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1 Lecture 1

We learn bosonic equivariant localization. Let M be a compact orientable (this is needed
for integration) manifold with some isometry group G. Equivariant cohomology is the
genaralization of the cohomology of M/G when this is not smooth. Choose G = U(1). In
this case even G is compact, but is exists even for non-compact groups.
We take a metric on M , so is Riemmanian (M, g) of even dimension dimM = 2l. Since
we have an isometry we have also a Killing vector V = V µ∂µ and the Lie derivative of the
metric is zero LV g = 0 and the Killing equation also holds ∇(µVν). We have some common
period U(1) on M . We can consider forms in M , in particular the space of polyforms

∧
M =

{
α =

2l∑
n=0

αn|αn ∈
∧n

M

}
(1)

We can consider V -equivariant differntial dV = d− ιV where

d :
∧
nM →

∧n+1
M (2)

ιV :
∧n

M →
∧n−1

M (3)

This object mixes object with different degree. We do not have grading now. But it can
be taken back by putting a new parameter belonging to the algebra of G which acts on ιV .
The process of contraction does not require the metric.
We have that

d2
V = −{d, ιV } = −LV (4)

so we can restrict the space of polyform to the V -equivaiant polyforms∧
VM =

{
α ∈

∧
M |LV α = 0

}
. (5)
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We do this so d2
V is nihilpotent and we can define a cohomology.

The cohomology is defined as

H∗V (M) =
ker dV |ΛVM

Im dV |ΛVM
(6)

This is called V -equivariant cohomology. If M/G is smooth this cohomology reduces to
the usual cohomology. If G has fixed points this does not happen.
A form is equivariantly closed if dV α = 0 and equivariantly exact if α = dV β for some
β ∈ ΛVM .
The condition of equivariantly close mixes forms of different degrees. One can write the
condition for every components, in particular of even and odd degree since they mix with
each other but not between themselves.

We can now define integration on polyforms by integrating on the top form∫
M
α =

∫
M
α2l (7)

If we integrate an equivariantly exact form∫
M

dV β =

∫
M
dβ2l−1 = 0 (8)

when M is compact. This is stokes theorem and applies also to equivariant polyforms. The
integral depends only on the cohomology class∫

M
(α+ dV β) =

∫
M
α. (9)

We are interested of computing integrals of equivariantly closed forms. And the equivariant
localization theorems tell us that this integrals only get contributions not from the whole
manifold but only from the fixed points of the action on the manifold (Ahyia et al.).
If there are a finite number of points, this gives a finite sum of contributions to the integral.
The neighbourhood of the fixed points

MV = {x ∈M |V (x) = 0} (10)

is the only one that contributes.

Now some localization arguments: first argument use the Poincarè lemma. If we have
a V -equivariant closed polyform on M then this form is equivariantly exact not on full M ,
but just on M\MV . We can see this by construction. If we construct a 1-form dual to the
vector field (we need the metric now) η = g(V, ·) = gµνV

µdxν . This form is equivariant in
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the sense that LV η = 0 which is trivial.
We can compute its differential

dV η = dη − ιV η = dη − |V |2. (11)

This differential is invertible in M\MV (the manifold without the fixed points of G).
Essentially

(dV η)−1 = − 1

|V |2

(
1− dη

|V |2

)−1

= − 1

|V |2
l∑

n=0

(
dη

|V |2

)n
(12)

from Taylor expansion. Obviusly with this definition

(dV η)−1 ∧ dV η = 1. (13)

This form (dV η)−1 is even equivariantly closed which can be checked from the invertibility
condition.
We can define another polyform

ΘV = η ∧ (dV η)−1 dV ΘV = 1 (14)

so that
α = dV (ΘV α) (15)

on M\MV . Therefore α is exact. We only get contributions from the boundary of the
space M\MV ∫

M
α =

∫
∂M\MV

α. (16)

This does not tell us what the integral is, just says that the contribution comes from the
fixed points of G if the polyform is closed (the close condition is fundamental).
The second argument can say something on what the integral actually is. We have an
equivariantly closed form α and we know that only the cohomology class counts for the
integral. Therefore let us deform it

αt = α ∧ etdV β (17)

where β ∈ ΛVM , which means LV β = 0 so that αt is also closed.
We can compute it

d

dt
αt = α ∧ dV βe

tdV β = dV (α ∧ βetdV β) (18)

If we take t = 0 we have the original integral. In particular consider t → ±∞ and notice
that the integral does not depend on t as we have seen from the derivative since α is still
closed. Choose β = η defined before∫

