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Introduction

Flavour physics is an essential tool for testing the Standard Model (SM) in search
of New Physics (NP). In this regard, a fundamental quantity to be studied is CP-
violation in the Kaon system which is measured by two observables called εK and
ε′/ε. While the former is well understood both theoretically and experimentally, the
latter posed some very hard theoretical problems that made its prediction difficult.
Only recently the RBC collaboration gave a reasonable prediction for it and in this
thesis we want to explore the effect that this result can have on the analysis of the
Unitarity Triangle (UT).

The Standard Model of particle physics is a theory that encapsulates our best
understanding of the world of subatomic particles and their interactions. Its results
have been thoroughly tested by high energy experiments, up to incredible precision.
Despite the numerous successes, however, there are many reasons as to why we may
think that the SM is not the complete and definite answer. The first reason that
come to mind is that the SM does not provide an explanation for the gravitational
force. But there are many others: the lack of an explanation for the masses of the
neutrinos, the instability of the Higgs mass due to radiative corrections, the absence
of a candidate for dark matter, baryon asymmetry, and so on.
All of these issues, and many others, could find an answer in a more fundamental
theory, corresponding to new physics, which manifests itself at higher energies whose
effects are highly suppressed at the lower energy scales of the SM. These effects
could be probed in high energy experiments at accelerators like the LHC at CERN,
or by studying highly energetic events in our universe.

In this regard, the study of flavour physics, due to its highly non-trivial structure,
is very sensitive to the effects of higher energy scales and thus offers a very interesting
window on the effects of new physics. In particular, weak interactions of quarks,
involve elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The accurate
determination of the CKM matrix elements, obtained by combining the experimental
inputs with theoretical calculations and results coming from lattice simulations,
represents one of the strictest tests of the Standard Model.
In the SM the CKM matrix, which describes the quark flavour mixing in weak
interactions, is given by a 3× 3 unitary matrix

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

.
The CKM matrix can be parametrized by a set of three angles θ12, θ23, θ13 and one
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complex phase δ. The angle θ12 is also known as Cabibbo angle. The complex phase
is the parameter that enables CP violation in weak decays.

Experimental measurements of |Vud|, |Vcb| and |Vub| from K and B meson decays
shows that there’s an hierarchy in the mixing angles, so that the CKM matrix can
be expanded in powers of the sine of Cabibbo angle λ ≡ sin θ12 ≈ 0.22. First define

λ ≡ sin θ12, A ≡ sin θ23/λ
2, (ρ+ iη) ≡ sin θ13e

iδ/(Aλ3),

which are known as Wolfenstein parameters. Then, another two quantities are also
useful

ρ̄ = ρ

(
1− λ2

2

)
, η̄ = η

(
1− λ2

2

)
.

The unitarity of the CKM matrix implies triangular relations like

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0

and many others. One of this unitary triangles is of particular interest and is called
The Unitary Triangle (UT) and is given by the unitarity relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

By means of the Wolfenstein parametrization, all the sides of the UT given by the
above relation are of O(λ3), so we can normalize all the sides dividing by VtdV ∗tb
giving the normalized UT

−VudV
∗
ub

VcdV
∗
cb

− VtdV
∗
tb

VcdV
∗
cb

= 1.

This relation defines a triangle in the (ρ̄, η̄) plane. By measuring independently
different elements of the CKM matrix, it is possible to test the SM by verifying that
these triangular relations are experimentally satisfied.

Many ways have been developed over the years to measure the CKM matrix
elements. The relevant processes used today are semileptonic production and decay
rates which are, under very broad assumptions about possible physics beyond the
SM, dominated by tree level amplitudes with a W± boson as an intermediate state.
Measurements of semileptonic decays of beauty and strange particles give information
on the values of λ and A while the values of ρ̄, η̄ are constrained mainly by four
parameters: |εK |, |Vub/Vcb|,∆md,∆ms.
More up-to-date methods have been developed over the years to allow greater
precision. In particular, for the |Vud| matrix element, the most exact up to date
method makes use of superallowed Fermi transitions, i.e. beta decays connecting
two JP = 0+ nuclides in the same isospin multiplet.

From the theoretical standpoint, the difficulties in the calculation arise from
the effects of strong dynamics, which are described in the SM by Quantum Chro-
modynamics (QCD). At low energy, below ΛQCD ≈ 1 GeV threshold, the strong
dynamics in non-perturbative and thus requires lattice QCD methods to be solved.
On the contrary, at energies above the ΛQCD threshold, the theory becomes weakly
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interacting thanks to asymptotic freedom, and perturbation theory can be used.
Under certain conditions, effective theories can be deployed making theoretical
calculations readily accessible.

Of particular interest for our analysis are the εK and ε′/ε parameters that describe
CP-violation in the neutral Kaon system. The first parameter εK directly relates to
the δ phase in the CKM matrix and theoretically can be evaluated using an effective
theory

|εK | =
G2
FM

2
W

4
√

2π2mk∆mk

A2λ6σ sin δ
〈
K̄0
∣∣∣s̄γµPLds̄γµPLd∣∣∣K0

〉
×
[
η3S0(xc, xt)− η1S0(xc) +A2λ4(1− σ cos δ)η2S0(xt)

]
.

(0.1)

What poses the most difficulties, both experimentally and theoretically, is the ε′/ε
observable, where

ε′ ≈ i√
2
ei(δ2−δ0) Im(A2A

∗
0)

|A0|2
. (0.2)

The evaluation of hadronic matrix elements A0 and A2 is subject to large uncertain-
ties, that are problematic in particular for ε′/ε, where important cancellations need
to occur so to get the exceedingly small value found in experiments.
For many years, even the experimental situation was unclear: the NA31 Collabora-
tion and the E731 Collaboration gave very different results. The KTeV Collaboration
then settled down the situation. From that, we know now the ε′ parameter, although
non zero, is exceedingly small, of the order of 10−6.
From the theoretical standpoint, this very small value comes because of an accidental
cancellation among the various contributions to ε′. These cancellations are very
subtle which meant that the theoretical analysis of ε′/ε has been subject to various
refinements over the years. In fact, at tree level, both the hadronic matrix elements
A0 and A2 come from the same contribution and have the same phase. This means
that, at tree level, ε′ = 0. One has to compute the various loop corrections to the
two amplitudes to get a meaningful result. It was soon found that gluonic penguins,
as well as electromagnetic penguins, play a fundamental role and give the first
non-trivial contributions to ε′. Yet, because of the strong cancellations, and because
of the uncertainties in the hadronic matrix elements, an accurate prediction of ε′/ε
was not possible.
Recently, through lattice QCD calculations, a satisfactory result was found [2]

Re
(
ε′

ε

)
= 21.7(2.6)(6.2)(5.0)× 10−4

where errors are statistical and systematic respectively and the third error represents
omitted isospin breaking effects.

This new and exciting result opens up the possibility for an update of the analy-
sis of the Unitarity Triangle. Through statistical analysis, based on the Bayesian
approach, gathering all the experimental, as well as theoretical, results from rare
disintegration processes, the UTfit collaboration searches for an accurate fit of the
UT triangle shine light on the possibility of new physics beyond the Standard Model.
The new and improved analysis could lead to interesting results and give more
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accurate constraints on the values of the CKM matrix elements.

The brief outline of this thesis work is as follows: the first five chapters set up
the theoretical background for the study of weak decays of light mesons and their
oscillations. In particular we will focus on the K meson and the study of the two
CP-violating parameters εK and ε′/ε. In Chapter 6 we are going to give the basic
background on the analysis of the Unitarity Triangle and how we implemented the
new result for ε′/ε. The last chapter, chapter 7, is the main one where we give our
original result with the improved state-of-the-art analysis of the Unitarity Triangle
including ε′/ε.



1

Chapter 1

Electroweak Interactions in the
Standard Model

Figure 1.1. The Standard Model of particle physics.

Whenever somebody asks questions like how many particles there are? How do
these particles interact with each other? What are the properties of certain particles?
Are they fundamental or composite? What makes up a composite particle? How do
they decay if they decay? And so on, the answer, as far as we know, can be found in
a theory which is called by physicists the Standard Model (SM) of particle physics
[78, 126, 142].
Loosely one can think of the SM as a Periodic Table for subatomic particles, but
the reality is much more complicated. In some way this statement is not completely
incorrect and, just like a Periodic Table, the Standard Model can be summarized in
a table like the one in figure (1.1). However, this famous table is deceiving: it does
not show all of the subatomic particles and their antiparticle! But for the purpose
of the physics, particles and antiparticles are much of the same in their properties
and their interactions, so it would be redundant to show them both.
Although this picture is very pretty, some physicists have a more pragmatic way
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of presenting what they call the SM, which is as follows: the SM is a non-Abelian
Yang-Mills theory whose symmetry group is given by

SU(3)× SU(2)× U(1). (1.1)

Equation eq. (1.1) is what we call the gauge group of the Standard Model. Mathe-
matically speaking even this sentence is not very precise since what we know exactly
is the Lie algebra of the SM. From the Lie algebra and the properties of the particles,
we can infer the precise Lie group of the SM [17], which is somewhat different from
the one in equation eq. (1.1) and is given by the following quotient

su(3)⊕ su(2)⊕ u(1) SU(3)× SU(2)× U(1)
Z6

. (1.2)

Yet, this is beyond the scope of this thesis and we will stick to the mathematically
imprecise, physicist way, of equation eq. (1.1) to avoid any confusion.

With this introduction one would be lead to believe that the SM has the pos-
sibility to answer all of our questions but, unfortunately (or fortunately, depends
on who’s the question being asked), this is not the case. Many questions, both
theoretical and experimental, cannot be answered by a pure SM analysis, and here
is when effective theories come into play. We will discuss effective theories and how
they enter the game in the next chapters.
For now let us focus on what actually is the Standard Model. In this chapter we are
going to give the basics upon which the Standard Model is built and how particles are
described within this theory. In the first part we will focus on the su(2)⊕ u(1) bit of
equation eq. (1.2), the so-called electroweak (EW) sector or Glashow-Weinberg-Salam
(GWS) theory [77, 127, 143], carrying the name of the physicists that theorized it
and consequently won the Nobel prize for it in 1979. Then we will show how, within
this theory, an incredible thing happens: the particles that make up hadrons, what
we call quarks, can mix with one another in a way initially theorized by Nicola
Cabibbo [42] and then expanded by Kobayashi and Maskawa [103] (the latter two
winning the Nobel prize for it, while the former sadly did not receive it).

1.1 Basics of the Standard Model
For a more in-depth analysis of the contents of these chapters, there are many
excellent books. Schwart’s [128] and Sredniki’s [134] texts are, in my opinion, two of
the best and up to date. For a more experimental prospective, Peskin’s book [120]
is optimal.
In the Standard Model there are three types of particles: the matter constituents
called quarks and leptons, which obey the Fermi-Dirac statistic, and the force-
carrying particles, that obey the Bose-Einstein. In nature there are four main forces:
gravitational, electromagnetic, weak and strong force. The bosons which carry these
forces are given in table (1.1). Then the last piece is the Higgs1 particle. This is again

1I would like to mention all the other physicists that, in some way, worked on the theory of the
Higgs that are, most of the time, going unseen: Englert, Brout, Higgs, Guralnik, Hagen and Kibble.
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Table 1.1. Vector and tensor boson carriers in the SM.The Graviton has not yet been
discovered, it is just theorized.

Field Boson Spin
Grav. Graviton 2
EM Photon γ 1
Weak W±,Z0 1
Strong Gluon g 1

a boson, a scalar boson, whose interactions does not come from a gauge principle,
that through the Higgs mechanism [85, 92, 94, 95, 101], after EW symmetry breaking
gives masses to the various particles of the SM. In table (1.2) the main properties of
the SM particles are given. With all the experimental properties out of the way, we
can concentrate on the theoretical side of things.

The basic SM Lagrangian, before EW symmetry breaking, can be divided into
five main pieces

LSM = Lgauge + Lfermions + LHiggs + LYukawa + LTheta-vacuum, (1.3)

where23

Lgauge = −1
2 TrGµνGµν −

1
2 TrWµνW

µν − 1
4BµνB

µν

= −1
4

8∑
a=1

Ga
µνG

aµν − 1
4

3∑
a=1

W a
µνW

aµν − 1
4BµνB

µν (1.4)

Lfermions =
∑
left

quarks

iQ̄iL /D
(q)
QiL +

∑
up

quarks

iūiR /D
(u)
uiR +

∑
down

quarks

id̄iR /D
(d)
diR

+
∑
left

leptons

iL̄i /D
(`)
Li + iēiR /D

(e)
eiR (1.5)

LHiggs =
∣∣∣DµH

∣∣∣2 +m2|H|2 − λH |H|4 (1.6)

−LYukawa = Y ij
D

(
Q̄iLHd

j
R + d̄jRH

†QiL

)
+ Y ij

U

(
Q̄iLH̃u

j
R + ūjRH̃

†QiL

)
+ Y`

[
L̄iHe

i
R + ēiRH

†Li
]

(1.7)

LTheta-vacuum = − θ

16π2 ε
µνρσ TrGµνGρσ = − θ

32π2 ε
µνρσGa

µνG
a
ρσ, (1.8)

where we used the convention that italicized indices are the SU(2) indices a = 1, 2, 3,
the non-italicized ones are for the SU(3) color indices a = 1, · · · , 8 and the fermion
indices are to label the three families of leptons and quarks i = 1, 2, 3. Moreover
we call up quarks the up, charm and top quarks, while the down quarks are the
remaining down, strange and bottom quarks.
The theta-vacuum term is a consequence of the strong CP problem [106, 119] and

2From hereafter the Einstein summation convention is used unless stated otherwise. Sometimes
the summation will be shown for clarity’s sake.

3We make use of the Feynman slash notation where γµaµ = /a.
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Table 1.2. Properties of the Standard Model Particles as given by the PDG [152].

Particle Mass (MeV) Mean Life (s) Charge (e)

Leptons

e− 0.511± 10−9 > 6.6× 1028 yr
−1µ− 105.7± 10−6 2.197± 10−6

τ−

νe, νµ, ντ < 2× 10−6 - 0

Quarksa

u 2.2+0.5
−0.4 -

2
3c 1.27+0.025

−0.035 × 103 -

t (173.0± 0.4)× 103 -

d 4.7+0.5
−0.3 -

−1
3s 95+9

−3 -

b 4.18+0.04
−0.03 × 103 -

Particle Mass (GeV) Decay Width (GeV) Charge

Bosons

γ < 1× 10−24 Stable < 1× 10−35

W± 80.379± 0.012 2.085± 0.042 ±1

Z0 91.1876± 0.0021 2.4952± 0.0023 0

g 0 - -

h0 125.18± 0.16 < 0.013 0
a The u, d and s quark masses are estimates of so-called "current-quark masses", in
a mass-independent subtraction scheme such as MS at a scale µ ≈ 2 GeV. The c
and b quark masses are the running masses in the MS scheme. The t quark mass
comes from direct measurements.

is given just for completion since we won’t discuss the nature of this term in this
thesis.

We will treat in more details equations eqs. (1.4) to (1.7) in the upcoming sections.
For now we just set up our various conventions that we will use throughout the
whole thesis.

Starting with the gauge Lagrangian eq. (1.4), the three kinetic terms are written
in terms of the field strength associated to each gauge connection of the gauge group.
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That is45

Ga
µν = ∂[µG

a
ν] + gsf

abcGb
µG

c
ν , (1.9)

W a
µν = ∂[µW

a
ν] + gεabcW b

µW
c
ν , (1.10)

Bµν = ∂[µBν], (1.11)

whereGa
µ is the SU(3) gauge connection (the gluon field),W a

µ is the SU(2) connection
and Bµ is the U(1) connection. The field W a

µ and Bµ will later combine, after
symmetry breaking, to make up the W±µ , Z0

µ bosons which are the massive vector
bosons which mediate the weak interactions and the Aµ boson, the photon, which
mediates the electromagnetic one. The constants fabc are the structure constants of
SU(3) and the Levi-Civita symbol εabc gives the structure constants of SU(2). In
this thesis we use the convention where the Lie algebra of the groups [74] is given by
the commutators [

ta, tb
]

= ifabctb
[
τa, τ b

]
= iεabcτ c, (1.12)

where, in the fundamental representation, the eight SU(3) generators ta are given
by the Gell-Mann matrices while the three SU(2) generators are given by τa = σa/2
where σa are the Pauli matrices and are both normalized as

Tr tatb = 1
2δ

ab (1.13)

More complicated representations can be found in the literature or constructed using
methods like the highest weight method.
The three coupling constants are gs for the strong interactions, g for the W in-
teractions before symmetry breaking and g′ for the B interactions before SB as
well.

1.2 Particles and Their Representations
Being the SM a Quantum Filed Theory, every particle belongs to some representation
of the underlying symmetry group. In the case of the SM we know that the symmetry
group, before symmetry breaking, is the one of equation eq. (1.1). We call the various
pieces with the quantum number associated to that specific group. In particular

• SU(3)C quantum number is called color,

• SU(2)L quantum number is called isospin,

• U(1)Y quantum number is called weak hypercharge.
4We use the notation for the antisymmetrization of the indices where a[µbν] = aµbν − aνbµ. A

similar notation is used for the symmetrization a(µbν) = aµbν + aνbµ.
5More generally the field strength is defined as the curvature tensor induced by the group

structure on the spacetime manifold and is therefore given by

Fµν = i

gF

[
D(A)
µ , D(A)

ν

]
where D(A)

µ is the covariant derivative constructed from the gauge connection A.
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The symmetry breaking pattern of the SM induced by the non-zero vacuum expec-
tation value (VEV) of the Higgs [64, 93, 86] is given by

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em. (1.14)
The remaining symmetry after SB is given by the same color symmetry as before
plus the electromagnetic symmetry which gives to all particles a quantum number
called electric charge.

Given this, we can give all the fields appearing in equations eqs. (1.4) to (1.7)
their appropriate quantum numbers and with that it can be easily shown that every
component of the Lagrangian is by itself a scalar for the SM symmetry group. All
the particles and their representation are given in table (1.3).
From the Yukawa Lagrangian eq. (1.7) there is another field which is the charge-
conjugate field of the Higgs. This is given by

H̃ = iσ2H∗, (1.15)
where σ2 is a Pauli matrix and H∗ is the complex conjugate of the Higgs field H.
This field transforms in the (1, 2)−1 representation and is needed to make all the
possible scalar terms such as

(
Q̄ai
L H̃

)
uaj
R where i, j are flavour indices. In fact under

SU(3) this is a scalar since we have the following tensor product
3̄⊗ 1⊗ 3 = 1⊕ 8 (1.16)

and we take the trace. Same goes for the isospin since we have
2⊗ 2⊗ 1 = 1⊕ 3, (1.17)

and for the hypercharge
− 1

3 − 1 + 4
3 = 0, (1.18)

which come out to be scalars for the entire SM symmetry group.

Table 1.3. Representations of the SM particles before symmetry breaking. The last column
refers to the representation under the Lorentz group.

