸

(2fi)d
. (2.22)

Proceeding on with the Dirac structure simplification, which is a bit more involved
in this case when dealing with d-dimensional Cli�ord algebra, we get

ūu
i “µ“fl“—

1
PLvd

j v̄s
kPR

2
“µ“fl“—uu

t

= ≠ 1
2 v̄s

k“–PLvd
j ūu

i “µ“fl“—“–“µ

¸ ˚˙ ˝
“fl“—PLuu

t

= v̄s
k“–PLvd

j ūu
i “–“—“fl“fl“—PLuu

t + (d ≠ 4)
2 v̄s

k“–PLvd
j uu

i “fl“—“–“fl“—PLuu
t .

(2.23)

The first bit becomes

v̄s
k“–PLvd

j ūu
i “– “—“fl“fl“—

¸ ˚˙ ˝
PLuu

t

= d2v̄s
k“–

1
PLvd

j ūu
i PR

2
“–uu

t = ≠d2

2 ūu
i “µPLvd

j v̄s
k“–“µPR“–uu

t

= ≠ d2(2 ≠ d)
2

1
ūu

i “µPLvd
j

2
(v̄s

k“µPLuu
t ),

(2.24)

while the second bit
(d ≠ 4)

2 v̄s
k“–PLvd

j uu
i “fl“—“–“fl

¸ ˚˙ ˝
“—PLuu

t

= (d ≠ 4)2

2 v̄s
k“–PLvd

j ūu
i “—“–“—PLuu

t + 2(d ≠ 4)v̄s
k“–PLvd

j ūu
i “–PLuu

t

= ≠
C

(d ≠ 4)2(2 ≠ d)2

4 ≠ (d ≠ 4)(2 ≠ d)
D1

ūu
i “µPLvd

j

2
(v̄s

k“µPLuu
t ).

(2.25)

2The scale m2 is not physical. When taking the limit m2 æ 0 to get beck to the original result,
we find another divergence which is the IR divergence noted before due to the zero quark momenta.
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Therefore the whole expression becomes

≠
C

d2(2 ≠ d)
2 + (d ≠ 4)2(2 ≠ d)2

4 ≠ (d ≠ 4)(2 ≠ d)
D1

ūu
i “µPLvd

j

2
(v̄s

k“µPLuu
t ). (2.26)

When taking into account the 1/d factor from the amplitude in eq. (2.22) and
substituting d = 4 ≠ 2‘, we obtain

≠4(‘ ≠ 1)2(‘2 + ‘ ≠ 4)
4 ≠ 2‘

= 16 ≠ 36‘ + O
1
‘2

2
. (2.27)

Taking only the 1/‘ pole in eq. (2.22) together with the previous expansion, we find

4GFÔ
2

V ú
usVud

–s

4fi
(≠2)1

‘

3
Q1 ≠ 1

N
Q2

4
. (2.28)

Summing the contribution from diagrams (2.1g) and (2.1h) with their mirrors, we
get the final amplitude

iA = 4GFÔ
2

V ú
usVud

–s

4fi

≠3
‘

3
Q1 ≠ 1

N

4
Q2. (2.29)

In order to compute the two-by-two anomalous dimension matrix, we need to
compute the one-loop renormalization of the operator Q1 inserting it in diagrams
(2.1g) and (2.1h) and their mirrors. The only di�erence between this and the ones
evaluated before for Q1 is the color structure given by the SU(N) generators being

ta

ilt
a

kj = 1
2

3
”ij”kl ≠ 1

N
”il”kj

4
. (2.30)

It is clear that this does not generate other operators, therefore if we consider only
current-current operators, the discussion ends here. With this, we renormalize the
operators as prescribed in eq. (1.24) to obtain, in the MS scheme,

Z = 1 + –s

4fi
Z1 = 1 + –s

4fi

1
‘

A
3/N ≠3
≠3 3/N

B

, (2.31)

which gives the following anomalous dimension matrix, from its definition in eq. (1.27)

“(0) =
A

≠6/N 6
6 ≠6/N

B

. (2.32)

In this simple case, the evolution matrix can be found by diagonalizing the anomalous
dimension, defining

Q± = Q1 ± Q2

2 , C± = C1 ± C2, “(0)

± = ±6N û 1
N

, (2.33)

therefore

U±
0

=
3

–s(µW )
–s(µh)

4“
(0)
± /2—0

, (2.34)
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where C1/2 are the Wilson coe�cients which, at LO, are just C1 = 0 and C2 = 1.
Note that, as we discussed before, —0 depends on the number of active flavours which
means that if we want to evaluate the Wilson coe�cients at a scale µh ≥ 2 GeV we
need to take into account the bottom quark threshold at a scale µb ≥ mb

C±(2 GeV) =
3

–s(µb)
–s(2 GeV)

4“
(0)
± /2—0(4)3 –s(µW )

–s(2 GeV)

4“
(0)
± /2—0

. (2.35)

At NLO the situation becomes more complicated. The anomalous dimension matrix
needs to be evaluated at O

!
–2

s

"
and the Wilson coe�cients start at

C±(µW ) = 1 ± –s(µW )
4fi

11N û 1
2N

(2.36)

in the NDR scheme. A complete discussion can be found in [4, 11].