M
α = lim

t→∞

∫
M

α ∧ etdη︸ ︷︷ ︸
polynomial in t

e−t|V |
2

(19)
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The integrand is a polynomial of degree l in t which in fact we can expand. The other
piece is a true exponential. When we take the limit, it gives us an exponential suppression
that cannot be compensated by the polynomial in the limit. For any point for which
|V |2 6= 0 the exponential suppresses, just the points in the neighbourhood where |V |2 is
zero contribute. Which means that the integral localises on the fixed points of V .
We can use this expression to actually evaluate the integral. Let us assume that V has only
isolated fixed points. Since the integral localises on the fixed points, we can consider the
expression only in a neighbourhood of the fixed points P where the metric is essentially
flat R2l

ds2 '
l∑
i

(dr2
i + r2dφ2

i ) (20)

which is just l copies of R2. Each component of V just does a rotation in the case of
G = U(1)

V '
l∑

i=1

ωP,i
∂

∂φi
(21)

and also

η '
l∑

i=1

ωP,ir
2
i dφi (22)

where ωP,i are the eigenvalues of the G action on the tangent space around the point P .
Therefore

dV η '
l∑

i=1

(ωP,i d
(
r2
i

)
∧ dφi − ω2

P,ir
2
i ) (23)

and so we can actually evaluate the integral

lim
t→∞

∫
NP

α ∧ etdV η = lim
t→∞

l∏
i=1

[
tωP,i

∫
R2

d
(
r2
i

)
dφi αe

−tωP,iri

]
(24)

where we decomposed dV η in two pieces, and we take only the leading contribution of the
polynomial tωP,i. Notice that the leading pice give us the maximal degree we can have on
the manifold and so the only degree that contributes is the lower component. Around the
point α is constant compared to the exponential suppression and so we can pick it out

lim
t→∞

α0(P )

l∏
i=1

(
tωP,i

2π

tω2
P,i

)
= α0(P )

(
2π∏l

i=1 ωP,i

)
(25)

and we see that the powers of t cancels out, as we wanted since it cannot depend on t as
we said. We get contributions only from the neighbourhood of the fixed points.
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A more geometric, invariant, definition gives

α0(P )

(
2π

Pf(LV (P ))

)
. (26)

where Pf is the Pfaffian of the invariant action of G on the point P . The final formula is∫
M
α = (2π)l

∑
P∈MV

α0(P )

Pf(LV (P ))
(27)

1.1 Example

Suppose we want to compute ∫
S2

eic cos θdVol(S2) (28)

This can be done either with localization or with the usual techniques.

2 Lecture 2

We want to apply this ideas to QFTs. So we start with the concept of Euclidean path
integrals and some exact results.
One of the ideas is that when one has a QFT, all the information about it are in the path
integral ∫

Dφe−S[φ]/~ (29)

but this object is too hard to compute. The standard paradigm is to evaluate them in a
perturbative expansion, but this works only on small couplings. Even with resummation
we still do not have all the informations coming from nonperturbative contributions.
We can choose some QFT where the path integral can be computed. We will be interested
on theories on compact Euclidean manifolds M

ZM (c) =

∫
Dφe−S[φ,c] (30)

as a function of some parameters c: parameters of the theory, of the manifold where we
put the theory, parameters of the supersymmetric background chosen on the manifold
(Festuccia-Seiberg etc). Why, if we are interested in Lorenzian spaces, we choose compact
euclidean manifolds? The more phenomenological reason is that it is a profitable exercise
to study SUSY QFTs on general compact manifolds and backgrounds

• some manifolds and backgrounds are easier than others,
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• different manifolds and backgrounds grant us access to different observables of a
specific theory.

Very loosely we can distinguish three types of operators

• “Order” Operators: some functions of the fundamental fields which are in the la-
grangian, local or non local. For example, in a U(1) theory, we can have Fµν(x) but
of course we can consider non-local operators like Wilson lines

WR[γ] = TrR P exp

{∮
γ
A

}
(31)

for some closed path γ and rep R. This get computed directly in the path integral.

• “Disorder” operators: this are defined by removing some points from spacetime,
either by removing a point for a local operator or a submanifold for a non-local oper-
ator, and then specify some boundary conditions around these points or submabifold,
usually singular. To compute correlation functions for these operators we simply do

〈OD〉 =

∫
B.C. choosen

Dφe−S[φ] (32)

We have like: ’t Hooft line operators in 4d which are non-local, monopole operators in
3d which are local. The second ones are defined by removing a point and we remain
with an S2 around it and we impose that∫

S2

F ∈ some conjugacy class (33)

• “Defect” Operators: again either local or non-local, points or submabifolds, where
we introduce some extra fields that only live on the operator and not on the whole
space. In this case we will need to integrate also on these localised degrees of freedom
on some submanifolds N ⊂M∫

DφMDφNe−S[φM ]e−SN [φN ,φM ] (34)

If we have for example a 1d curve in the manifold and we want to add some fermions
on this line γ then one can add

SD =

∫
γ

dτψ̄(∂τ − iAτ )ψ (35)

where Aτ are bulk fields pulled-back on the submanifold where the fermions live and
are coupled to them.