Field SU(3)C SU(2)L U(1)Y SO(1, 3) ' SU(2)× SU(2)a

QiL 3 2 1/3 (1/2, 0)
uiR 3 1 4/3 (0, 1/2)
diR 3 1 −2/3 (0, 1/2)
Li 1 2 −1 (1/2, 0)
eiR 1 1 −2 (0, 1/2)
Gµ 8 1 1 (1/2, 1/2)
Wµ 1 3 0 (1/2, 1/2)
Bµ 1 1 0 (1/2, 1/2)
H 1 2 1 (0, 0)

a The isomorphism is at the level of the complexified algebras
so(1; 3) ↪→ so(1; 3)C ' su(2)C ⊕ su(2)C but we label it with the
group for simplicity.
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After EW symmetry breaking, the relevant quantum numbers become the color
and the electric charge. Using the remaining unbroken generator of the SU(2)L ×
U(1)Y group, we can find the relation between the isospin and hypercharge quantum
numbers with the electric charge. This is the well known Gell-Mann–Nishijima
formula6 [71, 117]

Q = τ3 + Y

2 , (1.19)

where T3 is the generator which labels the third component of the isospin and Y
is the generator of the hypercharge. Just for a sanity check, one can use formula
eq. (1.19) to see if the quantum numbers given in table (1.3) give back the expected
electric charge. For example, take the right-handed electron which we expect to
have a electric charge of −1 and, using eq. (1.19), find

eiR → Q = 0 + (−1) = −1. X (1.20)

1.3 Electroweak Sector
We now have sufficient knowledge to formulate the GSW theory of weak and
electromagnetic interactions among leptons and quarks and to study its properties.
Let us first state the starting point and the aim of our study

1. There exist charged and neutral currents.

2. The charged currents contain only couplings between left-handed fermions.
This result is given by Fermi theory of weak interactions which, as we’ll see, is
the low energy limit of the GSW theory.

3. The bosons W±, Z0 mediating the weak interaction must be very massive.

4. Nevertheless we’ll begin with massless bosons which then receive masses
through the Higgs mechanism. At that point we want to simultaneously
include the photon field.

Given this list of properties, we can begin to build up the first part of the SM which
accounts for the electroweak sector.

1.3.1 The GWS Lagrangian and symmetry breaking

Let’s begin, as we always must, to find the symmetry group of the theory. We know
that at least there must be one gauge boson for the photon. Moreover there must
be another two vector bosons for the W± fields. With this we need at least the
SU(2) symmetry group since it has 3 generators. But it turns out that this group is
too small since it only accounts for left-handed interactions but we know that the
electromagnetism is perfectly symmetric between left and right-handed fermions.
What Glashow proposed was the following minimal group

SU(2)W ⊗ U(1)Y , (1.21)
6Depending on the convention used, there can be a factor of 1/2 difference in the hypercharge

giving Q = τ3 + Y . We use the convention where the factor 1/2 is present.
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where the reps are defined, as we have seen before, by the isospin symmetry and the
hypercharge. Based on this symmetry group, the existence of a fourth gauge boson
was theorized since the group has 4 generators. It will turn out that the additional
gauge boson is, in fact, the Z0 which mediates the weak neutral currents.

Since we have that the total symmetry group is the product of two groups, we
need two different coupling constants g, g′. The kinetic part of the Lagrangian will
be then by the second half of the Lagrangian eq. (1.4)

L = −1
4W

a
µνW

aµν − 1
4BµνB

µν . (1.22)

Given the local nature of the interactions, we need to give mass to the bosons. On
the other hand, the photon will be given by a linear combination of the symmetry
generators which remain unbroken under the action of the Higgs mechanism.
To induce the symmetry breaking, we have a complex isospin doublet with hyper-
charge 1, the Higgs

H =
(
H+

H0

)
. (1.23)

The hypercharge is set by the Gell-Mann Nishijima formula eq. (1.19).
The Lagrangian for the Higgs field is given in equation eq. (1.6). In particular, we
have to specify how the covariant derivative of equation eq. (1.6) acts on the Higgs
doublet. This is easily done by exploiting the Higgs representation under the gauge
group

Dµ = ∂µ − ig′
Y

2 Bµ − igW
a
µτ

a = ∂µ − i
g′

2 Bµ − igW
a
µτ

a, (1.24)

where the τa are the the generators of the fundamental 2 representation of SU(2).
The Higgs potential with the opposite mass sign, induces a VEV for H, which can
be taken to be real and in the lower component without loss of generality. Thus we
choose

H = exp
(
i

v
πaτa

) 0
h+ v√

2

 , (1.25)

where v = 〈0|H |0〉 = µ/
√
λ. Since we are going to study how the gauge bosons and

the fermions gain mass through the Higgs mechanism, we will fix the gauge to the
unitary gauge where, essentially, we set πa = 0. With the VEV fixed it is easy to
find that the broken generators, i.e. the ones for which τa〈H〉 6= 0 are given by

τ1 = 1
2

(
0 1
1 0

)
τ2 = 1

2

(
0 −i
i 0

)
τ3 − Y

2 =
(

0 0
0 1

)
(1.26)

and the unbroken generator is given by

τ3 + Y

2 =
(

1 0
0 0

)
(1.27)

which is exactly the electric charge as given by the Gell-Mann Nishijima formula!
The symmetry breaking pattern is therefore

SU(2)W ⊗ U(1)Y → U(1)em (1.28)
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and we expect, thanks to Goldstone theorem and the Higgs mechanism, three out
of four vector bosons to be massive while one remains massless (spoiler: the only
vector boson without mass will be the photon!).

Putting the VEV in the kinetic part of the Higgs, making use of gauge freedom
and choosing a gauge which "eats" the Goldstone bosons πa called unitary gauge7,
we get

|DµH|2 =

= v2

8
(
0 1

)( g′Bµ + gW 3
µ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) g′Bµ − gW 3
µ

)(
g′Bµ + gW 3

µ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) g′Bµ − gW 3

µ

)(
0 1

)

= g2 v
2

8

[(
W 1
µ

)2
+
(
W 2
µ

)2
+
(
g′

g
Bµ −W 3

µ

)2]
(1.29)

The W 1,W 2 terms are degenerate in mass

M2
W = v2g2

4
The remaining terms are given by

v2g2

4 (W 3
µ)2 + v2g′2

4 B2
µ −

2gg′v2

4 BµW 3
µ = v2

4
(
Bµ W 3

µ

)( g2 gg′

gg′ g′2

)(
Bµ

Wµ
3

)
(1.30)

it is clear that the initial basis is not the basis given by the mass eigenstates. We
can therefore go to the latter by diagonalizing eq. (1.30)

det
(
g2 −m gg′

gg′ g′2 −m

)
= (g2 −m)(g′2 −m)− (gg′)2 = 0

= m2 + (gg′)2 −m(g2 + g′2)− (gg′)
= m(m− g2 − g′2) = 0
m = 0 m = g2 + g′2

(1.31)

The two solutions give us what we wanted: a massless mode and a massive one.
Looking for the eigenvectors will give us linear combinations of the Bµ and W 3

µ fields
which will turn out to be the massless photon field and the massive Z0 gauge boson
field.
By means of the following reparametrization

sin θW = g′√
g2 + g′2

, cos θW = g2√
g2 + g′2

, (1.32)

where θW is called the Weinberg angle [78, 142], one can easily show that rotation
based on this angle gives us indeed the linear combination that we need(

Z0
µ

Aµ

)
=
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
=⇒

{
Z0
µ = cos θWW 3

µ − sin θWBµ
Aµ = sin θWW 3

µ + sin θWBµ.
(1.33)

7One needs to be aware of which gauges are at play and the ones to choose for specific calculations.
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Now notice the following

W a
µτ

a = 1√
2

(
W+
µ τ

+ +W−µ τ
−
)

+W 3
µτ

3, (1.34)

where
τ± = τ1 ± iτ2. (1.35)

Under this definition, the charged gauge fields are given by

W+
µ = 1√

2
(W 1

µ + iW 2
µ) W−µ = 1√

2
(W 1

µ − iW 2
µ). (1.36)

Therefore what we have in the hand are the following fields

W±µ  MW = vg

2 ,

Z0
µ  mZ = 1

2 cos θW
gv = v

2

√
g2 + g′2 = MW

cos θW
,

Aµ  mA = 0.

(1.37)

Already there’s an unambiguous prediction: the W bosons should be lighter than
the Z boson.
Moreover we find that, at tree level the following result should hold

ρ = M2
W

cos2 θWm2
Z

= 1 (1.38)

This is the result of an hidden symmetry of the Standard Model, the custodial
symmetry8.

1.3.2 Gauge Sector

Putting together what we found, we can write down the kinetic term in the Lagrangian
for the Z and A bosons after symmetry breaking, in the unitary gauge, as

LK = −1
4FµνF

µν − 1
4ZµνZ

µν + 1
2m

2
ZZµZ

µ, (1.39)

where
Zµν = ∂µZν − ∂νZµ Fµν = ∂µAν − ∂νAµ. (1.40)

Since the gauge bosons transform in the adjoint rep, their interactions are given by
commutators and in particular, the W 3

µ part of the photon field gives us the known
coupling

g[Aµ,W a
ν τ

a] = g sin θWW 3
µW

a
ν

[
τ3, τa

]
=⇒ e = g sin θW = g′ cos θW (1.41)

8"Turning down" the couplings to the Higgs g, g′ → 0 we can see that the Lagrangian eq. (1.6)
has a bigger symmetry group which we label as SU(2)L ×SU(2)R. The symmetry breaking pattern
then becomes SU(2)L × SU(2)R → SU(2)V which is a bigger symmetry than the one with the
couplings so that only at tree level we can see it is effects.
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With this in mind, the W± combinations will have ±1 charge in units of e, which is
what we want.

Without giving the full calculation, one can find that the full gauge Lagrangian
is

L =− 1
4FµνF

µν − 1
4ZµνZ

µν − 1
2(∂µW+

ν − ∂νW+
µ )(∂µ(W−)ν − ∂ν(W−)µ)

+ 1
2m

2
ZZµZ

µ −M2
WW

+
µ (W−)µ

+ ie cot θW
[
ZµνW+

µ W
−
ν − (∂µW+

ν − ∂νW+
µ )Zµ(W−)ν + (∂µW−ν − ∂νW−µ )Zµ(W+)ν

]
+ ie

[
FµνW+

µ W
−
ν − (∂µW+

ν − ∂νW+
µ )Aµ(W−)ν + (∂µW−ν − ∂νW−µ )Aµ(W+)ν

]
+ 1

2
e2

sin2 θW

(
W+
µ (W+)µW−ν (W−)ν −W+

µ (W−)µW+
ν (W−)ν

)
+ e2

(
AµW+

µ A
νW−ν −AµAµW+

ν (W−)ν
)

+ e2 cot θW
(
ZµW+

µ Z
νW−ν − ZµZµW+

ν (W−)ν
)

+ e2 cot θW
(
W+
µ W

−
ν A

µZν +W−µ W
+
ν A

µZν − 2W+
µ (W−)µAνZν

)
(1.42)

1.3.3 Higgs Sector

We can now return to the field h, the Higgs Boson. This boson remains in the
spectrum of the theory even after the choice of the unitary gauge π = 0 by the Higgs
mechanism.
The part of the Lagrangian which gives us the dynamics of the Higgs field is given
by the expansion of the covariant derivative after symmetry breaking

LH = 1
2(∂µh)(∂µh)− m2

h

2

2
− g m2

h

4MW
h3 − g2m2

h

32M2
W

h4+

+ 2h
v

(
M2
WW

+
µ (W−)µ + 1

2m
2
ZZ

µZµ

)
+ h2

v2

(
M2
WW

+
µ (W−)µ + 1

2m
2
ZZ

µZµ

)
,

(1.43)

where mh =
√

2µ and µ is the initial symmetry breaking parameter in the unbroken
Higgs doublet Lagrangian and v is the induced VEV.

As we can see from eq. (1.43), the Higgs field interacts with itself in cubic and
quartic interactions and with the other gauge bosons, again, with cubic and quartic
interactions. As in all the other interaction terms, the strength of the interaction is
proportional to the masses.

1.3.4 Lepton Sector

Let’s study the interactions between the electroweak gauge bosons and the leptons.
As seen in table (1.3) we have classified leptons into left-handed Li = (2, 1)−1 and
right-handed eiR = (1, 1)−2

Li =
(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

, eiR = {eR, µR, τR} i = 1, 2, 3. (1.44)
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We see that the left-handed field shows up as an isospin doublet, whereas the right-
handed field as singlet. In equation eq. (1.44) we highlighted the three generations
left SU(2) doublets and right singlets of leptons. These all transform as a left/right-
handed Weyl spinors. From now on we consider only one generation of leptons for
simplicity’s sake, but the argument can be easily generalized to all three.

The coupling between the leptons and the gauge boson is given by the covariant
derivative in the fermion Lagrangian eq. (1.5)

L = iL̄ /D
(`)
L+ iēR /D

(e)
eR, (1.45)

where the covariant derivatives are different between the left-handed part and the
right-handed one. All leptons couple to the hypercharge gauge boson as we stated
in table (1.3). We denote YL the left-handed hypercharge and YR the right-handed
one. So the expanded Lagrangian will be

L = iL̄

(
/∂ − ig /W a

τa − ig
′

2 YL
/B

)
L+ iēR

(
/∂ − ig

′

2 YR
/B

)
eR. (1.46)

To be clear, the L or R subscript in the Lagrangian are just for convenience, since
they indicate the implicit chirality of the field. But since all leptons are all left- or
right-handed Weyl spinors, it would be technically correct to replace

L̄R /∂L→ L†σ̄µ∂µL,

ēR /∂eR → e†Rσ
µ∂µeR,

(1.47)

where σµ = (1, σi) and σ̄µ = (1,−σi). However, since we’ll almost always deal with
the fields in the broken phase, where the left- and right-handed spinors combine into
Dirac spinors, for simplicity we’ll always write everything in the Dirac rep where9

L̄/∂L = L†γ0γµ
1− γ5

2 ∂µL,

ēR /∂eR = eγ0γµ
1 + γ5

2 ∂µe.
(1.48)

As it is clear, there are still no masses for the leptons. To find them we have to
build the Yukawa sector of the Lagrangian where the fields interact with the Higgs
doublet. This will give mass to the leptons after symmetry breaking.
From the transformation rule of the lepton fields and the Higgs doublet, it is easy
to see that the only scalar quantities we can construct are the ones in Lagrangian
eq. (1.7)

L = Y
[
L̄eHeR + ēRH

†Le
]
. (1.49)

After symmetry breaking, this part will give us the mass for the electrons with the
following term

−me (ēLeR + ēReL) , me = Y√
2
v. (1.50)

9Sometimes we will use the notation where the chirality projector are written as

PL = 1− γ5

2 PR = 1 + γ5

2
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Again, only after electroweak symmetry breaking, together with the diagonalization
of the masses for the gauge bosons, the Lagrangian eq. (1.46) becomes

L = L̄e

[
gτ3 (Zµ cos θW +Aµ sin θW ) + g′

2 YL (−Zµ sin θW +Aµ cos θW )
]
γµLe+

+ YR
g′

2 ēR (−Zµ sin θW +Aµ cos θW ) γµeR.
(1.51)

The terms proportional to the photon field are

Aµ

[
L̄e

(
gτ3 sin θW + g′

2 YL cos θW
)
Le +

(
g′

2 cos θW
)
YR (ēRγµeR)

]
, (1.52)

and using the fact that g sin θW = g′ cos θW = gg′/
√
g2 + g′2, we get to the expected

result for the QED interaction between photons and charged leptons

Aµg sin θW
[
L̄eγ

µ
(
τ3 + YL

2

)
Le + YR

2 (ēRγµeR)
]

= Aµg sin θW [−ēLγµeL − ēRγµeR]
= g sin θWAµJµem,

where we used the unbroken generator in eq. (1.27) and

Jµem = Qe(ēγµe), (1.53)

with Qe = e = g sin θW . As expected, the electromagnetic interaction does not
differentiate between left and right-handed chirality.

The terms proportional to the Z0 boson are

Zµ

[
g cos θW L̄eγµτ3Le −

YL
2 g′ sin θW L̄eγµLe −

YR
2 g′ sin θW ēRγµeR

]
= Zµ

[
(g cos θW + g′ sin θW )L̄eγµτ3Le − g′ sin θW qJµem

]
= Zµ

g

cos θW

(
Jµ3 − q sin2 θWJ

µ
em

)
.

(1.54)

Therefore the Z0 boson not only couples to the EM current but even with an axial
current

Jµ3 = L̄eγ
µτ3Le. (1.55)

There remain only the interaction terms between the leptons and the W± bosons.
Recalling eq. (1.34) we get, from the Lagrangian eq. (1.46)

gW a
µ L̄eγ

µτaLe = g

[ 1√
2
W+
µ L̄eγ

µτ−Le + 1√
2
W−µ L̄eγ

µτ+Le +W 3
µ L̄eγ

µτ3Le

]
(1.56)

and we can directly see that the charged currents are

J+
µ = L̄eγµτ

+Le =
(
ν̄e ē−

)
L
γµ

(
0 1
0 0

)(
νe
e−

)
L

=
(
ν̄e ē−

)
L
γµ

(
e−

0

)
L

= ν̄eLγµe
−
L = ν̄eγµ

1− γ5
2 e−

(1.57)
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and

J−µ = (J+
µ )† = ēγµ

1− γ5
2 νe. (1.58)

The axial part for W 3 goes into the photon and Z0 boson.
The full interaction Lagrangian between the leptons and the gauge boson after

electroweak symmetry breaking becomes

L = qeAµJ
µ
em + g

cos θW
Zµ (Jµ3 − q sin θWJµem) + g√

2

(
W+
µ J

µ− +W−µ J
µ+
)
. (1.59)

1.4 Quark Mixing and CKM
Now that we talked about the electroweak sector

SU(2)L × U(1)Y → U(1)em (1.60)

of the Standard Model, we’re ready to add one of the missing part: the quarks.
We will not talk about QCD in this section, which is the remaining SU(3) of the
full symmetry of the Standard Model, but only how quarks enter in the electroweak
theory and how we can give masses to them with the help of the Higgs mechanism.
It will turn out that whenever we try to diagonalize the mass spectrum, we’ll
introduce some kind of mixing between the quarks which will be mediated by the
electroweak gauge bosons.

1.4.1 The Quarks

The quarks that enter in the Standard Model and their representations are summa-
rized in table (1.3). To be more specific, quarks come in three flavours, just like
leptons, and appear in the theory in their chiral basis

QiL =
(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

uiR = {uR, cR, tR}, dR = {dR, sR, bR}.
(1.61)

Their name are: up, down, charm, strange, top and bottom quarks. In the case of
the quarks, we now consider all three families since, as we will see, they can mix
with themselves, while leptons do not. Whenever using the notation ui we’ll mostly
mean the up row of quarks in the SM which are up and have electric charge, in units
of e, 2/3, charm and top quarks, the others are the dis which have electric charge
−1/3.
Their irrep in the full SM gauge group is

QL ∼ (2, 3) 1
3
, uR ∼ (1, 3) 4

3
, dR ∼ (1, 3)− 2

3
. (1.62)

Quarks carry a lot of indices: one index for the isospin charge, one index for the
color charge, one family index and a Lorentz index. We’ll omit them, as per usual,
since the notation would be too cluttered with them. But remember still that to
construct invariant quantities all indices must be saturated in such a way to have a
singlet for any of the possible symmetries.
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1.4.2 Interactions and Lagrangian

In the same way as we did with the leptons, we start from the following Lagrangian
given in equation eq. (1.5)10

L = iQ̄L

(
/∂ − ig /W a

τa − ig
′

2 YQL
/B

)
QL

+ iūR

(
/∂ − ig

′

2 YuR
/B

)
uR + id̄R

(
/∂ − ig

′

2 YdR
/B

)
dR.