2.1.3 QCD Penguin Operators
Up until now, we found that the e�ective Hamiltonian for the �S = 1 processes,
like the decay K æ 2fi, is built up by two operators

Hs̄æd̄
e� = 4GFÔ

2
V ú

usVud[C1Q1 + C2Q2]. (2.37)

But looking at the quark content of the operators, it is clear that when evaluating
their renormalization, additional diagrams arise from the contraction of the u and ū
fields in Q1,2 by attaching a gluon, as seen in fig (2.2).

g

q

s

q

d

(a)

g

q

s

q

d

(b)

Figure 2.2. E�ective QCD Penguins for the s̄ æ d̄ transition.

The form of these operators can be easily found by considering that they are
FCNC and therefore must be of the form s̄i�µta

ijdj which cannot be generated at
tree-level by the SM Lagrangian. If we take the momenta of the quark to be q, then
the possible form of these operators must be

s̄i�µta

ijdj = A(q2)s̄i“
µta

ijdj + B(q2)s̄iq
µta

ijdj + C(q2)s̄i‡
µ‹q‹ta

ijdj . (2.38)

Given that gauge invariance assures us that qµs̄i�µta
ijdj = 0, we have that

A(q2)s̄i/qta

ijdj + C(q2)s̄iq
2ta

ijdj = 0 (2.39)
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by choosing, without loss of generality, A(q2) = q2 and B(q2) = ≠/q, we have

s̄i�µta

ijdj = s̄i

1
q2“µ ≠ /qqµ

2
ta

ijdj + C(q2)s̄i‡
µ‹q‹ta

ijdj . (2.40)

The second operator connects spinors with di�erent helicity and therefore must be
proportional to the quark mass, so for massless quarks cannot be generated.
By using the equations of motion, we see that the first structure corresponds to the
matrix elements of the operator s̄i“µta

ijdjD‹Ga
µ‹ , in fact

D‹Ga

µ‹ = gs

ÿ

f

q̄i
f “µta

ijqj
f (2.41)

where f is any active quark flavour, gives

s̄i“µta

ijdj

ÿ

f

q̄k
f “µta

klq
l
f . (2.42)

Consider diagram (2.2a) with the insertion of the operator of eq. (2.40), roughly
speaking

q̄f “µtaqf
1
q2

s̄(q2“µ ≠ qµ/q)tad (2.43)

since the quarks qf carry momentum q, due to the equation of motion qµqf = 0,
therefore there remain just

q̄f “µtaqf
1
q2

s̄q2“µtad, (2.44)

where the q2 cancels with the pole of the propagator, leaving just the matrix element
of the local operator in eq. (2.42)

s̄“µtadq̄f “µtaq. (2.45)

These diagrams are log-divergent which means that they need to be renormalized
forcing us to enlarge the operator basis again. When inserting operators Q1/2 in the
e�ective vertex of the gluonic penguin a total of four more operators is generated

Q3 = s̄i
L“µdi

L

ÿ

f

q̄j
fL“µqj

fL,

Q4 = s̄i
L“µdj

L

ÿ

f

q̄j
fL“µqi

fL,

Q5 = s̄i
L“µdi

L

ÿ

f

q̄j
fR“µqj

fR,

Q6 = s̄i
L“µdj

L

ÿ

f

q̄j
fR“µqi

fR.

(2.46)

As a matter of fact, we give a little computation to see how these operators are
generated by considering the diagram (2.2a) with the insertion of operator Q2 in
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the e�ective vertex. Again we consider the external quark momenta to be zero and
the momentum flowing in the gluon to be q.

iA =
⁄ dd¸

(2fi)d
v̄d

i “µPL
i(/̧ ≠ /q)
(¸ ≠ q)2

1
igsta

ij“–
2 i/̧

¸2
“µPLvs

j ūq
k

1
igstb

kl“
—

2
uq

l

≠ig–—”ab

q2

= ≠iµ4≠d g2
s

q2

1
v̄d

i “µPL“flta

ij“–“‡“µPLvs
j

2!
ūq

k“–ta

klu
q
l

"
Ifl‡,

(2.47)

where the integral, without going into much details, is just

Ifl‡ = ≠ i

16fi2

3
gfl‡

2 q2 + qflq‡

4 1
6‘

+ O
1
‘0

2
. (2.48)

Putting this into the amplitude, we find, besides constant factors3

1
v̄d

i “µPL“flta

ij“–“‡“µPLvs
j

2!
ūq

k“–ta

klu
q
l

"3
gfl‡

2 + qflq‡

4 1
q2

= 1
2 v̄d

i ta

ij“µPL

3
“fl“–“fl + 2/q“–/q

q2

4
“µPLvs

j ūq
k“–ta

klu
q
l .