All of these classes can be tackled with supersymmetric localization.

6



2.1 Exercise

Suppose we want to study a Wilson line for some gauge group G in rep R. The same
operator can be represented as some 1d defect operator in which we use the following
action

LD = ψ̄(∂τ − iAτ − iÃτ )ψ + iÃτ (36)

where Ãτ is a U(1) gauge field, Aτ is the pull-back of the bulk gauge field and ψ are
fermions in rep R under Aµ with charge 1 under Ã.

The first step is to construct a susy theory on a curved manifold. Trivially we start in
Lorentzian flat space with some susy theory with a susy algebra. In 4d minimal susy we
have fermionic operators

{
Qα, Q̄β

}
= 2σµαβPµ. We also have susy currents Sαµ that has

the property that by integrating it we get the supercharges

Qα =

∫
dd−1xS0

α ∂µSαµ = 0 (37)

A theory is supersymmetric if the lagrangian is invariant under susy transformations δ =
εαQα then δL = ∂µ(· · · )µ.
We go to euclidean Rd and we want to deform it to some manifold M which is not flat.
We want that a short distance the new theory gives the flat space theory. We only modify
the theory in the infrared. We limit ourselves to relevant deformations to the flat space
theory. Even with this prescription the construction is still ambiguous, the procedure is
not unique. we call this ambiguity a background.
On top of this we want that the theory be supersymmetric: the supercharges preserved on
the curved manifold will be a subset of the supercharges of the flat space. We have that the
generators of the “curved” susy algebra ⊂ flat space susy algebra. This new supercharges
can be deformed such that in the limit we get the usual flat space algebra.
Is not always possible to preserve supersymmetry on any manifold. There will be some
constraint on the geometry of M . When it is possible, we still have ambiguities.
One systematic approach to construct such simmetries is to couple the QFT to off-shell
supergravity and then solving for the susy equations from the condition that come from the
graviton multiplet of the sugra. In particular we set to zero the fermions, this guarantees
that the variations of the bosons is zero and we insist that also the variation of the fermions,
in particular the gravitino, is zero. This leads to the generalised Killing spinor equations

δψµ = 2∇µε+Mµ(SUGRA
fields )ε = 0 (38)

In the sugra fields there are the metric, the other bosonic fields of the graviton multiplet
etc. This equation is almost independent on the particular theory we put on the manifold.
Still a given sugra can have different off-shell formulations since we can construct different
supercurrent multiplets etc.
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We have to solve this equation for gµν , the other fields, ε, which will give us how many
supercharges are preserved on the given manifold.
Once we have a solution, we can plug it into sugra. This gives us two things

• The deformed susy algebra

• The deformed matter action

When we go to Euclidean signature we have to complexify the fields and what might happen
is that the background for this fields is not the analytic continuation of a real background
in lorentzian signature. This means that we lose reflection positivity (euclidean version
of unitarity). However what might happen is that the theory becomes superconformal in
the infrared and some operators become redundant and the background fields that break
reflection positivity couple to such operators and so they are not a problem.

Once we have the susy actrion on the curved manifold S and a set of fermionic generators
Q such that QS = 0, in general we have that Q2 = δB (bosonic symmetry). We are now
interested in evaluating integrals of this form

ZM =

∫
Dφe−S[φ] (39)

and in particular we want to evaluate a deformation of this integral by som Q-exact term

ZM (t) =

∫
Dφe−S[φ]−tQV [φ] (40)

where δBV = 0 which gives us an equivariant condition on the functionsl V . What is the
dependence on this parameters

d

dt
ZM (t) =

∫
DφQV e−S−tQV = −

∫
DφQ(V e−S−tQV ) = 0 (41)

Assuming that the measure is invariant under Q (there are no anomalies, δB should be
non anomalous) this is just a field redefinition and so the integral is zero. One has to
be careful since we have infinite dimensional integrals since Q acts as a total derivative
on the supermanifold and the boundary terms can ruin the result. But since we have an
exponential suppression we can make the naive argument still hold.
Suppose that this terms is not a deformation of the action, but is exactly one of the terms
in the action which is Q-exact therefore we do not have a dependence from the couplings
that come in front of Q-exact terms.
When we compute expectation values of the operators, they only depend on the Q coho-
mology class of the operators. Moreover, the result shows that the path integral is not
modified by this correction QV . This is exactly what we did before in the general theory
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of equivariant localization.
When we go to euclidean, by complexifying the fields we have that the dagger and the ini-
tial field become independent and so we have double the amount of fields, however we do
not want to do the integral on all of them but only half of them in euclidean signature. We
then have to choose a contour that takes half the fields and makes the integral convergent
on all the values of t.