(1.63)

By direct comparison with the leptons, we can easily see that the calculations will
be the same and so we give directly the results for the various currents that one
expects to find, coupled to the respective gauge bosons.
The full fermion currents will be the following

Jµem = −ēγµe+ 2
3 ū

aγµua −
1
3 d̄

aγµda (1.64)

is the EM current coupled to the photon11,

J3
µ = ν̄eγµ

1− γ5
2 νe − ēγµ

1− γ5
2 e+ ūaγµ

1− γ5
2 ua + d̄aγµ

1− γ5
2 da (1.65)

is the axial current coupled to the Z0 boson, and the charged ones

J+
µ = L̄eγµτ

+Le + Q̄aγµτ
+Qa, (1.66)

J−µ = L̄eγµτ
−Le + Q̄aγµτ

−Qa (1.67)

which are coupled to the charged W± bosons.

1.4.3 Yukawa Sector

From the irreps eq. (1.62) and the Higgs we need to construct all the possible
renormalizable scalar quantities. As stated in the previous sections, to do so we’ll
need however another form of the Higgs field since H∗ won’t cut it. The field we’ll
use is the charge conjugate of H defined by equation eq. (1.15).

Now let’s see what kind of scalars we can build up. If we start from Q̄LH we
can easily see that this we’ll be

Q̄LH ∼ (2̄, 3̄)− 1
3
(2, 1)1 = (2̄× 2, 3̄× 1)1− 1

3
. (1.68)

We know that 2̄ × 2 contains a singlet state. What’s missing is the hypercharge
singlet since 1 − 1

3 = 2/3 and the color singlet. If we search in eq. (1.62) for a
suitable quantity, we see that the dR quark serves our purpose and so a suitable
renormalizable operator for our Yukawa sector will be

Q̄LHdR + h.c. = Q̄RHdR + d̄RH
†QL, (1.69)

10Again the computations are given for only one family of quarks if not else specified. The
arguments can be easily extended to three.

11Note the color index a = 1, 2, 3 on the quarks which is saturated.
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where we added the Hermitian conjugate, as always, to include the reality of the
Lagrangian. And this settles down the down part of the Lagrangian. For the up part
we’ll use the charge conjugate Higgs since, if you try, we cannot construct scalar
quantities between up quarks with the normal Higgs doublet.
it is easy to see that the only renormalizable scalar quantity we can construct using
uR is

Q̄LH̃uR + ūRH̃
†QL (1.70)

Therefore, if we now put in all the families and the Yukawa coupling we get the
Yukawa sector for quarks

LY = Y ij
U

(
Q̄iLHd

j
R + d̄jRH

†QiL

)
+ Y ij

D

(
Q̄iLH̃u

j
R + ūjRH̃

†QiL

)
(1.71)

which is exactly the one which was given without explanation in equation eq. (1.7).
Again here we consider all three quark families since in the end quark will mix among
themselves. This is not true for leptons since in the SM we are considering there
are no right-handed neutrinos, which means that they will always be massless and
therefore the mixing matrix can always be "rotated away" and go back to a diagonal
matrix. There cannot be any mixing among neutrinos without their right-handed
counterpart.

1.4.4 Symmetry Breaking

For example, given the Yukawa sector, we can use symmetry breaking and, by going
in the unitary gauge12, we get for the down quarks(

ūL d̄L
)( 0

v+h√
2

)
dR = d̄LdR

(
v + h√

2

)
. (1.72)

Thus the mass for the down quarks is given by a SU(2) symmetry breaking Dirac
term and, with several generations of down-like quarks, we expect

Y ij
D

v√
2
d̄iLd

j
R =⇒ M ij

D = v√
2
Y ij
D (1.73)

For the up quarks is the same but the mass matrix is given in terms of the Yukawa
of the up quarks

M ij
U = v√

2
Y ij
U (1.74)

With this, we see that the mass terms in the Lagrangian for the quarks are

L = d̄iLM
D
ij d

j
R + d̄jRM

D†
ij d

i
L + ūiLM

U
ij u

j
R + ūjRM

U†
ij u

i
L (1.75)

Nobody assures us that the mass matrices will be diagonal, but we would like them
to be diagonal since we expect the quarks, just like any other particle, to have a
definite mass13. Since we don’t have any constraint on the specific form of the mass
matrix we just found, we do not know if it is possible to diagonalize it.

12Remember that whenever we speak about unitary gauge we’re implying that we set the Goldstone
boson "to zero", which is a way of saying that the gauge field eats the Goldstone boson gaining a
new degree of freedom.

13The values of the masses of the quarks are quite difficult to define since they cannot be
experimentally measured due to confinement.



1.4 Quark Mixing and CKM 17

1.4.5 On the Diagonalization of Matrices

We now prove that there exist a method through which we can diagonalize any
matrix. This process is called singular value decomposition and it provides two
unitary matrices L,R such that

L†MR = M̂, (1.76)

where we’ll use the hatted matrix for the diagonal form of M .
From the generic matrix M we can construct two Hermitian matrices

MM † M †M (1.77)

which in general do not commute. Provided that there is no singular eigenvalue and
that the determinant is non-zero, we can easily prove that these matrices have the
same eigenvalues. Indeed we gave

PMM† = det
(
MM † − λ

)
= det{M} det

(
M † − λM−1

)
= det

(
M † − λM−1

)
detM = det

(
M †M − λ

)
= PM†M , (1.78)

and since both matrices have the same characteristic polynomial, they’ll have the
same eigenvalues. Being both Hermitian, we know that they can be diagonalized
thanks to the spectral theorem and so there exist two matrices L and R which
diagonalize the matrices to the same diagonal form since they have both the same
eigenvalues

L(MM †)L† = D̂ = R(M †M)R† (1.79)

Starting from this we define the following

M ′ = LMR† (M ′)† = RM †L†, (1.80)

from which it is easy to see that

M ′(M ′)† = (M ′)†M ′ = D̂. (1.81)

We know that we can always decompose a matrix into two Hermitian matrices as

M ′ =
(
M ′ +M ′†

2

)
+ i

(
M ′ −M ′†

2

)
= H1 + iH2 (1.82)

The two matrices we just defined H1, H2 are obviously diagonalizable since they hare
Hermitian but we would like them to be diagonalizable by the same unitary matrix.
From linear algebra, we know that this is possible if the two matrices commute!
And it is easy to see that

[H1, H2] = 1
4i
[
M ′ +M ′†,M ′ −M ′†

]
= 1

2i
(
M ′M ′† −M ′†M ′

)
= 0 (1.83)

Therefore there exists a unitary matrix W such that W †M ′W = M̂ ′ is a complex
diagonal matrix and therefore, being complex diagonal we can put it in the form

M̂ ′ = M̂Ûϕ, (1.84)
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where Ûϕ = diag
(
eφ1 , eφ2 , · · · , eφN

)
is a matrix of phases. Moreover

W †M ′W = M̂Ûϕ = W †L†MRW (1.85)

and therefore if we define

L̃ = LW R̃ = RWÛ−1
ϕ (1.86)

we found the matrices that diagonalize M .

1.4.6 The CKM Matrix

Now that we know a way for diagonalizing any matrix, we can use it for the mass
matrix for the quarks. Take the up quarks for example

ūiLm̂
u
iju

j
R = ūi′L(U †uL)ikMU

kl(UuR)kjuj′R, (1.87)

where

m̂u =

mu 0 0
0 mc 0
0 0 mt

 (1.88)

and the new mass eigenstates are written in terms of the old ones as

uiL = (UuL)ijuj′L uiR = (UuR)ijuj′R. (1.89)

To distinguish the quarks in the two basis, we put a prime on the current basis
quarks.
Same thing goes for the down quarks where the diagonal form of the mass matrix
will be

m̂d =

md 0 0
0 ms 0
0 0 mb

 (1.90)

and the mass eigenstates

diL = (UdL)ijdj′L diR = (UdR)ijdj′R. (1.91)

The kinetic terms do not change under this change of basis. In fact it is easy to see
that, if we start from the original current base lagrangian

L =
(
ū′L d̄′L

)i i/∂ + γµ

g′

6 Bµ + g
2W

3
µ

g√
2W

+
µ

− g√
2W

−
µ

g′

6 Bµ −
g
2W

′
µ

(u′L
d′L

)i

+ ūi′R

(
i/∂ + g′

2
3
/B

)
ui′R + d̄i′R

(
i/∂ − g′ 13

/B

)
di′R,

(1.92)

when we do the change of basis the unitarity of the transformation makes the
matrices drop out since the hypercharge interactions are generation diagonal

i
∑
i

ūiR /Du
i
R ≡

flavour
ūR1uR → ūR U

†
uR

1UuR︸ ︷︷ ︸
1

uR = ūR1uR (1.93)



1.4 Quark Mixing and CKM 19

Moreover the same happens on the Bµ and W 3
µ terms since these do not mix up and

down-type quarks. This in turn makes the interaction with the photon unchanged.
The mass term, as we expect, becomes diagonal

Lmass = d̄i′LM
D
ij d

j′
R + ūi′LM

U
ij u

j′
R + h.c.

= d̄iL

(
UdLMdU

†
dR

)
ij
djR + ūiL

(
UuLMuU

†
uR

)
ij
ujR + h.c.

= d̄iLm̂
D
ijd

j
R + ūiLm̂

U
iju

j
R + h.c.

(1.94)

The interesting bit comes out from the isospin doublet, the left part, where the two
components change with different unitary matrices

QiL =
(
uiL
diL

)
→

U ijuLujL
U ijdRd

j
L

, (1.95)

whenever the interaction mixes the two quark types. This happens with the W±
couplings

g√
2
W+
µ ū
′
Lγ

µ1d′L ≡
flavour

ū′L1d′L = ūL UuL1U †dL︸ ︷︷ ︸
VCKM

dL, (1.96)

where a new matrix in flavour space appears since we cannot use unitarity to reduce
the UuLU

†
dL

term to the identity. This matrix is known as the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The CKM matrix is a complex unitary matrix, and thus
has nine real degrees of freedom, or three complex degrees of freedom. If VCKM were
real, it would be a O(3) matrix, i.e. with three degrees of freedom. This means that
out of the nine parameters of the complex CKM, three are angles and six are phases.
However since the quark fields as mass eigenstates have a residual U6(1) symmetry

diL/R = eiαidiL/R, uiL/R = eiβiuiL/R. (1.97)

Thus, we can use this freedom to set some phases to zero. Under these transfor-
mations, VCKM generally transforms. However, if the two rotations are the same
αi = βi, the matrix remains unchanged. Therefore out of the 6 possible phases we
could have set to zero, there remain only 5 possible combinations that effectively
change the CKM matrix. Therefore there remain only one free phase in the CKM.
The total remaining degrees of freedom are: three angles θ12, θ23, θ13, corresponding
to rotations in the ij-flavour planes, and a phase δ. The angle θ12 is called the
Cabibbo angle θC .

One possible representation of the CKM matrix is the following

V =

Vud Vuc Vub
Vcd Vcs Vcb
Vtd Vts Vtb

. (1.98)

The presence of the phase reflects the CP violation of the weak charged currents.
We will see other representations of the CKM matrix in later sections.

For completeness we give here the full interaction Lagrangian between the four
gauge bosons γ, Z0 and W±. Starting from the diagonal interactions, which are the
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ones between the photon γ

LqA = i
∑
k

(
ūkLγ

µ
[
∂µ + ie

2
3Aµ

]
ukL + ūkRγ

µ
[
∂µ + ie

2
3Aµ

]
ukR

+ d̄kLγ
µ
[
∂µ − i

e

3Aµ
]
dkL + d̄kRγ

µ
[
∂µ − i

e

3Aµ
]
dkR

) (1.99)

and the Z0 boson

LqZ =
∑
k

(
− ūkLγµukL

[
eZµ

sin 2θW

][
1− 4

3 sin2 θW

]
+ ūkRγ

µukR

[
eZµ

sin 2θW

]4
3 sin2 θW

+ d̄kLγ
µdkL

[
eZµ

sin 2θW

][
1− 2

3 sin2 θW

]
− d̄kRγµdkR

[
eZµ

sin 2θW

]2
3 sin2 θW

)
.

(1.100)

The non-diagonal interactions with the W± bosons are given by

LqW = − e√
2 sin θW

∑
ij

(
V ij
CKM ūLiγ

µdLjW
+
µ +

(
V ij
CKM

)†
d̄Liγ

µuLjW
−
µ

)
. (1.101)

We note also that in the SM there are no Flavour Changing Neutral Currents (FCNC)
at tree level. At loop level these are highly suppressed by the GIM mechanism [79].

1.4.7 Wolfenstein Parametrization and Standard Parametrization

The CKM matrix is usually parametrized in some specific way. The purpose of a
specific parametrization is to incorporate in some way the unitarity condition of
the CKM. A property that is used throughout all parametrization is the so-called
rephasing invariance which is the possibility of changing the overall phase of any
row, or any column, of the CKM matrix, without changing the physics contained
in that matrix. Using this invariance, one usually sets Vud and Vus to be real and
positive14.
As we discussed in the previous sections, we know that the CKM matrix depends on
four parameters: three angles and one phase. This is, of course, independent of the
specific parametrization used. One such parametrization, which does not highlight
the number of free parameters, is the one given in equation eq. (1.98). There are
better parametrizations that make clearer the nature of the CKM matrix. One
such parametrization is the standard parametrization: the free parameters are three

14The reason for this choice has to do with a particular parameter that comes into play in the
physics of the neutral kaon system.
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angles θ12, θ13, θ23 and one complex phase δ and the CKM has the form

V =

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23



×

 cos θ13 0 sin θ13e
iδ

0 1 0
− sin θ13e

iδ 0 cos θ13


 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

,

(1.102)

where we used the notation sij = sin θij and cij = cos θij .
From the physical point of view, this matrix does not give us much more

information than the original form of equation eq. (1.98). From this prospective
the Wolfenstein parametrization is better suited. This parametrization incorporates
some experimental informations from the measured moduli of the matrix elements,
which we gave in equations eqs. (1.121) to (1.128). This parametrization it is based
on the approximation of the various matrix elements in terms of λ = sin θC ≈ 0.22
and is given, up to third order in λ, by

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) Aλ2 1

+O(λ4), (1.103)

where, with respect to the standard parametrization, we define [41, 47, 149]

s12 = λ = |Vus|√
|Vud|2 + |Vus|2

, s23 = Aλ2 = λ

∣∣∣∣ VcbVus

∣∣∣∣,
s12e

iδ = V ∗ub = Aλ3(ρ+ iη) = Aλ3(ρ̄+ iη̄)
√

1−A2λ4
√

1− λ2[1−A2λ4] (ρ̄+ iη̄)]

(1.104)

which are called, together with λ, Wolfenstein parameters. These relations ensure
that ρ̄ + iη̄ = −(VudV ∗ub)/(VcdV ∗cb) is phase convention independent and that the
CKM matrix written in terms of the four parameters A, λ, ρ̄, η̄ is unitary to all orders
in λ.
While λ = 0.220658± 0.00044 and A = 0.818± 0.012 [27] are relatively well known,
the parameters ρ and η are much more uncertain. The main goal of CP-violation
experiments is to over-constrain these parameters and, possibly, to find inconsistencies
suggesting the existence of physics beyond the SM. And is precisely what we are
going to do in this thesis by introducing the new result on the parameter ε′/ε, which
we will discuss at later time.

1.4.8 Unitarity Triangle

The condition on unitarity poses a strong constrain on the physics of the CKM
matrix. In fact, from the unitarity condition V †V = 13×3 we can write six equations
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for the off-diagonal elements. For example, one such equation is of the form

3∑
i=1

VidV
∗
is = 0. (1.105)

Every one of these equations define a triangle in the complex plane where each one of
the legs of the triangle is one of the elements of the sum. These are called unitarity
triangles. The Wolfenstein parametrization comes in very handy since from that of
equation eq. (1.103) we can see that of the six unitary triangles, only two come with
the same power of λ

O(λ3) :
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0.

(1.106)

These two specific triangles are useful for the study of the B-meson decay. The other
four triangles contain terms with different powers of λ and so they make up some
squeezed triangles.
Above all this unitarity triangle there is The Unitarity Triangle (UT). This is given
by the first of the relations in equation eq. (1.106) with the sides normalized by
VcdV

∗
cb

VudV
∗
ub

VcdV
∗
cb

+ 1 + VtdV
∗
tb

VcdV
∗
cb

= 0. (1.107)

We can draw this relation in the complex plane as follows: we start from (0, 0)
and then we move to (1, 0) using the second factor of eq. (1.107), then we take
either one of the other two factors and go back to the origin. This process leaves
us with the triangle in the complex plane in figure (1.2) alongside the experimental
determination of (ρ̄, η̄)

(a) Theoretical Unitarity Triangle.
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(b) Experimental determination of (ρ̄, η̄), courtesy of the UTfit collabora-
tion.

Figure 1.2. The Unitarity Triangle

The parameters ρ̄ and η̄ can be expressed in terms of the Wolfenstein parameters
ρ and η by means of the following relations

ρ̄ = ρ

(
1− λ2

2

)
+O(λ4) η̄ = η

(
1− λ2

2

)
+O(λ4). (1.108)

The angles in the Unitarity Triangle are defined15 as

α ≡ arg
[
−VtdV

∗
tb

VcdV
∗
cb

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
,

γ ≡ arg
[
−VudV

∗
ub

VcdV
∗
cb

]
, βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗cb

]
.

(1.109)

15Note this important feature: the definition of the angles are independent of any additional
phase since any added phase to some quark is going to get cancelled by the ratio with the other
elements. Equivalently, any CKM triangle can be rotated or scaled in the complex plane without
modifying the angles that make them up.
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1.5 Just a Taste: Flavour in the Standard Model

1.5.1 Global Symmetries

This peculiarity of the Yukawa interaction sparks an immediate question: what
would be the full symmetry group of the SM if there wasn’t any Yukawa interaction?
To answer this, let us set for now all the Yukawa couplings to zero Y`, YU , YD = 016.
Under this assumption, the whole global symmetry group of the SM is huge, in
particular

GSM(Y = 0) = U(3)5 = U(3)3
q × U(3)2

` = SU(3)3
q × SU(3)2

` × U(1)5, (1.110)

where we defined

U(3)3
q = U(3)QL × U(3)uR × U(3)dR , U(3)2

` = U(3)L × U(3)e. (1.111)

For the second equality of eq. (1.110) the isomorphism17 U(3) ' SU(3)× U(1) is
used, together with the definition

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)e. (1.112)

Of the residual five charges we identify the first three with the baryon number, the
lepton number and the hypercharge. These are the ones that are not broken by the
Yukawa interactions. The remaining two are identified by the Peccei-Quinn symmetry.
The important thing is that the Lagrangians eqs. (1.5) and (1.6) are invariant under
the flavour symmetry group SU(3)3

q × SU(3)2
` . The Yukawa interactions break this

symmetry, leaving us with the residual global symmetry

GSM(Y 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (1.113)

Therefore the SM is not flavour invariant.

1.5.2 Counting the Physical Parameters

The discussion made until here may seem arbitrary but in fact is very useful if
we want to count the number of independent parameters in the Yukawa coupling
matrices.
Let us start with the Yukawa sector for the quarks: how many independent parame-
ters does Lq

Y have? Consider a more general theory where the number of flavours is
n. The two Yukawa matrices YU , YD are two 3× 3 complex matrices, which means
that they both have n2 real parameters and n2 imaginary ones. The kinetic part

16Physically we can think of this as studying the theory at an energy where the Yukawa couplings
are negligible.