(2.49)

Given that “fl“–“fl = ≠2“– and that “–/q =
Ó

“–, /q
Ô

≠ /q“– = 2q– ≠ /q“–, the
parenthesis becomes

3
“fl“–“fl + 2/q“–/q

q2

4
= ≠4(“– ≠ /qq–

q2
) (2.50)

and therefore the Dirac structure is

q2v̄d
i ta

ij“µPL

1
q2“– ≠ q–

/q
2
“µPLvs

j ūq
k“–ta

klu
q
l . (2.51)

which gives back the FCNC vertex we conjectured earlier.

It is clear now that in the quark loop of the penguin diagram there can also run
the charm quark, but not the top quark since it has been integrated out by the OPE.
In the full theory even the top quark is present, but not in the low energy one. This
means that we should add to the e�ective Hamiltonian for the s̄ æ d̄ transition even
the current-current operators with the charm quark, leading to

Hs̄æd̄
e� = 4GFÔ

2

Ë
V ú

usVud

1
C1Qs̄uūd

1 + C2Qs̄uūd
2

2
+ V ú

csVcd

1
C1Qs̄cc̄d

1 + C2Qs̄cc̄d
2

2È
.

(2.52)
When these operators are inserted into the penguin diagrams, they will give exactly
the same divergent part since it does not depend on the mass of the quarks. Therefore
the penguin diagram is going to be generated with a coe�cient

V ú
usVud + V ú

csVcd = ≠V ú
tsVtd (2.53)

3For simplicity we go back to d = 4 since we just want to understand the Dirac structure.
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due to the unitarity relation of the CKM matrix. All in all, the full e�ective
Hamiltonian including current-current operators and QCD penguins becomes

Hs̄æd̄
e� = 4GFÔ

2

Ó
V ú

usVud

Ë
C1

1
Qs̄uūd

1 ≠ Qs̄cc̄d
1

2
+ C2

1
Qs̄uūd

2 ≠ Qs̄cc̄d
2

2È

≠V ú
tsVtd

C

Qs̄cc̄d
1 + C2Qs̄cc̄d

2 +
6ÿ

i=1

CiQ
s̄d
i

DJ

,

(2.54)

where again the CKM unitarity has been used to eliminate the factor V ú
csVcd.

2.1.4 Wilson Coe�cients and Renormalization
Since we have now a total of six operators, the RGE is governed by a 6◊6 anomalous
dimension matrix which has to be evaluated by inserting all the current-current as
well as QCD penguin operators in diagrams (2.1e) to (2.1h) and in the penguin
diagrams (2.2a) and (2.2b).
To perform the matching for the Wilson coe�cients, one needs also to evaluate the
full theory equivalent of the penguin diagram in fig. (2.3) where now even the top
quark can run in the loop.

W

u,c,t u,c,t

g

q

s

q

d

Figure 2.3. QCD penguin in the full theory.

At LO the anomalous dimension matrix “(0) has the explicit form [2, 15, 16, 18, 32]

“(0) =

Q

cccccccca

≠6

N 6 0 0 0 0
6 ≠6

N
≠2

3N
2

3

≠2

3N
2

3

0 0 ≠22

3N
22

3

≠4

3N
4

3

0 0 6 ≠ 2f
3N

≠6

N + 2f
3

≠2f
3N

2f
3

0 0 0 0 6

N ≠6
0 0 ≠2f

3N
2f
3

≠2f
3N

≠6(≠1+N2)
N + 2f

3

R

ddddddddb

, (2.55)

while at NLO the second order expansion coe�cient of the anomalous dimension
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matrix reads [8, 11]

“(1)