If we take ZM (t = 0) we get the original integral. Suppose we can find some V such
that the bosonic real part of QV is positive semidefinite. Then we take the limit t → ∞
then any configuration for which QV is not zero is going to be infinitely suppressed, then
only the configurations for which the real part of the bosonic part of QV is zero is going
to survive. The integral localizes around this configurations. Still we have to take into
account the neighbourhood of the configuration. Let us expand around one of this points
φ = φ0 + t−1/2φ̂ (φ̂ parametrizes orthogonal directions) and

S + tQV = S[φ0] + (QV )
(2)
φ0

[φ̂] +O
(
t−1/2

)
(42)

We need canonically normalized fields and this explains the t factor in the deviation of φ.
We get a contribution from the field configuration onto which we localize plus a quadratic
contribution that can be evaluated∫

Dφ0 e
−S[φ0] 1

SDet’((QVφ0)(2))1/2
(43)

where the superdeterminant is just the ratio between bosonic and fermionic determinants.
The prime is there for the zero modes that have to be removed by integrating over them.
The integral over φ0 does exactly this. The fermionic zero modes, which are at the denom-
inator, have to be reabsorbed either by some operators or by expanding the determinant.

3 Lecture 3

What we have up to now is that localization tells us that the partition function localizes
around field configurations for which the Q-exact correction is zero and does not exponen-
tially suppress the integral.

Z =

∫
BPS
Dφ0 e

−S[φ0] 1

SDet’((QVφ0)(2))1/2
(44)

In good situations, the submanifold of the field configurations φ0 becomes one dimentional.
The BPS stands for the locus of field configurations that satisfy the BPS equations. We
have a canonical choice for V which is

V =
∑

fermions ψ

(Qψ)††ψ (45)
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where the double † is there since, as we said, in euclidean signature complex conjugate
fields become independent and this gives an anti-linear operator which does not have to be
the same † as in lorentzian signature.
We need to check tha this V satisfies the right constraint

QV =
∑

(Qψ)††Qψ +Q(Qψ)††ψ (46)

where now we see that the zero locus of this is where Qψ = 0 which is the BPS equations.

3.1 Examples

We want to discuss a concrete example: 2d with N = (2, 2) (4 supercharges) which is the
dimensional reduction of 4d N = 1.
If we start in Lorentzian signature there are left and right moving spinors which are not
related by charge conjugation and the biggest R-symmetry we can have is U(1)× U(1) '
U(1)V ×U(1)A where one acts on the right supercharges and one on the left supercharges.
This is not part of the susy algebra in flat space, is an outer automorphism of the algebra,
is required only when the theory is superconformal. But we will choose type of theories
where the vector like R-symmetry is present. in general there can be two central charges,
but if we have this R-symmetry we have only one central charge which is related to the
broken part of the R-charge. We can have 1 complex central charge.
If we go tu Euclidean the susy algebra looks like the following{

Qα, Q̃β

}
= [2γµPµ + 2iP+Z + 2iP−Z̃]αβ (47)

where the tilde is the independent complex conjugate, the P± are chiral projectors, Z and
Z̃ are the complex central charge. The supercharges have R-charge 1 for Q and −1 for Q̃.

We want to put this theory on curved space: since we have these R-symmetry there
exists an R multiplet (which is the dimensional reduction of the R multiplet in 4d)

Rµ = (Tµν , Sµα, S̃µα, j
R
µ , j

Z
µ , j

Z̃
µ ) (48)

plus we have a graviton multiplet

Gµ = (gµν , ψµα, ψ̃µα, Vµ, Cµ, C̃µ). (49)

The latter obviously appear in covariant derivatives

Dµ = ∇µ − irVµ +
1

2
zC̃µ −

1

2
z̃Cµ (50)
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plus they appear in field strength, that being 2-forms in two dimensions, we can use their
dual scalars

H = iεµν∂µCν H̃ = −iεµν∂µC̃ν (51)

We should set to zero the variation of the fermions to zero (for the generalized Killing
spinor equations)

1

2
δψµ = (∇µ − iVµ)ε− 1

2

(
H 0

0 H̃

)
γµε+ · · · = 0 (52)

1

2
δψ̃ = (∇µ + iVµ)ε̃− 1

2

(
H̃ 0
0 H

)
γµε̃+ · · · = 0 (53)