17This isomorphism is not given by the direct product. In fact there is a short exact sequence of
Lie groups

1→ SU(n)→ U(n) det−→ U(1)→ 1
and therefore U(n) is given by the semidirect product

U(n) ' SU(n) o U(1).
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of the Lagrangian for the quarks has a global U(n)3 symmetry that enables us to
constrain 3n2 parameters. But the baryon number is a broken symmetry, which
means that we need to remove one constrain from the global symmetry. So in the
end we have

Nindep. = 2× 2n2 − 3n2 + 1 = n2 + 1. (1.114)

How many independent parameters are imaginary? To find them consider the limit
in which Y = 0. In this limit, the Lagrangian is SO(n)3 symmetric which implies
that we can remove 3n(n−1)/2 parameters. Therefore the number of real parameters
is just

NRe = 2n2 − 3n(n− 1)
2 = n+ n+ n(n− 1)

2 . (1.115)

The division in equation eq. (1.115) is not at random: the first n real parameters
are the masses of the n d-type quarks while the other n is the number of the masses
for the u-type quarks. The third factor is the number of mixing angles. We can find
now the number of complex phases

Nindep. = NRe + (n− 1)(n+ 1)
2 . (1.116)

Taking the limit of n→ 3 we get that the Yukawa matrices YD, YU , can be expressed
in terms of 9 real parameters (three masses for the down quarks, three masses for
the up quarks and three mixing angles) and one complex phase. This complex phase
is crucial since it cannot be eliminated by any change of basis and, as we will see
later, enables the possibility of CP violation in weak decays.

Now we do the same for the Yukawa coupling of the leptons. Here we have only
one Yukawa matrix Y` that has in principle n2 real parameters and n2 imaginary
ones. In the limit where no Yukawa interaction is present, the kinetic term for the
leptons has a global U(n)2 symmetry which constrains 2n2 parameters. In analogy
with what we have done for the quarks, we can use the residual SO(n) symmetry to
eliminate n(n− 1) parameters in such a way that the number of real independent
parameters becomes

NRe = n2 − n(n− 1) = n. (1.117)

These n parameters are exactly the n masses of the charged leptons. Since in the
broken phase we still have a residual U(1)n symmetry (one for every lepton) the
total number of parameters becomes

Nindep. = 2n2 − 2n2 + n = n = NRe. (1.118)

This means that no matter what, in the lepton sector there are no complex phases.
This means that in the lepton sector there cannot be any CP violation and mixing!

Based on the arguments given in the previous sections, this is exactly what
we expected. After symmetry breaking the leptons all got a mass matrix which
was diagonal while the quarks didn’t. By diagonalizing the quarks mass matrix
we introduced the possibility of mixing in the weak sector and, buy the nature of
the initial mass matrix, we could not require that the mixing matrix be real. By
an analogous computation we found that the number of parameters in the mixing
matrix was four: three angles and one complex phase. Plus we had the six masses of
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the quarks. The complex CKM matrix is pivotal in the analysis that we will carry
in the following sections. By this mean, we can now complete the discussion with an
in-depth study of the CKM matrix.

1.6 What’s so Special About the CKM Matrix?

1.6.1 Interaction Vertices

Now that we have a complete theory of weak interactions we can start constructing
Feynman diagrams and evaluating some measurable quantities. It turns out that
whenever we have a flavour changing current we’ll need now to insert in the interaction
vertex one of the possible elements of the CKM matrix.

Let’s take for example the pion decay. At the level of the hadrons, the decay is
given by

π+ → µ+νµ (1.119)

which, at the level of the quarks is given at tree-level by the following Feynman
diagram

W+

u

d̄

νµ

µ+

Vud

Figure 1.3. Pion decay at tree level mediated by a W+ boson

The amplitude for such Feynman diagram is given, in the unitary gauge, by(
g

2
√

2

)2
V ∗udv̄dγ

µ(1− γ5)uu
1

q2 −M2
W

(
−gµν + qµqν

M2
W

)
ūµγ

ν(1− γ5)vν , (1.120)

where an additional Vud term appears with respect to the naive amplitude and
q =
√
s. This factor can greatly suppress some processes for which the CKM matrix

element is very small.

1.6.2 How to Measure the CKM Elements

The CKM matrix elements are usually measured from leptonic and semileptonic
decays. With the top quarks the processes are a little bit more difficult since it is
mass prevents it from forming bound states with other quarks. In that case we use
hadron mixing; we won’t go into much detail about it. Due to the fact that in the
theoretical predictions, only the square of the amplitude for the process appears,
it is not possible to measure experimentally the precise value of the CKM matrix
elements but rather we can measure either the moduli of them or the difference in
phases between two.
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Here we give some details on how the CKM moduli are measured experimentally
and their values as they appear in the PDG [152]. All of the processes governed by
weak decays are proportional to some power of the Fermi constant GF =

√
2g2

2
8M2

W
. This

is precisely measured from the decay of the muon to the electron.

|Vud| This matrix element involves only quarks of the first generation and is thus the
one which can be best determined. There are basically three ways of measuring
it. The first one involves superallowed Fermi transitions, which are beta decays
connecting two JP = 0+ nuclides in the same isospin multiplet. The second
one is by using the neutron decay which at tree level is given by the diagram
in figure (1.4).

u

d

d

u

d

u

W−

ν̄µ

µ−

n p
Vud

Figure 1.4. Neutron decay at tree level.

The moduli of this matrix element, as given by the PDG [87], comes out to be

|Vud| = 0.97370± 0.00014 (1.121)

|Vus| This matrix element can be extracted from the analysis of semileptonic decays
of the K-meson such as the one in figure (1.5).

s

ūū

u
W−

ν̄µ

µ−

K− π0Vus

Figure 1.5. K− → π0µ−ν̄µ at tree level

This matrix element comes out to be [14]

|Vus| = 0.2245± 0.0008. (1.122)

Another interesting way to measure the value of this matrix element is by
hyperon decays [43].

|Vub| This matrix element can be measured from the semileptonic decay of B meson
such as the one in figure (1.6).
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b

ūū

u
W−

ν̄µ

µ−

B− π0Vub

Figure 1.6. B− → π0µ−ν̄µ at tree level

From these processes, we find a value for the moduli of this matrix element of
[104]

|Vub| = 0.00382± 0.00024. (1.123)

|Vcd| This matrix element can be measured from the semileptonic decay of charmed
particles like the D meson. One such process can be found in figure (1.7).

c

d̄d̄

d
W+

νµ

µ+

D+ π0Vcd

Figure 1.7. D+ → π0µ+νµ at tree level

The moduli of such matrix element come out to be [99, 75]

|Vcd| = 0.221± 0.004. (1.124)

|Vcs| This matrix element can be found by semileptonic decays of charmed particles
like the D meson in which the c quark goes into a s quark. The lightest meson
which contains an s quark is the K meson. Such decay is depicted at tree level
in figure (1.8)

c

ūū

s
W+

νµ

µ+

D̄0 K−Vcs

Figure 1.8. D̄0 → K−µ+νµ at tree level

This matrix element comes out to be [61, 151, 3, 4, 12]

|Vcs| = 0.978± 0.011. (1.125)

|Vcb| This matrix element is determined by the decay B0 → D∗−l+νl like the one in
figure (1.9).
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d

c̄

d

b̄
W+

νe

e+

B0 D∗−Vcb

Figure 1.9. D̄0 → K−µ+νµ at tree level

For these decays, we gathered a lot of measurements that got us a value of
[104]

|Vcb| = 0.041± 0.0014. (1.126)

|Vtd|
|Vts|

These are two of the three matrix elements which involve the top quark.
These matrix elements are measured by neutral meson mixing like B0 − B̄0

and Bs − B̄s. The diagrams describing these oscillations, which will be of
fundamental importance for CP violation in later sections, are so-called box
diagrams. One such diagram is depicted in figure (1.10).

b

s

W−

t

s

b

W+

tB0 B
0

Figure 1.10. Relevant box diagram for the measurement of |Vtd| and |Vts|.

By evaluating these processes on the lattice assuming Vtb = 1

|Vtd| = 0.0080± 0.0003 |Vts| = 0.0388± 0.0011. (1.127)

|Vtb| This matrix element has been found by the CDF [6] and D0 [1] collaborations
by measuring the branching ratio Br(t → Wb)/Br(t → Wq) assuming three
generations of quarks. The value they gave is

|Vtb| = 1.013± 0.030. (1.128)

1.6.3 CP-violation in the SM

We can now briefly discuss how the complex phase in the CKM breaks CP-invariance
in the weak charged currents.
First, we need to see how the two discrete symmetries, parity and charge conjugation,
act on the relevant fields for our analysis. These fields are bosonic vector fields, for
the W±, and four-spinors Ψ, for the quarks. Starting from parity, let us define a
state of a single particle A with momentum p and other quantum numbers σ as
|A, p, σ〉. The parity operator will act on this state as

P |A, p, σ〉 = ηA |A,−p, σ〉 (1.129)
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since, at the classical level, parity just inverts the coordinates. On the antiparticle
state the operator will act similarly, but with another rephasing

P
∣∣∣Ā, p, σ〉 = ηĀ

∣∣∣Ā,−p, σ〉 . (1.130)

Given the creation operator a†σ we have

Pa†σ(p) |0〉 = a†σ(−p) |0〉 ηA (1.131)

henceforth

Pa†σ(p)P−1P |0〉 = Pa†σ(p)P−1 |0〉 = ηAa
†
σ(−p) |0〉

=⇒ Pa†σ(p)P−1 = ηAa
†
σ(−p).

(1.132)

Similarly for the antiparticle. Now let us consider a scalar field Φ(x) and its expansion
in creation and annihilation operators, then

PΦ(x)P−1 =
∫ d3p

(2π)32Ep

[
PapP−1e−ipx + Pb†pP−1eipx

]
=
∫ d3p

(2π)32Ep

[
η∗Aa−pe

−ipx + ηĀb
†
−pe

ipx
] .= η∗ΦΦ(Px).

(1.133)

In order for the equality to hold, we need to have η∗A = ηĀ = η∗Φ which implies
ηAηA = 1. What we need to define still is the intrinsic phase η∗Φ. Doing a similar
thing for a spinor field, defining its transformation property under parity as

Pφ(x)P−1 .= η∗Aγ
0ψ(Px) (1.134)

we get a slightly different result

Pψ(x)P−1 =
∫ d3p

(2π)3√2Ep

[
η∗Aaσ(−p)uσ(p)e−ipx + ηĀb

†
σ(−p)vσ(p)eipx

]
=
∫ d3p

(2π)3√2Ep

[
η∗Aaσ(−p)γ0uσ(−p)e−ipx − ηĀb

†
σ(−p)γ0vσ(−p)eipx

]
(1.135)

which implies ηĀ = −η∗
Ā
, which depends only on the choice of ηĀ. For a vector field

we get a similar result as for the calar field PAµ(x)P−1 = −η∗APµνAν(Px).
Next, there is charge conjugation. This can be found by imposing that the following
conditions hold: take a spinor field ψ and denote its charge conjugate as ψc = Cψ̄T ,
then

ψ̄cψ̄c = ψ̄ψ ψ̄c/∂ψc = ψ̄ /∂ψ. (1.136)

From the first condition, we get that(
ψ†c

)
α

(
γ0
)
αβ

(ψc)β = ψγ
(
C†
)
γα

(
γ0
)
αβ

(C)βσψ
†
σ = −ψ†σ

(
C†γ0C

)
γσ
ψγ

= ψ†σ

(
γ0
)
σγ
ψγ = ψ†σ

(
γ0
)T
γσ
ψγ
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from which we can extract
C†γ0C = −γ0. (1.137)

From the second condition we get(
ψ†c

)
α

(
γ0γµ

)
αβ

(∂µψc)β = ψσ
(
C†
)
σα

(
γ0γµ

)
αβ

(C)βγ
(
∂µψ

†
)
γ

= ψ†γ

(
γ0γµ

)
γσ

(∂µψ)σ. (1.138)

By comparison, we can say

C†
(
γ0γµ

)
C =

(
γ0γµ

)T
= (γµ)Tγ0 (1.139)

For µ = 0 it is easy to show from equation 1.139 that the operator C is Hermitian.
Adding the unitary quantity γ0γ0, from equation 1.139 we get

C
(
γ0γµγ0γ0

)
C = Cγµ†γ0C = (γµ)Tγ0 (1.140)

Now we multiply both the sides by γ0 and we exploit the anticommutation between
C and γ0 since the equation 1.137 is true, so we get

Cγµ†γ0Cγ0 = (γµ)T

− Cγµ†C = (γµ)T

CγµC = −γµ∗ (1.141)

The only thing to do now is to determine the operator. We know that γ0, γ1, γ3 are
real and symmetric (like also γ5) whereas γ2 is imaginary. Since C anticommutes
with γ0, γ1, γ3 and commutes with γ2, imposing the condition C2 = 1 we can define
the operator up to a sign

C = iγ2. (1.142)
With this definition of charge conjugation we get that a scalar and a pseudovector
are unchanged under charge conjugation, vectors and tensors change sign.
Therefore we have

CPW+
µ CP−1 = −eiξW ηνµW−ν

CPW−µ CP−1 = −eiξW ηνµW+
ν

CP Zµ CP−1 = −ηZηµνZν

CP h CP−1 = ηhh

CP ui CP−1 = eiφuiγ0CūiT

CP di CP−1 = eiφdiγ0Cd̄iT

(1.143)

The question is now: is it possible to choose the phases ξW , ηZ , ηh, φui , φdi in such a
way that the weak Lagrangian is CP invariant? Let’s go directly to the culprit, the
W boson interactions with quarks. What we have is the following

CP
[
g√
2
W+
µ ū

i
Lγ

µdjLVij + V ∗ij d̄
j
Lγ

µuiLW
−
µ

]
CP−1

= g√
2
Vij
(
W−µ e

−iξW
)
ei(φ

j
d
−φiu)

(
−d̄jLγ

µuiL

)
+ g√

2
V ∗ij(W+

µ e
iξW )ei(φiu−φ

j
d
)
(
−ūiLγµd

j
L

)
.

(1.144)
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The condition for invariance is given by

V ∗ije
−i(ξW+φj

d
−φiu)/2 = Vije

i(ξW+φj
d
−φiu)/2 (1.145)

which can only be true if we can choose the phases such that the product between
the phase and the CKM matrix elements is real. But we know that the CKM matrix
has a complex phase that cannot be reabsorbed in any way and that is present in
every choice of basis. This means that the equality eq. (1.145) cannot hold and
therefore we have CP violation.

1.6.4 The Jarlskog Invariant

Now that we’re familiar with the existence of the CP-violating phase, we would like
to be able to quantify it in a meaningful way that is manifestly basis-independent.
What we need is some kind of invariant that identifies CP violation. Such an object
exists and it is called the Jarlskog invariant, J [63, 81, 98, 97, 150]. It is defined by

Im
[
VijVklV

∗
i`V
∗
kj

]
= J

∑
mn

εikmεj`n,

where there is no implicit sum on the left-hand side. In terms of the Wolfenstein
parametrization, this corresponds to

J = c12c23c
2
13s12s23s13 sin δ ≈ λ6A2η

This parametrization-independent quantity measures the amount of CP violation in
our model. The most remarkable observation is that it depends on every physical
mixing angle. Thus if any of the mixing angles are zero, there would be no CP
violation. In fact, we can see that the amount of CP violation in the Standard
Model is small, but it is not small because the CP phase δ is small. Quite on the
contrary, it is small because of the mixing angles. We can see this in the Wolfenstein
parametrization where the Jarlskog invariant comes along with six powers of λ.
The experimental value of J is [152]

J = (3.0+0.15
−0.09)× 10−5. (1.146)
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Chapter 2

Quantum Chromodynamics and
Strong Interaction

The strong interaction is the missing piece of the Standard Model which is described
by the SU(3) symmetry group. Of the three fundamental forces that the SM can
explain, the strong force is by far the most complicated. This force governs the
behaviour of quarks and how they bind together to form composite particles which
we call hadrons. Not only that, but on a larger scale, it also governs how the nuclei
of different atoms bind together and their stability. At these two different scales,
the particles that mediate the interactions are different: on the smaller, hadronic,
scale the force mediator is called gluon, while at the larger scale the carriers are light
mesons such as the pion. Quantum chromodynamics is the Quantum Field Theory
that describes the interactions of colored particles. Color is the quantum number of
the SU(3) symmetry group in the SM.
What makes the strong force so difficult to work with and to do actual calculations,
it its highly non-perturbative structure at low enough energy scales. Perturbation
theory is an essential bit of mathematics that enables us to carry out specific
computations and without it, unless the model is exactly solvable1, we cannot go
any further. But then, how come that we in fact do calculations which depend on
strong dynamics? We use a tool called lattice QCD2. This approach was introduced
by Wilson [146] and is an approximation scheme in which the continuum gauge
theory is replaced by a discrete statistical mechanical system on a four-dimensional
Euclidean lattice. The basic idea of lattice QCD is to employ a specific ultraviolet
regulator, i.e. the lattice, on which we can do computations exactly. Of course, such
a tool comes with its benefits and with its drawbacks. One such drawback is that
by discretizing space-time, we lose one of the foundations of QFT which is Lorentz
invariance. Moreover, a lattice calculation requires some very intensive computations
which, in turn, requires a very powerful computer. Although we are going to use
heavily the ideas of lattice QCD and lattice regularization, we won’t go into much
details on how such lattice computations are done, what is important is that even in

1Sadly we know far too well that most of the actual physical models are not exactly solvable by
analytical methods.

2This is not the only tool. There are also other theories like the 1/Nc [135] expansion or Chiral
Perturbation Theory (ChPT).
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the non-perturbative regime, physicist know how to do calculations.
The fundamental property of QCD, which causes all the problems we write up until
now, is asymptotic freedom. What this means is that, at high enough energy, QCD
can be treated perturbatively: the theory becomes asymptotically free gs(Λ) Λ→∞−→ 0,
where Λ is some energy scale. That’s right, the coupling depends on the energy at
which the process takes place. This is a general feature of any QFT and comes from
the process of reabsorbing infinities in a process called renormalization. We will see
how this process will come into play in this chapter.