---
N=3

=
Q

cccccccca

≠21

2
≠ 2f

9

7

2
+ 2f

3

79

9
≠7

3
≠65

9
≠7

3
7

2
+ 2f

3
≠21

2
≠ 2f

9
≠202

243

1354

81
≠1192

243

904

81

0 0 ≠5911

486
+ 71f

9

5983

162
+ f

3
≠2384

243
≠ 71f

9

1808

81
≠ f

3

0 0 379

18
+ 56f

243
≠91

6
+ 808f

81
≠130

9
≠ 502f

243
≠14

3
+ 646f

81

0 0 ≠61f
9

≠11f
3

71

3
+ 61f

9
≠99 + 11f

3

0 0 ≠682f
243

106f
81

≠225

2
+ 1676f

243
≠1343

6
+ 1348f

81

R

ddddddddb

,

(2.56)

where f is the number of active quark flavours at the scale µ. Both matrices are
given in the NDR scheme; the HV scheme results can be found in the sources just
cited.
The fact that the top quark can run in the penguin loop in the full theory is
fundamental since when performing the matching, one finds that the top quark
contribution generates a non-trivial contribution to the C3≠6(µW ) Wilson coe�cients,
while the contributions from u and c quarks cancels up to a constant and corrections
of order p2/M2

W [8, 22]. After matching, one finds the following Wilson coe�cients
at NLO

C1 (MW) = 11
2

–s (MW)
4fi

,

C2 (MW) = 1 ≠ 11
6

–s (MW)
4fi

,

C3 (MW) = ≠–s (MW)
24fi

ÂE0 (xt) ,

C4 (MW) = –s (MW)
8fi

ÂE0 (xt)

C5 (MW) = ≠–s (MW)
24fi

ÂE0 (xt) ,

C6 (MW) = –s (MW)
8fi

ÂE0 (xt) ,

(2.57)

where

E0(x) = ≠2
3 log x + x(18 ≠ 11x ≠ x2)

12(1 ≠ x)3
+ x2(15 ≠ 16x + 4x2)

6(1 ≠ x)4
log x,

Ẽ0(x) = E0(x) ≠ 2
3

(2.58)

with xt = m2
t /M2

W . It is easy to see that coe�cients C3≠6 are directly related to the
top quark as stated before.
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2.1.5 Electroweak Penguin Operators

W

u,c,t u,c,t

g,Z

q

s

q

d

(a)

W

u,c,t

W

g,Z

q

s

q

d

(b)

Figure 2.4. Electroweak penguin diagrams for the s̄ æ d̄ process.

One may now ask the question of what would happen if the gluons in the QCD
penguin diagrams of figs. (2.2) and (2.3) were to be replaced by a photon exchange.
Then, electromagnetic corrections will also get log-enhanced making them comparable
with the NLO-QCD corrections – log

!
µ2

W /µ2

h

"
≥ –s. These contributions do not

need to be resummed but should be included when working with NLO-QCD [7, 11].
The relevant diagrams that we need to consider when dealing with EW contributions
are given in fig. (2.4a).
When introducing also EW contributions, the operator basis needs to be enlarged
again. While FCNC of diagram (2.4a) is equivalent to the gluonic one, the equation
of motion introduces an explicit charge dependence giving rise to the operator
structures

Q7 = 3
2 s̄i

L“µdi
L

ÿ

f

eq q̄j
fL“µqj

fL,

Q8 = 3
2 s̄i

L“µdj
L

ÿ

f

eq q̄j
fL“µqi

fL,

Q9 = 3
2 s̄i

L“µdi
L

ÿ

f

eq q̄j
fR“µqj

fR,

Q10 = 3
2 s̄i

L“µdj
L

ÿ

f

eq q̄j
fR“µqi

fR.

(2.59)

When performing the matching for the new EW-penguin operators, as in the case
for the gluonic one, one gets a contribution also from the top quark running in the
loop. But in this case, this is not the only contribution. One must also consider the
diagram where a Z0 boson is exchanged and the box diagrams (2.6) where two W
bosons are exchanged so that one can obtain a gauge-invariant result.
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2.1.6 Wilson Coe�cients and Renormalization
The RGE is now governed by a 10 ◊ 10 anomalous dimension matrix, whose LO
form is given by

“(0)

s =
Q

cccccccccccccca

≠ 6

Nc
6 ≠ 2

3Nc

2

3
≠ 2

3Nc

2

3
0 0 0 0

6 ≠ 6

Nc
0 0 0 0 0 0 0 0

0 0 ≠ 22

3Nc

22

3
≠ 4

3Nc
4

3
0 0 0 0

0 0 6 ≠ 2nf

3Nc
≠ 6

Nc
+ 2nf

3
≠ 2nf

3Nc

2nf

3
0 0 0 0

0 0 0 0 6

Nc
≠6 0 0 0 0

0 0 ≠ 2nf

3Nc

2nf

3
≠ 2nf

3Nc
61≠N2

c
Nc

+ 2nf

3
0 0 0 0

0 0 0 0 0 0 6

Nc
≠6 0 0

0 0 ≠2(nu≠nd/2)