The dots appear in the full non-linear theory but when we set the variations to zero do not
come up. In this equations we choose a basis in which the chirality is diagonalized.
Since we are in 2d the group of rotations is SO(2) ' U(1) so that the bundle in which
any field with spin trasforms is an abelian gauge bundle so there is no difference between
spin and a standard abelian charge. This helps us do some semplifications: first the spin
connection can be defined as

ωµ = −1

2
ωabµ εab (54)

so that the covariant derivative for spinors is just

∇(s)
µ = ∂µ − isωµ (55)

which is just the standard abelian covariant derivative.
The deformed algebra will be given by the solution of the Killing spinor equations, setting
δε = εαQα we get

{δε, δε̃} = iLAK − iεQε̃ (56)

where LAK is a Lie derivative (translation) along a vector field which is specified by the
spinors Kµ = εγµε̃ and

Q =

(
z − σ − r

2H 0

0 z̃ − σ̃ − r
2H̃

)
(57)

and we have
{δε1 , δε2} = 0. (58)

Now we can find the most general solutions to the Killing spinor equiations (Closset,
Cremonesi 2014)

1. On any orientable manifold we choose a vector field Vµ such that cancels the contri-
bution to the spin connection in the covariant derivative Vµ = 1

2ωµ and set the scalar
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fields to zero H = H̃ = 0. For one of the two components of the spinor ε we cancel
the contribution and the other is just constant

ε =

(
0
ε−

)
ε̃ =

(
ε̃+
0

)
. (59)

This solution exists for any orientable manifold and is called A-twist and is a type
of topological twist (just relate the R-symmetry to the spin connection). The algebra
in this case is really simple δ2

ε = δ2
ε̃ = 0 and {δε, δε̃} = 0. For genus bigger than one

this is the only possible solution.

2. The Untwisted S2. We set Vµ = 0 and we turn on the scalar fields H = H̃ = i/R
where R is the radius of the sphere and the equations are of the form

∇µε =
i

2R
γµε ∇µε̃ =

i

2R
γµε̃ (60)

which are known as conformal Killing spinor equations. We get two solutions for
both, so in total there are four solutions. The topologically twisted solution is half
BPS since it has only two solutions while this preserves all the supersymmetry. The
deformed susy algebra has the following form

{δε, δε̃} = iLK −
εε̃

2R
RV (61)

where we also have an R-symmetry rotation that disappears in the flat space limit.
The R-symmetry became part of the algebra even thou at the start it was only an
outer automorphism of the susy algebra, so we have to choose the R-charges. The
Killing vector Kµ generates rotations of the sphere SO(3). The full superalgebra is
SU(2)× U(1) ⊂ SU(2|1) where the U(1) is precisely the R-symmetry.

We can now study localization of untwisted gauge theories on S2 (round) in 2d N = (2, 2)
and we will restrict ourselves to vector and chiral multiplets

1. Chiral multiplet Φ = (φ, ψ, F ) and the antichiral one.

2. Vector multiplet Vµ = (Aµ, σ, σ̃, λ, λ̃,D) where we can decompose σ = σ1 − iσ2 and
σ̃ = σ1 + iσ2.

3. Twisted chiral multiplet Σ = (σ, λ+, λ̃−, D − iF12 + iH̃σ) and Σ̃ = (σ̃, λ−, λ̃+,−D +
iF12 − iHσ).

What is the data we can specify in this theory?

1. Gauge group G

2. Matter representation R of G. ρ ∈ R are the weights of the representation R.
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3. Specify the R-charges since SU(2|1) contains the vector-like R-symmetry.

4. Interactions: superpotential W (Φ), twisted superpotential W (Σ).

5. Flavour symmetry GF . This turns on some twisted masses 〈σF 〉 which are just
expectation values of the background flavour fields.

We should construct now actions

LSYM =
1

2g2
YM

Tr

{(
F12 −

σ2

R

)2
+ (Dµσ1)2 − [σ1, σ2]2 + (Dµσ2)2 +

(
D − σ1

R

)2
}

+ Tr
{
iλ̃ /Dλ− iλ̃[σ1, λ] + λ̃γ3[σ2, λ]

} (62)

As it should, in the limit R→∞ we get back the flat space theory.

LM = Dµφ̃D
µφ+ φ̃

[
−iD + σ2

1 + σ2
2 +

ir

R
σ1 +

2(2− r)
4R2

]
φ+ FF̃

+ iψ̃ /Dψ + ψ̃
[
−iσ1 + σ2γ3 +

r

2R

]
ψ + i

√
2ψ̃λ̃φ+ i

√
2φ̃λψ

(63)

If we want to perform localization we have to choose a contour, and the easier choice is
a real contour: fields that where real in lorentzian signature are complexified in euclidean
and we impose that they are real, when we have complex fields in euclidean we make them
the complex conjugate of the other in lorentzian. In this choice the real part of the bosonic
part of the action becomes positive definite and the integral is convergent.
The charges can be chosen as

δQ = δε + δε̃ (64)

Something nice happens: both the SYM action and the matter action are Q-exact.