2.1 The QCD Lagrangian
The QCD Lagrangian is constructed by taking the kinetic term of the relevant gauge
field and the kinetic term for the fermions. This leaves us with a Lagrangian of the
form

LQCD = −1
4G

a
µνG

aµν + ψ̄a
q

(
i /D

ab −mδab
)
ψb
q , (2.1)

in which the field Ga
µ are the gluons and the fields ψq are the quarks. But reality, as

always, is more complicated than this. What we glossed over up until now is that
gauge freedom completely breaks down our possibility to do calculations. This is due
to the fact that when studying QFTs one makes use of an object called generating
functional Z[J ]. The generating functional is a functional3 which is used to find, in
any order in perturbation theory, the value of some Feynman diagram: it "generates"
at any order, the relevant perturbative terms and is in this bit of mathematics that
the problem lies. Take a general gauge field Aaµ associated with some gauge group
G. Let S[A] be the action4 functional, then the generating functional is defined in
Minkowski space as

Z[Jµa ] =
∫
DA exp

[
iS[A]− i

∫
d4xAaµ(x)Jµa (x)

]
, (2.2)

where Jµa are dimG external currents. Then, green functions can be found by
functionally deriving Z[J ] and setting the external current to zero. For example,
the two-point function (propagator) of the gauge field, is found by

Gabµν(x) = 〈0|Aaµ(x)Abν(0)|0〉 = 1
Z[0]

δ

δJµa

δ

δJνb
Z[J ]

∣∣∣∣∣
J=0

. (2.3)

If we have some additional fields which interact with the gauge field, just like our
initial QCD Lagrangian, equation like eq. (2.3), gives the complete two-point function
which incorporates all the possible corrections to the free propagator. But what is
the integration measure in the definition of the generating functional of equation
eq. (2.2)? Broadly speaking it means that we need to integrate over all possible field
configurations. But here’s the catch: gauge freedom makes any configuration part of
an infinite equivalence class of configurations where the physics is unchanged and
we need to integrate over all of them. It is not difficult to see that even naively,

3Incredible!
4The action is defined as the integral over spacetime of the Lagrangian density.
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this makes the integration measure divergent. To solve this problem we need to
fix the gauge in such a way that the physical result is independent of such a fix
but such that makes the integration well defined. The procedure to fix the gauge
in a non-Abelian theory was found by Fadeev and Popov5 [66]. Without going
into much more details, what they discovered is that by fixing the gauge there
appeared some new fictitious particles which we call Ghosts. Ghosts are in no way
physical particles, they cannot be measured, they are not real, but they are only a
result of the mathematical process of fixing the gauge. This particles appear in the
Lagrangian as a bosonic term but they are described by Grassman variables and so
obey Fermi-Dirac statistic.
There are a whole plethora of possible gauges: covariant gauges, axial gauges, non-
linear gauges, and so on. In the simplest case of the covariant gauge-fixing ∂µGa

µ = 0,
the full QCD, gauge-fixed, Lagrangian in all of its glory is given by

LQCD = −1
4G

a
µνG

aµν − 1
2α
(
∂µGa

µ

)2
+ (∂µχa)∗Dab

µ χb + ψ̄q
(
i /D −m

)
ψq, (2.4)

where α is the gauge parameter, χi are the Ghost fields and Dab
µ = δab∂µ− gsfabcAc

µ

is the covariant derivative in the adjoint representation of SU(3).

2.2 Perturbative QCD
We are now ready to start the analysis of QCD in the perturbative regime. To
employ perturbation theory, we need to choose an energy scale such that quarks and
gluons become the asymptotic states of the theory instead of the hadrons.
Given the Lagrangian eq. (2.4) we can extrapolate the various interaction vertices.
The non-Abelian nature of the SU(3) symmetry group adds some interesting inter-
actions such as three- and four-gluon vertices which in a simpler theory like QED
are not present. We now give a short list of the Feynman rules for the vertices and
their mathematical counterpart a, µ

i j = igsγ
µta (2.5)

k

a, µ

b c = −igsfabckµ (2.6)

5There is still a problem with this approach since fixing an orbit in the guage configuration space
can result in ambiguities, the so-called Gribov ambiguity [82]
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p

k

q
b, ν

a, µ

c, ρ = gfabc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] (2.7)

b, νa, µ

c, ρ d, σ

=

−ig2
[
fabef cde(gµρgνσ − gµσgνρ)

+facefdbe(gνµgρσ − gµσgνρ)

+fadefbce(gµνgρσ − gµρgνσ)
] (2.8)

For the later chapters, we also need the free propagators of both the quarks and
the gluon derived from the associated free Lagrangian and come out to be

p
i j = −i

/p−m
δij =

i(/p−m)
p2 −m2 δij (2.9)

k
a b = iδab

k2 (2.10)

ka, µ b, ν = iδab

k2

(
−gµν + (1− α) kµkν

k2 + iε

)
, (2.11)

where α is the covariant gauge-fixing constant appearing in the Lagrangian eq. (2.4).

2.3 Renormalization of QCD
A general feature of most QFTs is the presence of divergences in the perturbative
series when evaluating loop diagrams. Since we know, experimentally, that the
results should be finite we need a way to systematically eliminate the unphysical
divergences. This is done by means of renormalization [56]. In order to deal with
divergences that appear at the quantum6 corrections to Green functions, the theory
has to be regularized to have an explicit parametrization of the singularities and
subsequently renormalized to render the Green functions finite. There are many
ways of regularizing Green functions, but what we will employ is Dimensional

6I will use quantum and loop corrections interchangeably.
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Regularization (DR)7 [16, 26, 48, 137] by analytically continuing the spacetime
dimensions to d = 4− 2ε; the physical limit is taken by letting ε→ 0.
There are also many ways upon which we can subtract the singularities. For our
interest, we will mostly employ the modified Minimal Subtraction, or MS for short.
To eliminate the divergences we firstly need to renormalize the fields and parameters
in the Lagrangian eq. (2.4) defining several renormalization constants

Ga
Bµ = Z

1/2
3 Ga

µ ψqB = Zqψq χa
B = Z̃

1/2
3 χa

gB = Zggµ
ε αB = Z3α mB = Zmm

(2.12)

in which the index B denotes the bare quantities. Note that a scale µ has been
added to the coupling constant g to make it dimensionless in D = 4− 2ε spacetime
dimensions.
In the next sections, we are going to evaluate the 1-loop renormalization of QCD
within the given framework. In general, the Green functions are going to depend
on the gauge-fixing parameter α, but the physical results are gauge-independent.
Therefore we are going to use the Feynman gauge α = 1 for the following calculations.

2.3.1 Vacuum Polarization

The first loop corrections that we are going to evaluate are the ones to the gluon
propagator. At one loop there are four corrections, plus the counterterm which
depends on the renormalization constants and absorbs the divergences.

+ + +

We consider now a general SU(nf ) Yang-Mills theory with nf flavours. Let us start
from the fermion bubble contribution: after the sum over the nf flavours

k
k + l

k

l

aµ bν

7In dimensional regularization there is some liberty when defining γ5. In our particular case we will
use Naive Dimensional Regularization (NDR) where the γ5 is such that the usual anticommutation
rules hold {γµ, γν} = 2gµν and {γµ, γ5} = 0. Another useful definition is given by the ’t Hooft-
Veltmann scheme [137]
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= −nf
∫ dd`

(2π)d Tr
[(
−igµεtaij

)
γµ

i

`+ 6 k
(
−igµεtbji

)
γν
i

`

]
= −g2µ2εnfTFδ

ab Tr
{
γµγαγνγβ

}∫ dd`
(2π)d

(`+ k)α`β

`2(`+ k)2

= −g2µ2εnfTFδ
ab4

[
gµαgνβ − gµνgαβ + gµβgνα

] [
Bαβ(k) + kαBβ(k)

]
= −g2µ2εnfTFδ

ab4
[
gµαgνβ − gµνgαβ + gµβgνα

] [ dB0(k)
4(d− 1)k

αkβ − k2B0(k)
4(d− 1)g

αβ − B0(k)
2 kαkβ

]

= g2µ2εnfTFδ
ab B0(k)

(d− 1)
[
gµαgνβ − gµνgαβ + gµβgνα

] [
k2gαβ + (d− 2)kαkβ

]
= g2µ2εnfTFδ

ab B0(k)
(d− 1)2(d− 2)

(
kµkν − k2gµν

)
,

(2.13)

where B0(k) is the master massless loop integral given in appendix A.2 and TF is the
Dinkin label of the fundamental rep of SU(nf )8. We also used the PV decomposition
explained in appendix A.3. If we now choose d = 4− 2ε and expand the scalar loop
integral B0(k) around its pole in ε = 0 we find

= g2nfTFδ
ab 2(2− 2ε)

(3− 2ε)
i

16π2
Γ2(1− ε)
Γ(2− 2ε)

[
1
ε
− log

(
− p2

4πµ2e−γE

)](
kµkν − k2gµν

)
= i

g2

16π2nfTFδ
ab2(2− 2ε)

(1
3 + 2

9ε
)[1

ε
− log

(
− p2

4πµ2e−γE

)](
kµkν − k2gµν

)
= i

g2

16π2nfTFδ
ab
(4

3 −
4
9ε
)[1

ε
− log

(
− p2

4πµ2e−γE

)](
kµkν − k2gµν

)
= i

g2

16π2nfTFδ
ab
[

4
3

1
ε
− 4

9 + 4
3 log 4πµ2e−γE

−p2

]
+O(ε).

(2.14)

Since we are doing renormalization, we are only interested in the divergent part,
which is

i
αs
4π

(
−4

3nfTF
1
ε

)
(k2gµν − kµkν) +O(ε0). (2.15)

In the MS scheme, besides the divergent part, the factors of log 4π − γE get also
reabsorbed into the renormalization constant.
The second relevant diagram is the gluon bubble correction:

k
l

k

k + l

aµ bν

8As a convention TF = 1/2.
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= 1
2

∫ dd`
(2π)d

(
−gµεfacd [gµρ(k − `)σ + gρσ(2`+ k)µ + gσµ(−2k − `)ρ]

)
×

×
(
−gµεfd′c′b

[
gσ
′ρ′(k + 2`)ν + gρ

′ν(−`+ k)σ′ + gνσ
′(−2k − `)ρ′

])
×

× −igσσ
′δdd

′

(k + `)2
−igρρ′δcc

′

`2
,

(2.16)

where the prime indices are related to the internal gluon propaghators. The 1/2
factor comes from the symmetry factor of the Feynman graph. Then, one has

= 1
2g

2µ2εCAδ
ab
∫ dd`

(2π)d [gµρ(k − `)σ + gρσ(2`+ k)µ + gσµ(−2k − `)ρ]×

×
[
gσρ(k + 2`)ν + gνρ(−`+ k)σ + gνσ(−2k − `)ρ

] 1
`2(`+ k)2

= g2µ2εCA
2 δab

∫ dd`
(2π)d

[
(d− 6)kµkν + 5k2gµν + (2d− 3)kµ`ν+

+(2d− 3)kν`µ + (4d− 6)`µ`ν + 2gµνkα`α + 2gµν`2
] 1
`2(`+ k)2

= g2µ2εCA
2 δab

[
B0(k)

(
(d− 6)kµkν + 5k2gµν

)
+ (2d− 3)kµBν(k)+

+(2d− 3)kνBµ(k) + (4d− 6)Bµν(k) + 2gµνkαBα(k) + 2gµνA0]

= g2µ2εCA
2 δabB0(k)

[
(d− 6)kµkν + 5k2gµν − (2d− 3)kµkν − k2gµν+

+ 4d− 6
4(d− 1)

(
dkµkν − k2gµν

)]
= g2µ2εCA

2 δabB0(k)
[
− 7d− 6

2(d− 1)k
µkν + 6d− 5

2(d− 1)k
2gµν

]
= g2µ2εCAδ

ab B0(k)
4(d− 1)

[
(6− 7d)kµkν + (6d− 5)k2gµν

]
,

(2.17)

where A0 is the massless vacuum bubble integral given in appendix A.2 and CA
is the Casimir for the adjoint representation9. Proceeding exactly as before by
substituting d = 4− 2ε and expanding around the pole ε = 0 and taking only the
divergent contribution, we find

i
αs
4πCAδ

ab 1
ε

[19
12k

2gµν − 11
16k

µkν
]

+O(ε0). (2.18)

9For SU(nf ) we have CA = (n2
f − 1)/nf .
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The gluon tadpole graph is the simplest one since it is just proportional to

∝
∫ dd`

(2π)d
1
`2

= A0 = 0 (2.19)

since there is no scale involved.
The last contribution is from the ghost loop where we find

k
k + l

k

l

aµ bν

= −
∫ dd`

(2π)d gµ
εfacd(`+ k)µgµεf bdc`ν i

`2
i

(`+ k)2

= −g2µ2εCAδ
ab
∫ dd`

(2π)d
`µ`ν + kµ`ν

`2(`+ k)2

= −g2µ2εCAδ
ab [Bµν(k) + kµBν(k)]

= −g2µ2εCAδ
abB0(k)

[
dkµkν

4(d− 1) −
k2gµν

4(d− 1) −
kµkν

2

]

= g2µ2εCAδ
ab B0(k)

4(d− 1)
[
k2gµν + (d− 2)kµkν

]
Same, but different, we take d = 4− 2ε and expand around ε = 0. Taking only the
divergent part, we get

i
αs
4πCAδ

ab 1
ε

[ 1
12k

2gµν + 1
6k

µkν
]

+O(ε0). (2.20)

We can now define the renormalization constant Z3 at 1-loop by summing the three
divergent contributions to the gluon propagator in eqs. (2.15), (2.18) and (2.20)

Z3 = 1 + αs
4π

1
ε

(5
3CA −

4
3nfTF

)
. (2.21)

2.3.2 Quark Self-Energy

The next part in the renormalization of QCD is finding the 1-loop corrections to the
quark propagator. In this case we have only one contribution from the quark loop
since ghosts couple only to gluons and so they only enter in higher-order corrections
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to the quark propagator. So we need to evaluate the following Feynman graph

p p+ l p

l

i j =
∫ dd`

(2π)d (−igµεtajkγµ) i

/̀− /p
(−igµεtakiγµ)−i

`2

= −g2µ2εtajkt
a
ki

∫ dd`
(2π)dγ

µ
/̀+ /p

(`+ p)2γµ
1
`2

= (d− 2)g2µ2εtajkt
a
ki

∫ dd`
(2π)d

/̀+ /p

(`+ p)2
1
`2
,

(2.22)

where the identity γµγαγµ = (2− d)γα has been used. Using the properties of the
SU(nf ) generators and the integrals given in appendix A.2 we find

= (d− 2)g2µ2εδijCFγα

∫ dd`
(2π)d

`α + pα

(`+ p)2
1
`2

= (d− 2)g2µ2εδijCFγα[Bα(p) + pµB0(p)]

= g2µ2εδijCF/p

(
d− 2

2

)
B0(p),

(2.23)

where we have assumed that the quark momenta is p2 6= 0 otherwise the integral
would be zero in dimensional regularization.
As before, we can now expand around the pole in ε = 0

= i
g2

16π2CFδij/p(1− ε)
[

1
ε

+ log 4πµ2e−γ

−p2 +O(ε)
]

= i
g2

16π2CFδij/p

[
1
ε
− 1 + log 4πµ2e−γ

−p2

]
+O(ε)

' iαs4π
1
ε
CFδij/p+O(ε0).

(2.24)

Summing the virtual correction to the bare propagator, we find that the renormal-
ization constant involved is given by

Z2 = 1− αs
4π

1
ε
CF. (2.25)

2.3.3 Quark-Gluon Vertex Correction

The 1-loop corrections to the qqg vertex are two. The first one is given by the
following Feynman diagram

p

l + p

l − p′
l

p′

j

i

a, µ
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=
∫ dd`

(2π)d (−igµεtbjkγν)
i(/̀− /p′)
(`− p′)2 (−igµεtaklγµ)

i(/̀+ /p)
(`+ p)2 (−igµεtbliγν)−i

`2

= −
(
CF −

CA
2

)
tajig

3µ3ε
∫ dd`

(2π)d
γν(/̀− /p′)γµ(/̀+ /p)γν
`2(`− p′)2(`+ p)2 ,

(2.26)

where the color factors come from the SU(nf ) algebra10. To perform this integral,
since we are only interested in the UV behaviour, we make the simplification
p = p′ = 0 with a caveat that we’ll see later. In this limit, we have

− g3µ3εtaji

(
CF −

CA
2

)∫ dd`
(2π)d

γν /̀γµ/̀γν
(`2)3 . (2.27)

Inside the integral, the following equality is valid

`α`β = gαβ
d
`2 (2.28)

which gives us

− g3µ3εtaji

(
CF −

CA
2

)∫ dd`
(2π)d

1
d

γνγαγµγαγν
(`2)2 . (2.29)

Using the Clifford algebra in d-dimensions

γνγαγµγαγν = (2− d)γνγµγν = (d− 2)2γµ. (2.30)

Therefore
− g3µ3ε

(
CF −

CA
2

)(d− 2)2

d
γµ
∫ dd`

(2π)d
1

(`2)2 . (2.31)

The last integral may seem to be zero, but this is only because we have taken out the
relevant scales. Therefore we need to introduce a scale back in a sort of Pauli-Villard
regularization

∫ dd`
(2π)d

1
(`2)2 →

∫ dd`
(2π)d

1
(`2 −m2)2 = i

(4π)d/2
Γ
(
2− d

2

)
Γ(2) (m2)

d
2−2. (2.32)

Now we can put d = 4 − 2ε and expand around the pole ε = 0, taking only the
divergent part

− igtajiγµ
αs
4π

1
ε

(
XF −

CA
2

)
. (2.33)

The second diagram which contributes to the correction is given by

l, k

c, α

b, β
p+ p′

a, µ

p, i

p′, j

10In practice tatbta = (CF − CA/2)tb.
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=
∫ dd`

(2π)d (−gµεfabc)
[
gµβ(−2p− p′ + `)α + gβα(−2`+ p− p′)µ

+ gαµ(`+ 2p′ + p)α)
] −i

(`− p)2
−i

(`+ p′)2 (−igµεγαtcjk)
i/̀

`2
(−igµεγβtbki).