3Nc

2(nu≠nd/2)

3

≠2(nu≠nd/2)

3Nc

2(nu≠nd/2)

3
0 61≠N2

c
Nc

0 0
0 0 2

3Nc
≠2

3

2

3Nc
≠2

3
0 0 ≠ 6

Nc
6

0 0 ≠2(nu≠nd/2)

3Nc

2(nu≠nd/2)

3

≠2(nu≠nd/2)

3Nc

2(nu≠nd/2)

3
0 0 6 ≠ 6

Nc

R

ddddddddddddddb

,

(2.60)

where nd is the number of active down-like quarks and nu the one of up-like quarks.
Moreover nf = nu + nd. The NLO anomalous dimension will have contributions
from O

!
–2

s

"
corrections, but also O(–) and O(–s–), like in eq. (1.52). The specific

form of the other coe�cients can be found in [7, 11].
The NLO Wilson coe�cients at the high scale are found by the matching procedure
to be

C1 (MW) = 11
2

–s (MW)
4fi

C2 (MW) = 1 ≠ 11
6

–s (MW)
4fi

≠ 35
18

–

4fi
,

C3 (MW) = ≠–s (MW)
24fi

ÂE0 (xt) + –

6fi

1
sin2 ◊W

[2B0 (xt) + C0 (xt)]

C4 (MW) = –s (MW)
8fi

ÂE0 (xt) ,

C5 (MW) = ≠–s (MW)
24fi

ÂE0 (xt) ,

C6 (MW) = –s (MW)
8fi

ÂE0 (xt) ,

C7 (MW) = –

6fi

Ë
4C0 (xt) + ÂD0 (xt)

È
,

C8 (MW) = 0,

C9 (MW) = –

6fi

5
4C0 (xt) + ÂD0 (xt) + 1

sin2 ◊W
(10B0 (xt) ≠ 4C0 (xt))

6

C10 (MW) = 0,

(2.61)
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where

B0(x) = 1
4

5
x

1 ≠ x
+ x ln x

(x ≠ 1)2

6

C0(x) = x

8

5
x ≠ 6
x ≠ 1 + 3x + 2

(x ≠ 1)2
ln x

6

D0(x) = ≠4
9 ln x + ≠19x3 + 25x2

36(x ≠ 1)3
+ x2

!
5x2 ≠ 2x ≠ 6

"

18(x ≠ 1)4
ln x

ÂD0 (xt) = D0 (xt) ≠ 4
9 .

(2.62)

2.1.7 Magnetic Penguin Operators

W

u,c,t u,c,t

g,“

s d

Figure 2.5. Magnetic penguin operators.

In principle, two additional operators contribute to the �S = 1 transitions. These
are known as chromomagnetic and electromagnetic penguin operators and have the
following form

Q11 = gs

16fi2
mss̄i‡

µ‹ta

ijGa

µ‹(1 ≠ “5)dj , Q12 = eed

16fi2
mss̄‡µ‹Fµ‹(1 ≠ “5)d. (2.63)

However their contribution for the K æ 2fi transitions are chiral suppressed two
times: one from the strange mass term and one from the operator matrix element
[3, 12], therefore we will not consider them from now on. Even in the RBC lattice
analysis, [1] this operator was excluded.

2.1.8 A Note on the Operator Basis
What we found until now is that the |�S| = 1 transitions can be described by an
e�ective Hamiltonian containing ten operators

• Current-Current Operators:

Q1 = (s̄i“
µPLuj)(ūj“µPLdi) Q2 = (s̄“µPLu)(ū“µPLd) (2.64)

• QCD-Penguins Operators

Q3 = (s̄“µPLd)
ÿ

q

(q̄“µPLq) Q4 = (s̄i“
µPLdj)

ÿ

q

(q̄j“µPLqi)

Q5 = (s̄“µPLd)
ÿ

q

(q̄“µPRq) Q6 = (s̄i“
µdj)

ÿ

q

(q̄j“µPRqi) (2.65)
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• Electrowark-Penguins Operators

Q7 = 3
2(s̄“µPLd)

ÿ

q

eq(q̄“µPRq) Q8 = 3
2(s̄i“

µPLdj)
ÿ

q

eq(q̄j“µPRqi)

Q9 = 3
2(s̄“µPLd)

ÿ

q

eq(q̄“µPLq) Q10 = 3
2(s̄i“

µdj)
ÿ

q

eq(q̄j“µPLqi)