4 Lecture 4

We were studying the partition function of a 2d N = (2, 2) gauge theories with vector and
chiral multiplets on the untwisted round S2 where we wrote the actions of the SYM part
and the matter part

LSYM =
1

2g2
YM

Tr

{(
F12 −

σ2

R

)2
+ (Dµσ1)2 − [σ1, σ2]2 + (Dµσ2)2 +

(
D − σ1

R

)2
}

(65)

+ Tr
{
iλ̃ /Dλ− iλ̃[σ1, λ] + λ̃γ3[σ2, λ]

}
LM = Dµφ̃D

µφ+ φ̃

[
−iD + σ2

1 + σ2
2 +

ir

R
σ1 +

2(2− r)
4R2

]
φ+ FF̃ (66)

+ iψ̃ /Dψ + ψ̃
[
−iσ1 + σ2γ3 +

r

2R

]
ψ + i

√
2ψ̃λ̃φ+ i

√
2φ̃λψ

13



which are Q-extact for the supercharge δQ = δε + δε̃. The interactions of this theory are
given by superpotential interactions as a holomorphic function of the chiral fields W (Φ).
This function itself is a chiral multiplet and so as an F -term

LW = i(FW + F̃W ) = δQ(· · · ) FW = ∂iWFi +
i

2
∂2
ijWψiψj (67)

which is also Q-extact. We also have the twisted superpotential W (Σ) where we restrict
to the case where this is linear

W =
i

2

(
ξ + i

θ

2π

)
Tr Σ→ LFI = Tr

{
iξ + i

θ

2π
F12

}
(68)

which is not Q-extact and so the partition function will depend on it. Finally we have
twisted masses related to flavour symmetrys (they take value in the Cartan of the flavour
symmetry) and are associated to the central charge of the susy algebra. In order to have
the theory supersymmetric we have to impose

δλflav = 0. (69)

Given that the given terms are Q-exact we could use them to do localization with the said
real contour so that the two terms have positive real parts. The matter term is positive as
long as 0 < r < 2. We localize on the zero part of that lagrangians, which for the matter
part is (BPS configurations)

F12 =
σ2

R
, D =

σ1

R
, Dµσ1 = Dµσ2 = [σ1, σ2], φ = φ̃ = F = F̃ = 0 (70)

which is a very simple zero loci. This easily parametrizes the moduli space

D =
a

R2
, F12 =

m

2R2
(71)

plus a GNO quantization condition on the field strength

1

2π
=

∫
S2

F12 = 2 =⇒ e2πim ∈ 1G (72)

so m is quantized. The classical action is just given by the only non Q-exact term which
is the twisted superpotential

S
(0)
FI = 4πiξTrσ1 + iθTrm (73)

and the one loop determinant has to be computed. By working off-shell we can compute
for different multiplets the contributions to the determinant. In general is a very difficult
problem to compute the full spectrum of the theory to find the determinant, but in this
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case, which is very symmetric, is doable. We decompose the fields which are into the line
bundle into harmonics (sphere spherical harmonics)

Y s
j,j3 j, j3 ∈ Z + s, |j3|, |s| ≤ j, s = sz −

m

2
(74)

which are just the eigenfunctions of the laplacian

R2DµD
µY s

j,j3 =
[
−j(j + 1) + s2

]
Y s
j,j3 (75)

For the chiral multiplet we get by expanding the action up to second order and plugging
in the zero modes

Oφ = −DµD
µ − iD + σ2

1 + σ2
2 +

irσ1

R
+
r(2− r)

4R2
(76)

which gives, by using the harmonic expansion

detOφ =

∞∏
j=

|m|
2

(
j +

r

2
− ia

)2j+1(
j + 1− r

2
+ ia

)2j+1
(77)

The same goes for the fermionic part

Oψ = · · ·+

 Y
1
2
−m

2
j,j3

Y
− 1

2
−m

2
j,j3

 (78)

which gives

detOψ = (−1)
m+|m|

2

∞∏
j=

|m|
2

(
j +

r

2
− ia

)2j(
j + 1− r

2
+ ia

)2j+2
(79)

As we can see, like we said before, some contributions cancel in the ratio of the two
determinants

detOψ
detOφ

=
∞∏
n=0

n+ 1− r
2 + ia− m

2

n+ r
2 − ia−

r
2

(80)

but this expression needs to be regularized. We can use the zeta function regularization