(2.34)

Using the color algebra equality ifabctctb = CA/2ta and by, again, neglecting the
momenta p and p′, we get

− g3µ3εCA
2 taji

∫ dd`
(2π)d

(
gµβ`α − 2gβα`µ + gαµ`β

)
γαγργβ`

ρ

(`2)3 . (2.35)

With the additional Clifford algebra equality γµγµ = d, we find that the integral
becomes ∫ dd`

(2π)d
γµ + 2 (d−2)

d γµ + γµ

(`2)2 = 4d− 1
d

γµ
∫ dd`

(2π)d
1

(`2)2 . (2.36)

The integral is the same as before, so we can proceed exactly in the same manner,
obtaining

− igtajiγµ
αs
4π

1
ε

3
2CA. (2.37)

By summing the tree-level amplitude with the 1-loop corrections we find the renor-
malization constant Z1 via

Z−1
1 = 1 + αs

4π
1
ε

(CA + CF). (2.38)

Let us now concentrate for a moment on the renormalized Lagrangian, and in
particular on the strong coupling constant. The bare vertex reads

gBψ̄qB /GBψqB, (2.39)

where in d-dimensions, the bare coupling constant is dimensionful. If we now replace
the bare fields and coupling constant with the renormalized one by virtue of eq. (2.12)
we get

gµεZgZ2Z
1/2
3 ψ̄q /Gψq. (2.40)

But, from the evaluation of the loop corrections to the vertex, we know that the
renormalization constant is Z−1

1 . Hence, since what we can actually measure can only
be the vertex, we require that the divergent factors obtained by rescaling the fields
must be exactly canceled by the multiplicative factor Z−1

1 . In this way, whenever
we extract physical quantities, they will be finite. This corresponds to choosing

Z1 = ZgZ2Z
1/2
3 =⇒ Zg = Z1

Z2Z
1/2
3

. (2.41)

Using the results we found in eqs. (2.21), (2.25) and (2.38) we find

Zg = 1− αs
4π

1
ε

(11
6 CA −

4
6nfTF

)
. (2.42)

Note that this result is gauge-independent.
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2.4 Renormalization Group Equations
A general feature of renormalization is that it adds an explicit scale dependence µ on
physical quantities. But it is important to note that the initial, bare, quantities did
not depend on an energy scale. Thus, we have to require that the bare quantities do
not depend on µ. By doing so we get the so-called renormalization group equations
(RGE). These equations govern the dependence on the scale of relevant physical
quantities like the coupling constants.
By imposing that the bare coupling constant does not depend on the renormalization
scale and searching for a solution to the RGE, a peculiar thing happens: the physical
parameters will depend on the energy scale. In particular, we are interested in the
scale dependence of the coupling constant. We will see that this scale dependence
will be such that two behaviours can arise: when the energy is high then the coupling
constant is small or when the energy scale is small, then the coupling constant is
small. We call theories with such behaviours asymptotically free in the UV for the
former or in the IR for the latter. Let us be rigorous now.
Take an observable O calculated in the MS scheme. We have

O = OMS

(
α(µ),m(µ), log s

µ2 , · · ·
)
, (2.43)

where
√
s is the center-of-mass energy. Here α ∝ g2 is the coupling constant and

m is the physical mass of the theory. The appearance of logarithms is a general
feature of regularization as clearly underlined by the previous calculations of loop
corrections.
It is important to note that the physical observable O is µ independent assuming one
works to all orders in perturbation theory. The logarithms can be large whenever
s � µ, these will be discussed on more general grounds in the following chapters.
The µ independence of the observable O can be expressed in the following form

µ
d

dµO = µ
dα(µ)

dµ
∂O
∂α(µ) + µ

dm(µ)
dµ

∂O
∂m(µ) + ∂O

∂µ
= 0. (2.44)

These equations are known as Renormalization Group Equations! In this case,
we assumed that the observable O only depends on two quantities: the coupling
constant and the mass, but a more general theory can also depend on some other
parameters, but the generalization is trivial.
We define then two very important functions

µ
dα(µ)

dµ ≡ dα(µ)
d logµ = β(α(µ))

µ
dm(µ)

dµ ≡ dm(µ)
d logµ = γm(α(µ))m(µ)

(2.45)

which we call beta function and mass anomalous dimension respectively. With these
definitions, eq. (2.44) becomes

β(α)∂O
∂α

+ γm(α)m∂O
∂m

+ ∂O
∂µ

= 0. (2.46)
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2.4.1 The QCD Beta Function

Now, given the general definitions and the 1-loop result for Zg in eq. (2.42), we are
ready to find out if QCD is UV-free or IR-free. Given that

gB = µεZg(µ)g(µ) =⇒ αsB = µ2εZ2
g (µ)αs(µ) ≡ µ2εZα(µ)αs(µ), (2.47)

where
Zα(µ) = 1− αs(µ)

4πε β0, β0 =
(11

3 CA −
4
3nfTF

)
. (2.48)

From the fact that the bare parameters are scale-independent, we get the RGE for
the running coupling

dαBs
d logµ = 0 = µ2εZα(µ)αs(µ)

[
2ε+ Z−1

α

dZα
d logµ + 1

αs

dαs
d logµ

]
, (2.49)

which implies
dαs

d logµ = αs

[
−2ε− Z−1

α

dZα
d logµ

]
≡ β(αs(µ), ε). (2.50)

This more general β function is defined for a finite ε where in the limit ε→ 0 we get
the usual β function.
Consider now the fact that the renormalization constants in this scheme, only contain
dependence on 1/εn factors and thus the dependence on the scale µ is only through
the running coupling αs(µ). Thus we can recast eq. (2.50) in the more convenient
form

β(αs, ε) = αs

[
−2ε− β(αs, ε)

dZα
dαs

]
. (2.51)

To solve this equation we expand

β(αs, ε) = β(αs) +
∞∑
k=1

εkβ(k)(αs),

Zα = 1 +
∞∑
k=1

1
εk
Z(k)
α (αs).

(2.52)

The solution to the equation is therefore

β(αs) = 2α2
s

dZ(1)
α (αs)
dαs

, (2.53)

which yields

β(αs, ε) = −2εαs + β(αs) = −2εαs + 2α2
s

dZ(1)
α

dαs
. (2.54)

A similar relation holds for the mass anomalous dimension

γm(αs) = 2αs
dZ(1)

m (αs)
dαs

. (2.55)

These equations are really important. They state that to all orders in perturbation
theory, the β-function and the anomalous dimension can be extracted from the
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coefficients of the single 1/ε pole in the renormalization constants.
In our 1-loop calculation, we find that

dZ(1)
α

dαs
= − d

dαs
αs
4πβ0 = β0

4π , (2.56)

therefore
β0(αs) = −2αs

(
β0
αs
4π

)
. (2.57)

To this date, the β-function of QCD has been calculated up to 5-loop [19, 91, 112].

2.4.2 Leading-order Solution to the RGE

αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 2.1. Running coupling with experimental data. The best fit value for the MS strong
coupling constant is αs(mZ) = 0.1179± 0.0010. Image from Ref. [152].

Given the 1-loop solution for the β-function eq. (2.57), we can find the running of
the strong coupling constant by means of

dαs(µ)
d logµ = −2β0

α2
s(µ)
4π . (2.58)

This can be solved by simple separation of variables

−
αs(µ)∫
αs(Λ)

dαs
α2
s

= 1
αs(µ) −

1
αs(Λ) = β0

4π log µ
2

Λ2 , (2.59)
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where αs(Λ) is the strong coupling constant measured at some energy scale Λ. Often
one chooses Λ = mZ ≈ 91.188 GeV at which αs(mZ) = 0.1179± 0.0010 [152]. By
rearranging the above equation, we find the famous expression

αs(µ) = αs(Λ)
1 + αs(Λ)

4π β0 log µ2

Λ2

, β0 = 11
3 CA −

4
3nfTF. (2.60)

Here nf is the effective number of active flavours below the scale µ. Now it is possible
to see the fundamental behaviour of the strong coupling constant: being β0 > 0,
since nf < 17, when we increase the energy scale µ, αs(µ) becomes smaller. This
phenomenon is referred to as asymptotic freedom [83, 123].
At this point, it is important to fix an energy scale with respect to which we define
the UV and IR phases. We can rearrange eq. (2.60) in a suitable way as

αs(µ) =
[
β0 log

(
µ2

Λ2
QCD

)]−1

, (2.61)

that defines a new constant called ΛQCD
11. In reality, ΛQCD is not completely defined

at LO. One has to evaluate at least the NLO solution to the RGE for αs which
requires the calculation of the 2-loop corrections. Without going into the specific
calculations, we give here the second order contribution to the beta function which
is needed for the NLO solution of the RGE for αs

β1 = 34
3 C

2
A −

20
3 CATFnf − 4CFTFnf . (2.62)

The solution to the RGE for αs is therefore

αs(µ) = 4π
β0 log µ2

Λ2

1− β1
β2

0

log log µ2

Λ2

log µ2

Λ2

. (2.63)

If we include higher-order corrections and measure the value of αs at some energy
scale like αs(mZ), one finds that ΛQCD ≈ 250 MeV. At energies below ΛQCD, the
theory becomes strongly coupled and therefore ordinary perturbation theory breaks
up and we need to use non-perturbative techniques to find meaningful results like
lattice QCD. In some regimes, there are other theories like Chiral Perturbation
Theory (ChPT) [121] and 1/N expansion [136] that contains the main features of
QCD but are not an exact solution like lattice QCD.
Note that in the MS scheme, the slope of the curve changes whenever we cross a
quark mass threshold. This is because β0 depends on the number of active flavour
below the scale µ so, if we go from µ ≈ mb to µ ≈ mc, the active flavours go from
nf = 5 to nf = 4 thus changing β0.

11Note that if we started with a mass-less theory we would have gotten the same result. Hence
a completely arbitrary energy scale has appeared even although the theory was scaleless to begin
with. This phenomenon is known as dimensional transmutation.
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Chapter 3

Effective Field Theories: an
Introduction

The study of effective field theories (EFT) [114] arises from a necessity. In principle,
one could evaluate the relevant quantities for some weak processes on the lattice.
However, the presence of many different energy scales for any given process makes
this approach impractical. What one can do for renormalizable theories is to separate
the different contributions coming from the different energy scales and evaluate the
high-energy part perturbatively while the low-energy contributions can be evaluated
on the lattice. This separation is made possible by EFTs. One such process where
EFTs are essential is for the study of non-leptonic decays of light mesons such as
pions and kaons.
The fundamental idea behind effective field theories (EFT) started in the opposite
manner as we are used to today. We can think of the Fermi theory of Weak
interactions as really the first effective theory in the history of the SM. In reality,
Fermi developed his theory of Weak interactions [67] in the 1930s, well before we
knew that a more general theory was present, the now called SM. The Fermi theory
was at the time such a speculative theory that even a prestigious peer-reviewed
journal like Nature rejected Fermi’s paper. We now know that his theory is in fact a
low energy equivalent of the SM weak interactions!

In this chapter, we are going to introduce the idea behind EFTs with the
pedagogical example of the Fermi theory. Then we’re going to make a more rigorous
definition through the use of the Operator Product Expansion (OPE) which will
divide the problem into two main chunks: the Wilson coefficients which encode all
the short distance physics and the effective operators matrix elements which deal
with the low energy part of the theory. Moreover, we’re going to see that QCD
corrections give large-log contributions to the amplitude and how we can deal with
these large-logs using the RGEs.

3.1 A Historical Example: the Fermi Theory of Weak
Interactions

A first historical example that we need to give to set up the background, which we
will later develop in more detail, is the Fermi theory of Weak interactions. This



3.1 A Historical Example: the Fermi Theory of Weak Interactions 49

theory was developed by Fermi in the 30s to explain the phenomena of beta decay.
He did this by postulating that the decay process can be described by adding to the
free Hamiltonians of the particles in the beta process an interaction term containing
the wave functions of the four free particles

HF = H0
n +H0

p +H0
e +H0

ν +
∑
i

Ci

∫
d3x

(
ūpÔiun

)(
ūeÔiuν

)
. (3.1)

Here up, un, ue, uν denote the wave functions of the four particles.
We now concentrate solely the interaction term which is given by the Hamiltonian
density

HF =
∑
i

Ci
(
ūpÔiun

)(
ūeÔiuν

)
. (3.2)

A question arises: what are the operators Ôi? The answer was found in the deep
experimental evidence in the years following the proposed theory.
Firstly, the Hamiltonian needs to be a Lorentz scalar, which implies that the operators
need to be one of the fermionic bilinear covariants

1 γµ σµν = i

2[γµ, γν ] γµγ5 γ5. (3.3)

In principle, one does not know which combination of bilinears enters the Hamiltonian.
In the beginning, Gell-Mann and Feynman thought that, like electromagnetism, the
interactions should be vectorial in nature. Moreover, from experimental evidence, it
was found that only a single helicity appears: electrons and neutrinos are always
left-handed while positrons and anti-neutrino are always right-handed. This is
a consequence of parity violation in Weak decays. Therefore, the part of the
Hamiltonian containing electrons and neutrino spinors should only contain the
part of the wave function with negative helicity. This is found by using the chiral
projectors like the ones in equations eq. (1.48). Through this process, it was found
that only the V −A combination gives a meaningful contribution

ÔV−A = 1
2(γµ − γµγ5). (3.4)

For neutrinos the chiral form of the operators is exact. For the electron, being
massive, they are good if the electron momentum is high enough1. According to
these considerations, we must replace the spinors by their components with negative
chirality. Lorentz invariance requires that even the nucleonic part of the Fermi
Hamiltonian has to be V −A type. Extensive experimental analysis has led to the
conclusion that the correct form for the nucleonic part is given by

ūpγ
µ(gV + gAγ5)un = gV ūp

(
1− gA

gV
γ5

)
un (3.5)

with
gA/gV = −1.255± 0.006 (3.6)

1This implies that the statement that electrons have only positive helicity is only approximately
correct.
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This takes into a fact that protons and neutrons are composite particles and that
the axial symmetry is broken.
The complete expression for the Hamiltonian interaction term is therefore given by

HF = −GF√
2
gV

[
p̄ γµ

(
1− gA

gV
γ5

)
n

]
[ē γµ(1− γ5)νe]. (3.7)

This result can be exploited to find effective Hamiltonians for all kinds of processes
like for the muon decay, in which the Hamiltonian takes the form

HF = −GF√
2
ν̄µγ

µ(1− γ5)µē−γµ(1− γ5)νe. (3.8)

The only problem is now that the theory is clearly non-renormalizable since it is
made up of dimension six operators. But fear not, we can circumvent this problem
by means of the renormalization group improved perturbation theory which we will
explain later.
Here comes the fundamental step: since we know that the SM explains so well weak
processes but also does the Fermi theory, the two need to be linked in some way.
We will see now that the Fermi theory is a low energy limit of the SM.

3.2 Effective Hamiltonians for Weak Decays
We can start by looking at a simpler case of the leptonic decay of a pion π → `ν`,
we will see that such a process comes with a much simpler QCD structure due to
the presence of quarks only in the initial state.
In the ’t Hooft-Feynman gauge2, at tree level, this process is governed by two
diagrams

W

u

d

`

ν`

+
φ

u

d

`

ν`

The ’t Hooft-Feynman is more useful when dealing with loop diagrams since
the W propagator does not have the pµpν term like in eq. (1.120) which would give
a complicated ultraviolet behaviour. Moreover, this gauge makes the process of
expanding the amplitude more straightforward. The problem is now that we have
to deal with Goldstone boson exchange. But since the coupling of the latter is
proportional to the light fermion masses, we can ignore them for the following. The
amplitude of the W diagram is therefore

iA =
(
ig2

2
√

2

)2
V ∗udūν`γ

µ(1− γ5)v`
igµν

s−M2
W + iε

v̄dγ
ν(1− γ5)uu. (3.9)

2Which is a particular Rξ gauge with ξ = 1.
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Given that the typical energy of the process is s ∼ O(mπ)�M2
W , we can perform

an expansion of the W propagator in powers of s, leading to

iA = −iV
∗
udg

2
2

8M2
W

ūν`γ
µ(1− γ5)v`v̄dγµ(1− γ5)uu

∞∑
k=0

(
s

M2
W

)k

' −iGF√
2
V ∗udūν`γ

µ(1− γ5)v`v̄dγµ(1− γ5)uu +O
(

s

M2
W

)
, (3.10)

where we introduced the Fermi constant as

GF√
2

= g2
2

8M2
W

. (3.11)

As we can see eq. (3.10) is exactly of the same form as eq. (3.8). This is a first
simple example of operator product expansion (OPE)[147]: the dominant term in the
decay π → `ν` is given by the matrix element of a six dimensional effective operator

Qd̄uν̄` = d̄γµ
(1− γ5)

2 u ν̄γµ
(1− γ5)

2 ` (3.12)

while subsequent orders k > 0 correspond to the matrix elements of higher dimen-
sional operators containing 2k derivatives.
From a Feynman diagram point of view, the process of expanding the W propagator,
thus making its effects local, amounts to contracting the W propagator to a point

W

u

d

`

ν`

−→

u

d

`

ν`

Keeping only dimension six operators in this OPE we obtain that the amplitude
is given by

A = 〈Heft〉+O
(

s

M2
W

)
Heft = 4GF√

2
V ∗udQ

d̄uν̄`, (3.13)

where Heft is the effective Hamiltonian governing the π → `ν` transition. The process
of equating the full amplitude with the one given by the effective Hamiltonian is
called matching.
The effects of the exchange of the heavy W boson are encoded in the expansion
coefficients, which are known as Wilson coefficients.
In general, let us consider the ampliture A of a given process. Thanks to the OPE
we can put this in the form

A = 〈Heft〉 =
∑
i

Ci(µ,MW )〈Qi(µ)〉 (3.14)

when the process takes place at an energy scale µ � MW . We say that the W
is being integrated out. The expansion CiQi can be seen as an effective theory
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Figure 3.1. Factorization of an observable into short-distance (red) and long-distance
(blue) contributions. The panels differ by the choice of the factorization scale. The figure
is taken from [116] with the permission of the author.

whose vertices are given by the local operators Qi and the coupling constants by the
expansion coefficients Ci, the Wilson coefficients.
By doing so, we can separate the problem into two main chunks: the Wilson
coefficients which contain the short-distance3 contribution to the amplitude and can
therefore be evaluated using ordinary perturbation theory and the effective operator
matrix elements which contain the low-energy physics and have to be evaluated by
means of lattice QCD or other techniques like the large N [136] expansion or chiral
perturbation theory (ChPT) [121].
One may roughly think of this process as splitting up the contributions from virtual
particles ∫ M2

W

−p2

dk2

k2 =
∫ M2

W

µ2

dk2

k2 +
∫ µ2

−p2

dk2

k2 , (3.15)

where the first term is sensitive to UV physics and is found into the Wilson coefficients,
while the second is sensitive to IR physics and is absorbed into the operator matrix
elements. This can be seen pictorially in fig. (3.1).
We note that on a more formal basis, the procedure of the OPE may be given
by considering the generating functional for Green functions in the path integral
formalism. Then we “integrate out” the heavy degrees of freedom associated with
the high scale M from the generating functional of Green’s functions and obtain
a non-local action functional, which can be expanded in an infinite tower of local
operators Q(n)

i [122].

3.3 QCD Effects
The required QCD corrections to the full theory, in the case of the leptonic decays
just mentioned, are the same as the ones in the effective theory since they are just
given by external legs corrections and vertex corrections. So under the process of

3High energy.
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matching, those won’t influence the Wilson coefficients but are going to be contained
in the operator matrix element and so we don’t need to take them into account.

3.3.1 Large Logarithms

If we now turn to non-leptonic decays, the situation changes drastically. Consider
for example the process cs̄→ ud̄. At tree level, after the OPE, we get a dimension
six operator which is similar to the one in eq. (3.12)

Qs̄cd̄u2 = s̄γµ
(1− γ5)

2 cūγµ
(1− γ5)

2 d ≡ s̄LγµcLūLγµdL, (3.16)

where we used the shorthand notation of the chiral spinors. After matching we get
that

Heff = 4GF√
2
V ∗csVudC2Q

s̄cd̄u
2 C2 = 1. (3.17)

As for the case of the leptonic decay, the Wilson coefficient is trivial at tree level.
When we go to O(αs) the situation changes drastically. External legs corrections as
well as vertex corrections like the ones following

W

s

c

d

u

,

W

c

s

u

d

· · · (3.18)

won’t affect the matching since at this order the current are conserved and so
they will not generate large-logs. But now, we can have gluon exchange between the
initial and the final legs like the following

W

s

c

d

u

+
W

s

c

d

u

+ permutations

(3.19)

In the full theory this correction will affect the momentum propagating in the W
boson, which will make the overall diagram convergent, but proportional to terms of
the form

αs

∫ d4`

`2
[
(p− `)2 −M2

W

] ∼ αs log
(
M2
W

−p2

)
(3.20)

which taken at face value would imply the breakdown of perturbation theory. In
fact, when the quark momenta become of the order or ΛQCD, the effective expansion
coefficient becomes O(1). This is the problem of large logarithms. Fortunately, the
effective theory can save us from this problem.
Let us consider the effective operator for the case at hand Qs̄cūd2 . The O(αs)
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corrections are given by the following Feynman diagrams

s

c

d

u

+

s

c

d

u

+ permutations

Having removed the W propagator is not a surprise that once we evaluate such
diagrams, they come out to be divergent. The effective theory has therefore a much
different ultraviolet behaviour with respect to the full SM amplitude. But we know
that the EFT is going to be valid up to a cutoff Λ of the order O(MW ). We can
regulate the diagrams by introducing such cutoff, obtaining terms of the form

αs log
(

Λ2

−p2

)
. (3.21)

In reality when dealing with perturbation theory, rather than introducing a specific
cutoff, we regulate the theory using dimensional regularization, which introduces a
scale µ, and logarithmic terms are going to be of the form log

(
µ2/− p2). When we

match the amplitudes of diagrams in eq. (3.19) with the ones in section 3.3.1, any
infrared logs cancel and we are left with terms of the form

log
(
M2
W

−p2

)
− log

(
µ2

−p2

)
= log

(
M2
W

µ2

)
. (3.22)

We have now the liberty of choosing the matching scale in order to get rid of large
logs. In this case, setting µ ∼MW we get back the ordinary expansion coefficient αs,
without the log. On the other hand, the non-perturbative part of the hadronic matrix
elements needs to be evaluated on the lattice which intrinsically introduces a hard
energy cutoff tied to the lattice spacing a ∼ 1/Λ. Then the renormalization of the
operators is done, mostly, by the RI-SMOM scheme [115] which is a non-perturbative
renormalization scheme suitable to evaluate renormalized quantities on the lattice.
Moreover, as we will see in more detail in the following chapter, QCD corrections
enlarge the operator basis due to the presence of the gluon which can mix the color of
the external quarks, and so a different color structure arises. Not only that but even
more complex operators are generated which have the required quantum numbers
and therefore have to be taken into account.
Up the here, the point of the situation is as follows: we encounter large logs in the full
theory which are a consequence of the many energy scales which enter the process.
There is no way to get rid of these large logs. Then, we go to the effective theory
where the loop diagrams are divergent and large logs appear with a dependence on
the renormalization scale. Through matching, we can get rid of large logs, but only
in the Wilson coefficients, which can therefore be evaluated, at a scale µ ∼ MW ,
with ordinary perturbation theory. The operator matrix elements still contain large
logs. We see in the next chapter how the Renormalization Group can help us solve
this problem.
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3.4 Wilsonian Renormalization
The Wilson coefficients now carry an explicit dependence on the renormalization
scale µ which has to cancel out with the renormalization scale dependence of the
effective operators, since the full amplitude does not depend on µ

0 = d
d logµA = dCi(µ)

d logµ 〈Qi(µ)〉+ Ci(µ)d〈Qi(µ)〉
d logµ . (3.23)

Here Qi(µ) are the renormalized composite operators defined in dimensional regular-
ization and the MS scheme, while Ci(µ) are the corresponding renormalized Wilson
coefficients.
What we need to find is the dependence on the renormalization scale of the composite
operators.