(2.66)

where PL/R = (1 û “5)/2 are the chiral projectors and eq is the quark charge in units
of e.
These operators are useful in the lattice calculations but when it comes to renormal-
ization, another basis is better suited for the task: the so-called chiral basis. This
comes in handy since in the usual 10-operator basis, the operators are not linearly
independent. In fact, by Fierz transforming operators Q1, Q2 and Q3

Q̃1 = (s̄“µPLd)(ū“µPLu),
Q̃2 = (s̄i“

µPLdj)(ūj“µPLui),
Q̃3 =

ÿ

q

(s̄i“
µPLqj)(q̄j“µPLdi),

(2.67)

we can eliminate operators Q4, Q9 and Q10 in such a way

Q4 = Q̃2 + Q̃3 ≠ Q1,

Q9 = 3
2Q̃1 ≠ 1

2Q3,

Q10 = 1
2(Q1 ≠ Q̃3) + Q̃2.

(2.68)

The remaining seven operators can then be recombined according to irreducible
representations (irrep) of the chiral flavour-symmetry group SU(3)L ¢ SU(3)R. All
the details of the decomposition can be found in the literature [23]. The chiral
operator basis, which we will indicate with a primed, is thus given by

(27, 1) QÕ
1 = 3Q̃1 + 2Q2 ≠ Q3,

(8, 1) QÕ
2 = 1

5(2Q̃1 ≠ 2Q2 + Q3),

(8, 1) QÕ
3 = 1

5(≠3Q̃1 + 3Q2 + Q3),

(8, 1) QÕ
5,6 = Q5,6,

(8, 8) QÕ
7,8 = Q7,8

(2.69)

where (L, R) denotes the respective irrep of SU(3)L ¢ SU(3)R.
The conversion from the 7-operators chiral basis and the usual 10-operator basis is
simply given by

Qi =
ÿ

i

TijQÕ
j (2.70)
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Figure 2.6. Box diagrams contributing to the �S = 2 transitions.

where 1 Æ i Æ 10 and j œ {1, 2, 3, 5, 6, 7, 8} and the matrix T is given by

T =

Q

cccccccccccccccca

1/5 1 0 0 0 0 0
1/5 0 1 0 0 0 0
0 3 2 0 0 0 0
0 2 3 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3/10 0 ≠1 0 0 0 0
3/10 ≠1 0 0 0 0 0

R

ddddddddddddddddb

(2.71)

2.2 E�ective Hamiltonian for �S = 2 Processes
Now we would like to do similar computations for �F = 2 processes like the
oscillations K0 æ K̄0, which specifically are a �S = 2 process since the underlying
quark transition is given by s̄d æ d̄s.
Such FCNC process cannot arise at tree-level in the SM so we must consider one-
loop contributions that, not considering the Goldstone boson exchange for now, are
just the ones in fig. (2.6). Let us give now the computation for diagram (2.6a).
Considering the external quark momenta to be zero, the amplitude can be easily
found to be

iAa =
⁄ dd¸

(2fi)d
ūs

3
ig2Ô

2

4
“µPLV ú

ujs
i(/̧ ≠ mj)
¸2 ≠ m2

j

3
ig2Ô

2

4
“‹PLVujdvd

v̄s
3

ig2Ô
2

4
“‹PLV ú

uis
i(¸ ≠ mi)
¸2 ≠ m2

i

“µPLVuidud

A
≠i

¸2 ≠ M2

W

B2

= i
g4

2

4 V ú
uisVuidV ú

ujsVujd

⁄ d4¸

(2fi)4(¸2 ≠ M2

W )2

ūs“µPL
/̧ ≠ mj

¸2 ≠ m2
j

“‹PLvdv̄s“‹PL
/̧ ≠ mi

¸2 ≠ m2
i

“µPLud,

(2.72)

where mi is the mass of the up-like quark ui between the initial quarks and mj the
mass of the up-like quark uj between the final quarks. The terms proportional to
the mass in eq. (2.72) vanish because of the chiral projectors

mj ūs“µPL“‹PLvd = mj ūs“µ“‹ PRPL¸ ˚˙ ˝ vd = 0, (2.73)
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therefore the amplitude simplifies to

i
g4

2

4 V ú
uisVuidV ú

ujsVujd

1
ūs“µPL“–“‹PLvd

21
v̄s“‹PL“—“µPLud

2
Iij

–— , (2.74)

where
Iij

–— =
⁄ d4¸

(2fi)4

¸–¸—

(¸2 ≠ m2
i )(¸2 ≠ m2

j )2(¸2 ≠ M2

W )2
. (2.75)

Let us consider for now the tensor integral Iij
–—. We can simplify its structure by

means of partial fractioning as follows

1
(¸2 ≠ m2

i )(¸2 ≠ mj)2
= A

¸2 ≠ m2
i

+ B

¸2 ≠ m2
j

=
(A + B)¸2 ≠ (Am2

j + Bm2
i )