ζ(z, q) =
∞∑
n=0

(q + n)−z (81)

and taking

− ∂

∂z
ζ(z, q)

∣∣∣∣
z=0

= log

∞∏
n=0

(q + n) = log

√
2π

Γ(q)
(82)
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and so

Zchiral
1−loop =

∏
ρ∈R

Γ
(
r
2 − iρ(a)− ρ(m)

2

)
Γ
(

1− r
2 + iρ(a)− ρ(m)

2

) (83)

We want to do something similar for the vector multiplet but first we need to fix the
gauge by using the standard Faddeev-Popov method. However, we are expanding around
a certain configuration and so we have to do gauge fixing on a background, not around the
zero configuration, and what we do is

Aµ = A(0)
µ +

1√
z
Âµ (84)

and we do gauge fixing on the oscillations

LGF = −c̃
(
DµDµc− iDµ

[
Âµ, c

])
− 1

2ξGF
(DµÂµ)2 (85)

We can use now SYM+GF which is quadratic, and the one loop determinant will have a
similar form

detO′c detOλ√
detO′A,σ

=
∏

α(m)=0

1

|α(a)|
∏
α>0

(−1)α(m)

(
α(m)2

4
+ α(a)2

)
(86)

where we have to remove the zero modes that are present even in ghosts since we are on
a compact space and we cannot set to zero the constant solutions. The α(m) = 0 are the
roots that are invariant under the magnetic flux m. The zero modes of the denominator
span the Cartan subalgebra which commutes with the magnetic flux. We should integrate
over the zero modes

1

|Wm|

∫ rankG∏
n=1

dan
2π

∏
α(m)=0

|α(a)|
∑

m∈Γmag

1

|W\Wm|
(87)

where Wm is the Weil group that leaves the magnetic flux invariant.
When we put everything together we get the following expression

ZS2 =
1

|W |
∑

m∈Γmag

∫
RrankG

rankG∏
n=1

dan
2π

e−4πiξTr a−iθTrm

×
∏
α>0

(−1)α(m)

(
α(m)2

4
+ α(a)2

)∏
ρ∈R

Γ
(
r
2 − iρ(a)− ρ(m)

2

)
Γ
(

1− r
2 + iρ(a)− ρ(m)

2

)
(88)

Here all the twisted masses are zero. But can be easily found since the come on the same
footing of a although being non-dynamica. A few comments
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1. It is a relatively simple expression

2. It is an exact non-perturbative result, in particular it should contain all instanton
corrections which are not manifest from the result. One way to see them is to consider
the rankG = 1 case where the integral is on the real line. To do this integral one can
use the Cauchy integral formula closing the contour in the upper half plane which
reduces to a sum of residues and what one discovers is that there is a rank 2 wedge
coming from the sum on the magnetic lattice and all of this residues come from
instanton contributions.

3. One might be interested now in operator insertions to compute expectation values.
For example one can insert twisted chiral fields on one point of the sphere and anti-
twisted chiral fields at the antipodal point of the other one. In this case we do not
have an holomorphic operator which cannot be found by topological twists. It is also
easy to add Wilson lines on the sphere. In this case the expectation values of such
operators are given by simply adding such operators in the found result.

4. If one studies 3d N = 2 gauge theory on S3 the result is very similar.

5. If one studies 4d on S4 one needs to evaluate separately the instanton corrections.

6. This integral does not depend on the RG flow. An interesting setup is to start from
a Gauged Linear Sigma Model for which we know the exact result of the partition
function and then flow in the IR to a conformal Non Linear Sigma Model and infer
result on this IR theory.

But how does this expression know about instantons? What if one chooses a different
localization term: suppose to add another one to the ones used up to now

LH = Tr
[
−i
(
D − σ1

R

)
(φφ̃− χ) + · · ·

]
= δQ(· · · ) (89)

where χ is a constant. Notice that this added term looks like a FI term dressed with
other stuff in such a way that there is no dependence on it. While this action is not
manifestly positive semidefinite, however D appears in the action without derivatives and
quadratically. Therefore one can do the integral on D and we get back a positive definite
term. We therefore substitute the F-terms for D and get

D − σ1

R
= i(φφ̃− χ) (90)

which looks like a D-term equation but with a FI term. The nice thing is that in 2d when
turning on a FI term, the vacua get move to the Higgs branch and on the Higgs branch
there are vortices. One might expect that the zero locus might move to something that
looks like the Higgs branch in flat space and so the configurations that matter are vortices.
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Before what we had looked like a Coulomb branch.
By imposing the constraint and solving the BPS equations we get

(σ1 −M)φ = σ2φ = 0 (91)

where M are twisted masses, σ1 is a diagonal matrix in g. Moreover one finds some
differential equations that depend on χ but since there is no real dependence on χ one can
take it to infinity and study them there

The solution to the vortex equations are known to be instantons in 2d. And now when
we localize we have a finite sum on the Higgs branches.