3.4.1 Renormalization of the Effective Operators

At any order, the basis of effective operators {Qi}i=1,··· ,n can be renormalized in the
usual way, as discussed in section 2.4, by allowing however that the operators can
mix under renormalization

Qi,B =
n∑
j=1

Zij(µ)Qj(µ). (3.24)

Note that the renormalization constants Zij contain not only the renormalization
factors absorbing the UV divergences of the loop corrections to the operator matrix
elements, but even a wave-function renormalization factor Z1/2

q for every field
contained in the composite operator.
Note that dimensional regularization rules out the possibility of operator mixing
between operators of different dimensions. This is one of the reasons why dimensional
regularization is the most convenient renormalization scheme in perturbation theory.
Given that the bare operators in eq. (3.24) are independent on the renormalization
scale, it follows that

dZij(µ)
d logµ Qj(µ) + Zij(µ)dQj(µ)

d logµ = 0 (3.25)

which can be rearranged to give

dQi(µ)
d logµ = −Z−1

ij (µ)dZjk(µ)
d logµ Qk(µ) ≡ −γik(µ)Qk(µ), (3.26)

where we defined the anomalous dimension matrix of the effective operator

γ(µ) = Z−1(µ) dZ(µ)
d logµ = d log Z

d logµ . (3.27)

Therefore, the renormalization scale dependence of the effective operator is governed
by the Renormalization Group Equation (RGE) in terms of its anomalous dimension

d~Q(µ)
d logµ = −γ · ~Q(µ). (3.28)
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In analogy with the mass anomalous dimension found in eq. (2.45), the anomalous
dimension matrix of the effective operators can be obtained from the coefficients of
the 1/ε pole term in Z

γ = −2αs
∂Z(1)

∂αs
. (3.29)

3.4.2 Getting Rid of the Renormalization Scale

Now that the dependence on the renormalization scale of the effective operators is
sorted out, we can get back to eq. (3.23). From that, we find that

dCi(µ)
d logµQi(µ) + Ci(µ)dQi(µ)

d logµ =
[dCi(µ)

d logµ δij − Ci(µ)γij(µ)
]
Qj(µ) = 0 (3.30)

from which follows
d~C(µ)
d logµ = γT (µ)~C(µ). (3.31)

This is the differential equation governing the RG evolution of the Wilson Coefficients.
In order to solve this equation, we first need to change variable and express the scale
dependence of the various quantities via the running QCD coupling g(µ). Given the
definition of the beta function in eq. (2.45)

d
d logµ = dg

d logµ
d
dg = β(g) d

dg (3.32)

then
d~C(g(µ))

dg = γT (g)
β(g) · ~C(g(µ)). (3.33)

This can be solved by means of an integral evolution matrix U defined as

~C(µ) = U(µ,m) · ~C(m) (3.34)

which can be found iteratively

U(µ,m) = 1 +
∫ g(µ)

g(m)
dg1

γT (g1)
β(g1) +

∫ g(µ)

g(m)
dg1

∫ g1

g(m)
dg2

γT (g1)
β(g1)

γT (g2)
β(g2) + · · · . (3.35)

This is exactly the same solution as the Dyson series for the Schrödinger evolution
matrix. In fact, eq. (3.33) has the exact same form as Schrödinger’s equation, where
γT /β takes the place of the Hamiltonian. The series expression can be put in a
more compact form by introducing the notion of g-ordering

U(µ,m) = Tg exp
[∫ g(µ)

g(m)
dg′ γ

T (g′)
β(g′)

]
. (3.36)
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3.5 RG Improved Perturbation Theory
With the evolution matrix, we can now run down from the scale µW ∼ MW to a
low renormalization scale µh closer to the physical scale at which the process we are
interested in takes place

~C(µh) = Tg exp
[∫ g(µW )

g(µh)
dg′ γ

T (g′)
β(g′)

]
~C(µW ) (3.37)

and then compute the relevant matrix elements without encountering large logs
since at the scale µh ∼ pi ∼ pf the matrix element

〈f(pf )|Heff|i(pi)〉 = Ci(µh) 〈f(pf )|Qi|i(pi)〉 (3.38)

is finite. But where have the large logs gone? They have been resummed by means
of the renormalization group! Thus, the effective theory allows us to perform the
matching using ordinary perturbation theory and then resum the large logs using the
RGE. In general, if we expand the Wilson coefficients and the anomalous dimension
matrix in powers of αs

~C(µ) =
n∑
k=0

(
αs
4π

)n
~C(n)(µ) γ =

n∑
k=1

(
αs
4π

)n
γ(0) (3.39)

then we can differentiate the perturbative expansion not on the order at which αs
appears, but on the orders resummed by the RGE.
A leading order (LO) calculation resums all terms of the formO

(
αs log

(
M2
W /− p2))n.

In the LO case, we have that

ALO = C
(0)
i (µh)〈Q(µh)i〉(0), (3.40)

where 〈Q〉(n) denotes the matrix element computed at n-th order in strong interaction
which are needed to do calculations, and

~C(0)(µh) = U(0)(µh, µW )~C(0)(µW ) U(0)(µh, µW ) =
(
αs(µW )
αs(µh)

) γ(0)T
2β0

. (3.41)

A (next-to-)mleading order (NmLO) calculation resums all terms of the form
O
(
αn+m
s logn(M2

W /(−p2)
)
. We now briefly discuss the general result for the NLO

case [30]. At NLO we need to evaluate the full and the effective amplitude at O(αs)

ANLO = C(0)(µh)〈Q(µh)〉(1) + αs(µh)
4π C(1)(µh)〈Q(µh)〉(0), (3.42)

where again
~C(1)(µh) = U(µh, µW )~C(1)(µW ). (3.43)

To this order, the evolution matrix is given by [39]

U(1)(µ,m) =
(

1 + αs(µ)
2π J

)
U(0)(µ,m)

(
1− αs(m)

2π J
)
, (3.44)
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where U(0) is the leading order evolution matrix of eq. (3.41). The matrix J contains
the informations about the next-to-leading order corrections. By means of the
expansion of the anomalous dimension matrix in eq. (3.39), we define the J matrix
starting from diagonalizing the tree-level anomalous dimension

γ
(0)
D = V−1γ(0)TV. (3.45)

This transformation makes the LO evolution matrix diagonal as well. Then, if we
define the following matrix

G = V−1γ(1)TV (3.46)
and another matrix whose elements are

Hij = δij
(
γ

(0)
D

)
ij

β1
2β2

0
− Gij

2β0 +
(
γ

(0)
D

)
ii
−
(
γ

(0)
D

)
jj

(3.47)

the matrix J is given by
J = VHV−1. (3.48)

There is still an important thing to note. From the basic idea of an EFT, whenever
we go below some energy threshold, heavy degrees of freedom have to be integrated
out. Therefore, what happens when we evolve the Wilson coefficients from the scale
of MW to the scale of mb, and then we go even below to the scale of mc and so
on? One after the other, quarks become heavy and have to be integrated out. To
account for this we need to include a threshold matrix. Following the same principle
as in the case of integrating out the W boson, we require that at the scale of the
transition µt

~CT
f (µt)〈~Qf (µt)〉 = ~CT

f−1(µt)〈Qf−1(µt)〉, (3.49)
where f is the number of active flavours, which changes from f to f − 1 in the
transition.
This behaviour can be encompassed in a new evolution matrix which contains a
suitable matching matrix T [53]

U(µ,MW ) = U4(µ,mb)TU5(mb,MW ), (3.50)

where ~Uf is the evolution matrix with f active flavours and

T = 1 + αs(mb)
4π δrT . (3.51)

Equation (3.51) is valid when only strong corrections are present. We will see later
the generalization when electroweak corrections are added.

3.6 Electroweak Corrections
We give now a brief summary of the general results that one gets when adding not
only strong corrections but electroweak ones. These corrections enter in Penguin-
like operators [139, 140] at leading order. When EM corrections are added, the
anomalous dimension matrix at NLO will have the form

γ = αs
4πγ(0)

s + αe
4πγ(0)

e +
(
αs
4π

)2
γ(1)
s + αe

4π
αs
4πγ(1)

se , (3.52)
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where we ignored α2
e corrections. Even the evolution matrix will contain corrections

of order αe
U(1)(µ,m) = M(µ)U(0)(µ,m)M′(m), (3.53)

where

M(µ) =
(

1 + αe
4πK

)(
1 + αs(µ)

4π J
)(

1 + αe
αs(µ)P

)
,

M′(m) =
(

1− αe
αs(m)P

)(
1− αs(m)

4π J
)(

1− αe
4πK

)
,

(3.54)

where the running of αe is not considered. The matrices K,J and P are solutions of
the equations [52, 53]

P +
[
P, γ

(0)T
s

2β0

]
= γ

(0)T
e

2β0
, (3.55)

J−
[
J, γ

(0)T
s

2β0

]
= β1

2β2
0

γ(0)T
s − γ

(1)T
s

2β0
, (3.56)

[
K,γ(0)T

s

]
= γ(1)T

e + γ(0)T
e J + γ(1)T

s P +
[
γ(0)T
s ,JP

]
− 2β1P− β1

β0
Pγ(0)T

s . (3.57)

Besides the more complicated analytical form of the expressions, the theory stays
the same. Once we have the evolution matrix, if we cross a quark mass threshold we
need the matching matrix, which in the case of QED+QCD corrections is given by

T = 1 + αs(µ)
4π δrT + αe

4πδs
T , (3.58)

where the nature of the two matrices δr and δs is given by the matching condition
at the threshold scale.
Contributions from the Z0 boson must also be added, but the general form of the
solutions given up to now stays the same.
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Chapter 4

∆F = 1 & ∆F = 2 Effective
Hamiltonians and Kaon Decays

Using the techniques highlighted in the previous chapter of the OPE and the RGE
improved perturbation theory, we are now ready to apply them to the more specific
case of ∆F = 1 and ∆F = 2 processes. These two effective theories will describe the
non leptonic decays of mesons like K,D,B mesons, and in the case of the ∆F = 2
the oscillation of the neutral mesons such as K0 − K̄0 , Bd − B̄d and so on.
We will mostly concentrate on the ∆S processes since they are the relevant ones to
study the direct and indirect CP-violation in the Kaon system, but the discussion
can be easily generalized to different mesons. In particular, we will focus on the
following

• The K → 2π decays, a ∆S = 1 process, where at the quark level the relevant
transition is s̄u→ ūd. This is the process that governs direct CP-violation.

• The K0 − K̄0 oscillation, a ∆S = 2 process. This is the process that governs
indirect CP-violation.

The discussion of the phenomenology of CP-violation in the Kaon system will be
given in the subsequent chapter.

4.1 Effective Hamiltonian for ∆S = 1 Processes
As stated in the previous chapter, when we want to analyze low energy processes,
due to the appearance of large-logs in the perturbative expansion, we employ the
toolkit of effective Hamiltonians.
Consider the process of K → 2π. At tree-level the interactions is mediated by a
W -boson exchange with a typical energy of the order k2 ∼ O(mK). Therefore, the
OPE in this case gives

ig2
2

4(k2 −M2
W )

V ∗usVud[v̄sγµ(1− γ5)uu][ūuγµ(1− γ5)vd] = −iGF√
2
V ∗usVudQ2 +O

(
k2

M2
W

)
(4.1)
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where we find the first effective, current-current, operator

Q2 = s̄iLγ
µuiLū

j
Lγµd

j
L. (4.2)

We wrote explicitly how the color indices are summed for reasons that will be obvious
in a moment.
After this, we might also need to consider QCD corrections which will enlarge the
operator basis. When we do so, we need to evaluate the Feynman diagrams in
perturbation theory, both in the full and effective theory as shown, at first order in
αs in fig. (4.1).
One might then think that once these diagrams are taken into account, then there
would not be any others. But the reality is that another class of operators needs
to be considered, the so-called penguin operators [130, 138]. These diagrams play
a central role particularly for ε′/ε and can be mainly divided into three categories:
gluonic penguins, electroweak penguins, and magnetic penguins. We will see later in
more detail the operators that are generated by such diagrams.

4.1.1 Current-Current Operators

There are two current-current operators. The first one is the operator of eq. (4.2).
The fact that is called Q2 instead of Q1 is just a convention.
The second current-current operator is generated by the diagrams in fig (4.1), and
we will give now the explicit computation. The diagrams we need to consider are
just (4.1g) and (4.1h), with their mirror diagrams, since diagram (4.1f), and its
mirror, cancel against the renormalization constant of the quark field.
To study the generation of the new operator, we just need to analyze the Dirac
structure of the diagram. If we consider all external quark momenta to be zero1
then the diagram (4.1g) gives in dimensional regularization

iAg = 4GF√
2
V ∗usVud

∫ dd`
(2π)d ū

u
i

(
igsγµt

a
ij

) i/̀
`2
γρPLv

d
j v̄
s
kγ

ρPL
i/̀

`2

(
igsγνt

b
kl

)
uul
−igµνδab

`2
,

(4.3)
where we used the shorthand notation PL/R = (1 ± γ5)/2. Given that /̀Γ/̀ =
`2/dγαΓγα since there are no other scales involved, we can take out the Dirac
structure

− i4GF√
2
g2
s

d
µ4−dtaijt

a
kl

(
ūui γµγαγρPLv

d
j

)
(v̄skγρPLγαγµuut )

∫ dd`
(2π)d

1
`4
. (4.4)

We need to manipulate the Dirac structure a bit and to do so we will heavily use the
Fierz identities [68, 133] which are just a fancy way of expanding the Dirac algebra
on the basis of the matrices PL, PR, γνPL, γνPR, σµν . In fact, take the following
structure

PLv
d
j v̄
s
kγ

ρPL = PLv
d
j v̄
s
kPRγ

ρ =⇒ (PLvdj v̄skPR)αβ (4.5)

where the equality follows from the Clifford algebra of the γ5 and we made explicit
the Dirac indices. Not considering the γρ, we can project it on the γνPR element by

1This will introduce an additional IR divergence which we just ignore since this can be done at
the level of accuracy (LO) at which we are working.
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Figure 4.1. Relevant current-current Feynman diagrams for the s→ ūud̄ process in the
full and effective theory up to O(αs).
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using the trace
1
2 Tr

(
γνPLPLv

d
j v̄
s
kPR

)
= 1

2 Tr
(
γνPLv

d
j v̄
s
kPR

)
= 1

2 Tr (PRγνPLvkv̄sk)

= −1
2 v̄

s
kPRγ

νPLv
d
j ,

(4.6)

which simply follows from the usual rules for projectors and the anticommuting
spinors. Therefore

(PLvj v̄skPR)αβ = −1
2 v̄

s
kγ

νPLv
d
j (γνPR)αβ. (4.7)

If we put this in the spinor structure of eq. (4.4) we obtain(
ūui γµγαγρPLv

d
j

)
(v̄skγρPLγαγµuut )

= − 1
2 v̄

s
kγ

βPLv
d
j ū

u
i γµγαγργ

βPRγ
ργαγµuul

= − 1
2 v̄

s
kγ

βPLv
d
j ū

u
i γµγαγργ

βγργαγµPLu
u
l

(4.8)

where we can now use the usual rules for the d-dimensional gamma matrices

γµγα γργ
βγρ︸ ︷︷ ︸ γαγµ = (2− d)γµ γαγβγα︸ ︷︷ ︸ γµ

= (2− d)2γαγ
βγα = (2− d)3γβ

(4.9)

to get(
ūui γµγαγρPLv

d
j

)
(v̄skγρPLγαγµuut ) = −(2− d)3

2 v̄skγ
βPLv

d
j ū

u
i γβPLu

u
l

= −(2− d)3

2 v̄skγ
β
(
PLv

d
j ū

u
i PR

)
γβu

u
l .

(4.10)

Since the order of the spinors is inverted with respect to Q2 we can again use the
Fierz trick for the bracketed quantity, obtaining

(2− d)3

4 ūui γµPLv
d
j v̄
s
kγ

βγµPRγβu
u
l = (2− d)4

4
(
ūui γµPLv

d
j

)
(v̄skγµPLuul ) (4.11)

henceforth the relevant Dirac structure is back to being

ūui γµPLv
d
j v̄
s
kγ

µPLu
u
l . (4.12)

But now comes the important step: the presence of the gluon added an additional
SU(N) generator structure that we need to take into account. As we see in eq. (4.4)
we have

taijt
a
kl = 1

2

(
δilδjk −

1
N
δijδkl

)
(4.13)

which mixes the color structure of the operator in eq. (4.12) and creates a new
operator with the same Dirac structure but mixed color structure

taijt
a
klū

u
i γµPLv

d
j v̄
s
kγ

µPLu
u
l = ūui γµPLv

d
j v̄
s
jγ
µPLu

u
i −

1
N
ūui γ

µPLv
d
i v̄
s
jγµPLu

u
j

= 〈Q1〉 −
1
N
〈Q2〉.

(4.14)
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This makes it clear why before we made the color structure of Q2 evident. The
diagram has generated another operator which needs to be considered for the
renormalization procedure. Doing a similar calculation for diagram (4.1h) gives the
same answer but obviously with a different divergent behaviour due to the loop
integral and the different Fierz.
Therefore we have two current-current operators

Q1 = s̄iLγ
µujLū

j
Lγµd

i
L, Q2 = s̄iLγ

µuiLū
j
Lγµd

j
L. (4.15)

4.1.2 Wilson Coefficients and Renormalization

Before we did not evaluate the integral of diagram (4.1g) since we only needed to
control the Dirac structure to find the new effective operator. If we then want to
find the Wilson coefficients and the anomalous dimension matrix for the RGE, we
need to evaluate the various loop integrals, find the 1/ε poles do to the OPE and
then match the full and effective theory for the Wilson coefficients.
This is a tremendous task when one takes into account all possible operators since, as
we will see later, there are not only current-current ones. Fortunately, the theory for
these calculations has been carried out many times before even at NLO including also
electromagnetic corrections [30, 39, 53] in the two different regularization schemes
NDR and HV. NNLO calculations are also available [33, 80]. Therefore we give here
only a summary of the main results with some simple pedagogical calculations.