(¸2 ≠ m2
i )(¸2 ≠ m2

j ) ,

(2.76)

which simply implies that

A = ≠B, A = 1
m2

i ≠ m2
j

(2.77)

therefore
1

(¸2 ≠ m2
i )(¸2 ≠ m2

j ) = 1
m2

i ≠ m2
j

A
1

¸2 ≠ m2
i

≠ 1
¸2 ≠ m2

j

B

. (2.78)

From this, we obtain that

Iij
–— =

Ii
–— ≠ Ij

–—

m2
i ≠ m2

j

, (2.79)

where

Ii
–— =

⁄ d4¸

(2fi)4

¸–¸—

(¸2 ≠ m ≠ i2)(¸2 ≠ M2

W )2

= g–—

4

⁄ d4¸

(2fi)4

(¸2 ≠ m2
i ) + m2

i

(¸2 ≠ M2

W )2(¸2 ≠ m2
i )

= g–—

4

C

m2

i

⁄ d4¸

(2fi)4

A
1

(¸2 ≠ M2

W )2(¸2 ≠ m2
i ) + 1

(¸2 ≠ M2

W )2

BD

.

(2.80)

The second term which does not depend on the quark mass cancels in the di�erence
in eq. (2.79), therefore we can neglect it. While the first term becomes
⁄ d4¸

(2fi)d

1
(¸2 ≠ M2

W )2(¸2 ≠ m2
i ) = 2

⁄
1

0

dx
⁄ d4¸

(2fi)d

x
#
(¸2 ≠ M2

W )x + (¸2 ≠ m2
i )(1 ≠ x)

$3

= 2
⁄

1

0

dx
⁄ d4¸

(2fi)4

x

[¸2 ≠ (xM2

W + (1 ≠ x)m2
i )]3 .

(2.81)

The integral in the loop momentum is convergent
⁄ d4¸

(2fi)4

x

[¸2 ≠ (xM2

W + (1 ≠ x)m2
i )]3 = ≠ i

16fi2

1
2

1
xM2

W + (1 ≠ x)m2
i

(2.82)
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as can be easily seen by analytically continuing to d-dimensions and then taking the
limit d æ 4. Hence the integral of eq. (2.81) becomes

= ≠ i

16fi2

⁄
1

0

dx
x

xM2

W + (1 ≠ x)m2
i

= ≠ i

16fi2M2

W

⁄
1

0

x

x + xi(1 ≠ x)

= ≠ i

16fi2M2

W

⁄
1

0

dx
x

xi + x(1 ≠ xi)

= ≠ i

16fi2M2

W

⁄
1

0

dx

(1 ≠ xi)
(1 ≠ xi)x + xi ≠ xi

xi + x(1 ≠ xi)

= ≠ i

16fi2M2

W

3 ≠xi

1 ≠ xi

⁄
1

0

dx
1

(1 ≠ xi)x + xi
+ 1

1 ≠ xi

4

= ≠ i

16fi2M2

W

3 1
1 ≠ xi

+ xi log xi

(1 ≠ xi)2

4
,

(2.83)

where xi = m2
i /M2

W . Thus, up to terms that do not depend on mi we get

Ii
–— = ≠g–—

4
i

16fi2

m2
i

M2

W

3 1
1 ≠ xi

+ xi log xi

(1 ≠ xi)2

4

= ≠g–—

4
i

16fi2
J(xi),

(2.84)

where
J(xi) = xi

1 ≠ xi
+ x2

i log xi

(1 ≠ xi)2
. (2.85)

Therefore
Iij

–— = ≠ g–—

4M2

W

i

16fi2
A(xi, xj), (2.86)

where
A(xi, xj) = J(xi) ≠ J(xj)

xi ≠ xj
. (2.87)

This is our first, actually computed, Inami-Lim function [22] which encodes the loop
information of the diagram.
We now turn our attention to the Dirac structure of eq. (2.74)

ūd“µPL“–“‹PLvdv̄s“‹PL“—“µPLud. (2.88)

By using the usual projector rules and Cli�ord algebra, together with the g–— from
the integral, we can highlight the usual structure

ūs“µ“–“‹
1
PLvdv̄sPR

2
“‹“–“µud (2.89)

and by using the Fierz identities

(PLvdv̄sPR)–— = ≠1
2 v̄s“flPLvd(“flPR)–— (2.90)
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we obtain
≠ 1