5 Lecture 5

New we will study what is called Higgs Branch Localization. Before we added a new Q-
exact term that was not positive definite but by using D-term equations we could make
it positive definite which was like changing the integration contour. We had two different
solutions for the BSP equations on the sphere in the limit

χ
Q−exact

→∞ (92)

which is a “fake” parameter.
The moduli space of solutions of the vortex equations is separated into disconnected
branches and each branch is characterized by a number: the vortex (or instanton) number.
If we take U(N) for example

k =
1

2π

∫
R2

F ∈ Z (93)
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So the final form of the formula will be

ZS2 =
∑

Higgs
Branch
(Finite)

eSclZ ′1−loopZvortex(q)Zvortex(q)
(94)

where the 1-loop determinant is similar to the last one. The interesting part are the other
pieces: the vortex part comes out to be like the one for a theory in an Ω-background since
the poles are not flat, there is some residual curvature. This theory gives us a background
potential which traps the vortices in the origin which makes the moduli space somewhat
compact since the vortices cannot move to infinity

Zvortex(q) =
∑
k≥0

qk
∫
Mk,vortex

dVolequiv , q = e−4πξ−iθ (95)

What about theMk,vortex moduli space? It is Kähaler and symplectic. In particular there
is a closed symplectic 2-form ω which gives us the volume through the dω. In particular
dVol = ωl/l! which in particular is infinite. In fact we want to evaluate the equivariant
volume. First of all we have rotations of R2 and moreover we have flavour rotations of φ.
The first is abelian, in the second we take the maximal torus (we do equivariant cohomology
on the maximal torus). For each of this we have to introduce a vector field V (which is very
general for now). The volume form is equivariant under the action of V LV ω = 0 however
is not equivatiantly closed. We construct the equivatiantly closed form dVol = exp (ω + µ)
where µ is the moment map for the U(1)# action where dµ = ιV ω. One can show that
this is equivatiantly closed.
What we would like to compute is (using a physicist way)∫
Mk,vortex

dVolequiv = 0d path integral of a theory that has Mk,vortex as its moduli space

(96)
This is called ADHM construction. The point is finding what this theory is. Let us
consider a specific example: 2d N = (2, 2) U(N) SQCD with Nf fundamentals and Ñf

antifundamental with Nf , Ñf > N and a FI ξ > 0. We want to understand the vortex
moduli space of this theory which was done by Hanany and Tong in 2003. We go to the
k-vortex sector which is a 0d theory (dimensional reduction of 2d N = (0, 2) which has
the following ingredients: U(k) vector (φ, λ, λ̄,D), one adjoint chiral X,χ, N fundamental
chirals I, µ, Nf −N antifundamental chirals J, ν and Ñf fundamental Fermi multiplet ξ,G
(fermion and auxiliary scalar). To compute the equivariant volume we have to do the path
integral of this theory which is a matrix model and is simple. Again we can use localization
on this theory which is much more simple than the initial integral.
Essentially we have to compute the 1-loop determinants

Chiral −→
∫

dX dX† dχdχ† e−X
†φ2X−χ†φχ ∼ 1

φ
(97)
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which by the example we can see that they are very easy. The result at the end is

Zk =

∮
C

k∏
I=1

dφI
2πi
Zvec(φ)Zchiral(M,φ)Zfermi(M̃, φ) (98)

the contour is called Jeffry-Kirwan residue. By computing this residues

ZSQCDvortex =
∑
~k

q|~k|
~k!

∏N
i=1

∏Ñf

a=1

(
1
ε

(
Mpi + M̃a

))
ki∏N

i 6=j
(

1
ε

(
Mpi −Mpj

)
− kj

)
ki

∏N
i=1

∏Nf

f 6∈2πiξ

(
1
ε (Mpi −Mf )− ki

)
ki

(99)

in which the ki down are called Pockhammer symbols.

Let us remain on 2d N = (2, 2) theories but now let’s take a T 2 background. What is
the object that we are computing? What are the observables that we can access? This is
the superconformal index (elliptic genus)

I(τ, z, να) = TrRR(−1)F qHL q̄HRyJL
∏
a

ξka , q = e2πiτ , y = e2πiz, ξa = e2πiνa (100)

This object does not actually depend on q̄, only states with HR, the right-movint hamil-
tonian, contribute. We can send y → 1 which reduces this to the Witten index since even
the dependence on q drops.
When we go to euclidean, we compactify time and since the theory is on a cylinder, it
becomes a torus in euclidean and this partition function counts the number of states.
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