2 v̄s“flPLvdūs“µ“–“‹“flPR“‹“–“µud, (2.91)

then by jumping the PR over the gamma matrices

≠ 1
2 v̄s“flPLvdūs“µ“–“‹“fl“‹“–“µPLud = 4v̄s“flPLvdūs“flPLud, (2.92)

where we used the usual relation “–“µ“– = ≠2“µ four times.
Putting everything together we obtain the amplitude for the diagram (2.6a) as

iAa = ≠ i

16fi2

4g4
2

16M2

W

ÿ

i,j=u,c,t

V ú
isVidV ú

jsVjdA(xi, xj)v̄s“µPLvdūs“µPLud

= ≠ iG2

F M2

W

2fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdA(xi, xj)v̄s“µPLvdūs“µPLud,

(2.93)

where ⁄i
sd = V ú

isVid.
The computation of diagram (2.6b) goes along the same lines ad for diagram (2.6a),
where we just need to exchange an incoming s̄ to an outgoing s and vice-versa. If
we put the spinors in the amplitude

iAa = ≠ iG2

F M2

W

2fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdA(xi, xj)v̄s“µPLvdūs“µPLud

iAb = iG2

F M2

W

2fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdA(xi, xj)ūs“µPLudv̄s“µPLvd.

(2.94)

Both these amplitudes can be written as the matrix elements of the same local
operator, which lets us write the e�ective �S = 2 Hamiltonian as

H�S=2

e� = Cs̄“µPLds̄“µPLd (2.95)

where C is a Wilson coe�cient. This e�ective Hamiltonian generates the following
amplitude

≠ iC
e
d̄s

---s̄“µPLds̄“µPLd
---s̄d

f
= ≠2iC(ūs“µPLvdv̄s“µPLud ≠ ūs“µPLudv̄s“µPLvd).

(2.96)
By matching with the full amplitude, we get that

Ca+b = G2

F M2

W

4fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdA(xi, xj). (2.97)

There remains to evaluate also the box diagrams with the Goldstone boson exchange.
We do not delve into the details of the calculation but, once evaluated, the same
matching procedure as before can be done, obtaining three more Wilson coe�cients,
two coming from a single Goldstone exchange and one from the double Goldstone
exchange, which are given by

C2 = C3 = ≠G2

F M2

W

4fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdAÕ(xi, xj)xixj

C4 = G2

F M2

W

8fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdA(xi, xj)xixj ,

(2.98)
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where
AÕ(xi, xj) = J Õ(xi) ≠ J Õ(xj)

xi ≠ xj
, J Õ(x) = 1

1 ≠ x
+ x log x

(1 ≠ x)2
. (2.99)

In the end, by putting everything together, we get

C = G2

F M2

W

4fi2

ÿ

i,j=u,c,t

⁄i
sd⁄j

sdĀ(xi, xj), (2.100)

where
Ā(xi, xj) = A(xi, xj) ≠ xixjAÕ(xi, xj) + 1

4xixjA(xi, xj). (2.101)

By using the CKM unitarity, we can finally write down the full �S = 2 e�ective
Hamiltonian as

H�S=2

e� = G2

F M2

W

4fi2

Ë
(⁄t

sd)2S0(xt) + (⁄c
sd)2S0(xc) + 2⁄t

sd⁄c
sdS0(xc, xt)

È
s̄“µPLds̄“µPLd,

(2.102)
where

S0(x) = Ā(x, x) + Ā(xu, xu) ≠ 2Ā(xu, x),
S0(x, y) = Ā(x, y) + Ā(xu, xu) ≠ Ā(xu, x) ≠ Ā(xu, y).

(2.103)

All the calculations we have done so far are in the limit of zero external quark
momenta. This is a good limit if there is no explicit dependence on the quark
momenta. This turns out to be a good approximation but with some additional
details that we will not discuss here [9, 30].

What we might want now to do, is to include LO QCD corrections in the same
fashion as done for the �S = 1 e�ective Hamiltonian. What changes is that the
inclusion of loop corrections, does not add a new operator with a di�erent color
structure to the basis since, by means of Fierz identities, we can go back to the
original color structure.
This leads to the following anomalous dimension

“(0) = 6N ≠ 1
N

. (2.104)

A complete treatment of the NLO QCD corrections is beyond the scope of this
thesis but can be found in the literature [5, 19, 20, 21]. These corrections are usually
parametrized by three factors ÷1, ÷2 and ÷3. The e�ective Hamiltonian is usually
written in the following form

H�S=2

e� = G2

F M2

W

4fi2

Ë
(⁄t

sd)2÷2S0(xt) + (⁄c
sd)2÷1S0(xc)

+2⁄t
sd⁄c

sd÷3S0(xc, xt)
È

s̄“µPLds̄“µPLd,
(2.105)

where ÷i = 1 + O(–s).
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