Where we left off for diagram (4.1g) was, beside the spinors,

− i4GF√
2
V ∗usVudg

2
s

µ4−d

8
(2− d)4

d

∫ dd`
(2π)d

1
`4
. (4.16)

As we know, the integral vanishes in dimensional regularization, but this is only
an artifact of the fact that we chose the external quarks to have zero momentum.
Therefore, to solve this integral, as we did in eq. (2.32), we introduce a fictious scale
and solve the integral with it. After we do so, we set d = 4− 2ε to get, beside the
4GFV ∗usVud/

√
2 factors,

− i

8

(
4πµ2

m2

)ε (2ε− 2)4

4− 2ε
i

(4π)2 g
2
sΓ(ε), (4.17)

which in the limit of ε→ 0(
4πµ2

m2

)ε
= 1 + ε log

(
4πµ2

m2

)
+O

(
ε2
)

Γ(ε) = 1
ε

+ ψ(1) + ε

2

[
π2

3 + ψ2(1)− ψ′(1)
]

+O
(
ε2
)

(2ε− 2)4

4− 2ε = 4− 14ε+O
(
ε2
)
,

(4.18)
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eq. (4.17) becomes2

αs
4π

[
1
2ε − 14 + 4 log

(
4πµ2e−γ

m2

)

+ε
[
(−14− 4γ) log

(
4πµ2

m2

)
+ 2π2

3 − 2γ2 − 2ψ′(1)
]]

+O
(
ε2
)
.

(4.19)

Retrieving only the 1/ε pole we get that the divergent part of the diagram (4.1g) is

iAg = 4GF√
2
V ∗usVud

αs
4π

1
2ε

(
Q1 −

1
3Q2

)
, (4.20)

where we set N = 3.
We can do a similar calculation for diagram (4.1h) that reads

iAh = 4GF√
2
V ∗usVud

∫ dd`
(2π)d ū

u
i γµPL

i/̀

`2

(
igst

a
ijγβ

)
vdj v̄

s
kγ

µPL
i/̀

`2

(
igst

b
klγα

)
uut
−igαβδab

`2
.

(4.21)
Under the usual simplifications, we get

− i4GF√
2
V ∗usVud

g2
s

d
µ4−dtaijt

a
kl

(
ūui γµPLγργβv

d
j

)(
v̄skγ

µPLγ
ργβuut

) ∫ dd`
(2π)d . (4.22)

Proceeding on with the Dirac structure simplification, which is a bit more involved
in this case when dealing with d-dimensional Clifford algebra, we get

ūui γµγργβ
(
PLv

d
j v̄
s
kPR

)
γµγργβuut

= − 1
2 v̄

s
kγ

αPLv
d
j ū

u
i γµγργβγαγ

µ︸ ︷︷ ︸ γργβPLuut
= v̄skγ

αPLv
d
j ū

u
i γαγβγργ

ργβPLu
u
t + (d− 4)

2 v̄skγ
αPLv

d
ju

u
i γργβγαγ

ργβPLu
u
t .

(4.23)

The first bit becomes

v̄skγ
αPLv

d
j ū

u
i γα γβγργ

ργβ︸ ︷︷ ︸PLuut
= d2v̄skγ

α
(
PLv

d
j ū

u
i PR

)
γαu

u
t = −d

2

2 ū
u
i γ

µPLv
d
j v̄
s
kγ

αγµPRγαu
u
t

= − d2(2− d)
2

(
ūui γ

µPLv
d
j

)
(v̄skγµPLuut ),

(4.24)

while the second bit
(d− 4)

2 v̄skγ
αPLv

d
ju

u
i γργβγαγ

ρ︸ ︷︷ ︸ γβPLuut
= (d− 4)2

2 v̄skγ
αPLv

d
j ū

u
i γβγαγ

βPLu
u
t + 2(d− 4)v̄skγαPLvdj ūui γαPLuut

= −
[

(d− 4)2(2− d)2

4 − (d− 4)(2− d)
](
ūui γµPLv

d
j

)
(v̄skγµPLuut ).

(4.25)

2The scale m2 is not physical. When taking the limit m2 → 0 to get beck to the original result,
we find another divergence which is the IR divergence noted before due to the zero quark momenta.
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Therefore the whole expression becomes

−
[
d2(2− d)

2 + (d− 4)2(2− d)2

4 − (d− 4)(2− d)
](
ūui γµPLv

d
j

)
(v̄skγµPLuut ). (4.26)

When taking into account the 1/d factor from the amplitude in eq. (4.22) and
substituting d = 4− 2ε, we obtain

−4(ε− 1)2(ε2 + ε− 4)
4− 2ε = 16− 36ε+O

(
ε2
)
. (4.27)

Taking only the 1/ε pole in eq. (4.22) together with the previous expansion, we find

4GF√
2
V ∗usVud

αs
4π (−2)1

ε

(
Q1 −

1
N
Q2

)
. (4.28)

Summing the contribution from diagrams (4.1g) and (4.1h) with their mirrors, we
get the final amplitude

iA = 4GF√
2
V ∗usVud

αs
4π
−3
ε

(
Q1 −

1
N

)
Q2. (4.29)

In order to compute the two-by-two anomalous dimension matrix, we need to
compute the one-loop renormalization of the operator Q1 inserting it in diagrams
(4.1g) and (4.1h) and their mirrors. The only difference between this and the ones
evaluated before for Q1 is the color structure given by the SU(N) generators being

tailt
a
kj = 1

2

(
δijδkl −

1
N
δilδkj

)
. (4.30)

It is clear that this does not generate other operators, therefore if we consider only
current-current operators, the discussion ends here. With this, we renormalize the
operators as prescribed in eq. (3.24) to obtain, in the MS scheme,

Z = 1 + αs
4πZ1 = 1 + αs

4π
1
ε

(
3/N −3
−3 3/N

)
, (4.31)

which gives the following anomalous dimension matrix, from its definition in eq. (3.27)

γ(0) =
(
−6/N 6

6 −6/N

)
. (4.32)

In this simple case, the evolution matrix can be found by diagonalizing the anomalous
dimension, defining

Q± = Q1 ±Q2
2 , C± = C1 ± C2, γ

(0)
± = ±6N ∓ 1

N
, (4.33)

therefore

U±0 =
(
αs(µW )
αs(µh)

)γ(0)
± /2β0

, (4.34)
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where C1/2 are the Wilson coefficients which, at LO, are just C1 = 0 and C2 = 1.
Note that, as we discussed before, β0 depends on the number of active flavours which
means that if we want to evaluate the Wilson coefficients at a scale µh ∼ 2 GeV we
need to take into account the bottom quark threshold at a scale µb ∼ mb

C±(2 GeV) =
(

αs(µb)
αs(2 GeV)

)γ(0)
± /2β0(4)( αs(µW )

αs(2 GeV)

)γ(0)
± /2β0

. (4.35)

At NLO the situation becomes more complicated. The anomalous dimension matrix
needs to be evaluated at O

(
α2
s

)
and the Wilson coefficients start at

C±(µW ) = 1± αs(µW )
4π 11N ∓ 1

2N (4.36)

in the NDR scheme. A complete discussion can be found in [30, 53].

4.1.3 QCD Penguin Operators

Up until now, we found that the effective Hamiltonian for the ∆S = 1 processes,
like the decay K → 2π, is built up by two operators

Hs̄→d̄eff = 4GF√
2
V ∗usVud[C1Q1 + C2Q2]. (4.37)

But looking at the quark content of the operators, it is clear that when evaluating
their renormalization, additional diagrams arise from the contraction of the u and ū
fields in Q1,2 by attaching a gluon, as seen in fig (4.2).
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Figure 4.2. Effective QCD Penguins for the s̄→ d̄ transition.

The form of these operators can be easily found by considering that they are
FCNC and therefore must be of the form s̄iΓµtaijdj which cannot be generated at
tree-level by the SM Lagrangian. If we take the momenta of the quark to be q, then
the possible form of these operators must be

s̄iΓµtaijdj = A(q2)s̄iγµtaijdj +B(q2)s̄iqµtaijdj + C(q2)s̄iσµνqνtaijdj . (4.38)

Given that gauge invariance assures us that qµs̄iΓµtaijdj = 0, we have that

A(q2)s̄i/qtaijdj + C(q2)s̄iq2taijdj = 0 (4.39)



4.1 Effective Hamiltonian for ∆S = 1 Processes 68

by choosing, without loss of generality, A(q2) = q2 and B(q2) = −/q, we have

s̄iΓµtaijdj = s̄i
(
q2γµ − /qqµ

)
taijdj + C(q2)s̄iσµνqνtaijdj . (4.40)

The second operator connects spinors with different helicity and therefore must be
proportional to the quark mass, so for massless quarks cannot be generated.
By using the equations of motion, we see that the first structure corresponds to the
matrix elements of the operator s̄iγµtaijdjDνGa

µν , in fact

DνGa
µν = gs

∑
f

q̄ifγµt
a
ijq

j
f (4.41)

where f is any active quark flavour, gives

s̄iγµt
a
ijdj

∑
f

q̄kfγ
µtaklq

l
f . (4.42)

Consider diagram (4.2a) with the insertion of the operator of eq. (4.40), roughly
speaking

q̄fγ
µtaqf

1
q2 s̄(q

2γµ − qµ/q)tad (4.43)

since the quarks qf carry momentum q, due to the equation of motion qµqf = 0,
therefore there remain just

q̄fγ
µtaqf

1
q2 s̄q

2γµt
ad, (4.44)

where the q2 cancels with the pole of the propagator, leaving just the matrix element
of the local operator in eq. (4.42)

s̄γµtadq̄fγµt
aq. (4.45)

These diagrams are log-divergent which means that they need to be renormalized
forcing us to enlarge the operator basis again. When inserting operators Q1/2 in the
effective vertex of the gluonic penguin a total of four more operators is generated

Q3 = s̄iLγ
µdiL

∑
f

q̄jfLγµq
j
fL,

Q4 = s̄iLγ
µdjL

∑
f

q̄jfLγµq
i
fL,

Q5 = s̄iLγ
µdiL

∑
f

q̄jfRγµq
j
fR,

Q6 = s̄iLγ
µdjL

∑
f

q̄jfRγµq
i
fR.

(4.46)

As a matter of fact, we give a little computation to see how these operators are
generated by considering the diagram (4.2a) with the insertion of operator Q2 in
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the effective vertex. Again we consider the external quark momenta to be zero and
the momentum flowing in the gluon to be q.

iA =
∫ dd`

(2π)d v̄
d
i γ

µPL
i(/̀− /q)
(`− q)2

(
igst

a
ijγ

α
) i/̀
`2
γµPLv

s
j ū
q
k

(
igst

b
klγ

β
)
uql
−igαβδab

q2

= −iµ4−d g
2
s

q2

(
v̄di γ

µPLγ
ρtaijγ

αγσγµPLv
s
j

)(
ūqkγαt

a
klu

q
l

)
Iρσ,

(4.47)

where the integral, without going into much details, is just

Iρσ = − i

16π2

(
gρσ
2 q2 + qρqσ

) 1
6ε +O

(
ε0
)
. (4.48)

Putting this into the amplitude, we find, besides constant factors3(
v̄di γ

µPLγ
ρtaijγ

αγσγµPLv
s
j

)(
ūqkγαt

a
klu

q
l

)(gρσ
2 + qρqσ

) 1
q2

= 1
2 v̄

d
i t

a
ijγ

µPL

(
γργαγρ + 2/

qγα/q

q2

)
γµPLv

s
j ū
q
kγαt

a
klu

q
l .

(4.49)

Given that γργαγρ = −2γα and that γα/q =
{
γα, /q

}
− /qγα = 2qα − /qγα, the

parenthesis becomes (
γργαγρ + 2/

qγα/q

q2

)
= −4(γα − /qqα

q2 ) (4.50)

and therefore the Dirac structure is

q2v̄di t
a
ijγ

µPL
(
q2γα − qα/q

)
γµPLv

s
j ū
q
kγαt

a
klu

q
l . (4.51)

which gives back the FCNC vertex we conjectured earlier.

It is clear now that in the quark loop of the penguin diagram there can also run
the charm quark, but not the top quark since it has been integrated out by the OPE.
In the full theory even the top quark is present, but not in the low energy one. This
means that we should add to the effective Hamiltonian for the s̄→ d̄ transition even
the current-current operators with the charm quark, leading to

Hs̄→d̄eff = 4GF√
2

[
V ∗usVud

(
C1Q

s̄uūd
1 + C2Q

s̄uūd
2

)
+ V ∗csVcd

(
C1Q

s̄cc̄d
1 + C2Q

s̄cc̄d
2

)]
.

(4.52)
When these operators are inserted into the penguin diagrams, they will give exactly
the same divergent part since it does not depend on the mass of the quarks. Therefore
the penguin diagram is going to be generated with a coefficient

V ∗usVud + V ∗csVcd = −V ∗tsVtd (4.53)
3For simplicity we go back to d = 4 since we just want to understand the Dirac structure.
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due to the unitarity relation of the CKM matrix. All in all, the full effective
Hamiltonian including current-current operators and QCD penguins becomes

Hs̄→d̄eff = 4GF√
2

{
V ∗usVud

[
C1
(
Qs̄uūd1 −Qs̄cc̄d1

)
+ C2

(
Qs̄uūd2 −Qs̄cc̄d2

)]
−V ∗tsVtd

[
Qs̄cc̄d1 + C2Q

s̄cc̄d
2 +

6∑
i=1

CiQ
s̄d
i

]}
,

(4.54)

where again the CKM unitarity has been used to eliminate the factor V ∗csVcd.

4.1.4 Wilson Coefficients and Renormalization

Since we have now a total of six operators, the RGE is governed by a 6×6 anomalous
dimension matrix which has to be evaluated by inserting all the current-current as
well as QCD penguin operators in diagrams (4.1e) to (4.1h) and in the penguin
diagrams (4.2a) and (4.2b).
To perform the matching for the Wilson coefficients, one needs also to evaluate the
full theory equivalent of the penguin diagram in fig. (4.3) where now even the top
quark can run in the loop.

W

u,c,t u,c,t

g

q

s

q

d

Figure 4.3. QCD penguin in the full theory.

At LO the anomalous dimension matrix γ(0) has the explicit form [13, 70, 76,
84, 138]

γ(0) =



−6
N 6 0 0 0 0
6 −6

N
−2
3N

2
3

−2
3N

2
3

0 0 −22
3N

22
3

−4
3N

4
3

0 0 6− 2f
3N

−6
N + 2f

3
−2f
3N

2f
3

0 0 0 0 6
N −6

0 0 −2f
3N

2f
3

−2f
3N

−6(−1+N2)
N + 2f

3


, (4.55)

while at NLO the second order expansion coefficient of the anomalous dimension
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matrix reads [39, 53]

γ(1)
∣∣∣
N=3

=

−21
2 −

2f
9

7
2 + 2f

3
79
9 −7

3 −65
9 −7

3
7
2 + 2f

3 −21
2 −

2f
9 −202

243
1354
81 −1192

243
904
81

0 0 −5911
486 + 71f

9
5983
162 + f

3 −2384
243 −

71f
9

1808
81 −

f
3

0 0 379
18 + 56f

243 −91
6 + 808f

81 −130
9 −

502f
243 −14

3 + 646f
81

0 0 −61f
9

−11f
3

71
3 + 61f

9 −99 + 11f
3

0 0 −682f
243

106f
81 −225

2 + 1676f
243 −1343

6 + 1348f
81


,

(4.56)

where f is the number of active quark flavours at the scale µ. Both matrices are
given in the NDR scheme; the HV scheme results can be found in the sources just
cited.
The fact that the top quark can run in the penguin loop in the full theory is
fundamental since when performing the matching, one finds that the top quark
contribution generates a non-trivial contribution to the C3−6(µW ) Wilson coefficients,
while the contributions from u and c quarks cancels up to a constant and corrections
of order p2/M2

W [39, 96]. After matching, one finds the following Wilson coefficients
at NLO

C1 (MW) = 11
2
αs (MW)

4π ,

C2 (MW) = 1− 11
6
αs (MW)

4π ,

C3 (MW) = −αs (MW)
24π Ẽ0 (xt) ,

C4 (MW) = αs (MW)
8π Ẽ0 (xt)

C5 (MW) = −αs (MW)
24π Ẽ0 (xt) ,

C6 (MW) = αs (MW)
8π Ẽ0 (xt) ,

(4.57)

where

E0(x) = −2
3 log x+ x(18− 11x− x2)

12(1− x)3 + x2(15− 16x+ 4x2)
6(1− x)4 log x,

Ẽ0(x) = E0(x)− 2
3

(4.58)

with xt = m2
t /M

2
W . It is easy to see that coefficients C3−6 are directly related to the

top quark as stated before.
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4.1.5 Electroweak Penguin Operators

W

u,c,t u,c,t

g,Z

q

s

q

d

(a)

W

u,c,t

W

g,Z

q

s

q

d

(b)

Figure 4.4. Electroweak penguin diagrams for the s̄→ d̄ process.

One may now ask the question of what would happen if the gluons in the QCD
penguin diagrams of figs. (4.2) and (4.3) were to be replaced by a photon exchange.
Then, electromagnetic corrections will also get log-enhanced making them comparable
with the NLO-QCD corrections α log

(
µ2
W /µ

2
h

)
∼ αs. These contributions do not

need to be resummed but should be included when working with NLO-QCD [38, 53].
The relevant diagrams that we need to consider when dealing with EW contributions
are given in fig. (4.4a).
When introducing also EW contributions, the operator basis needs to be enlarged
again. While FCNC of diagram (4.4a) is equivalent to the gluonic one, the equation
of motion introduces an explicit charge dependence giving rise to the operator
structures

Q7 = 3
2 s̄

i
Lγ

µdiL
∑
f

eq q̄
j
fLγµq

j
fL,

Q8 = 3
2 s̄

i
Lγ

µdjL
∑
f

eq q̄
j
fLγµq

i
fL,

Q9 = 3
2 s̄

i
Lγ

µdiL
∑
f

eq q̄
j
fRγµq

j
fR,

Q10 = 3
2 s̄

i
Lγ

µdjL
∑
f

eq q̄
j
fRγµq

i
fR.

(4.59)

When performing the matching for the new EW-penguin operators, as in the case
for the gluonic one, one gets a contribution also from the top quark running in the
loop. But in this case, this is not the only contribution. One must also consider the
diagram where a Z0 boson is exchanged and the box diagrams (4.6) where two W
bosons are exchanged so that one can obtain a gauge-invariant result.
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4.1.6 Wilson Coefficients and Renormalization

The RGE is now governed by a 10 × 10 anomalous dimension matrix, whose LO
form is given by

γ(0)
s =

− 6
Nc

6 − 2
3Nc

2
3 − 2

3Nc
2
3 0 0 0 0

6 − 6
Nc

0 0 0 0 0 0 0 0
0 0 − 22

3Nc
22
3 − 4

3Nc
4
3 0 0 0 0

0 0 6− 2nf
3Nc − 6

Nc
+ 2nf

3 − 2nf
3Nc

2nf
3 0 0 0 0

0 0 0 0 6
Nc

−6 0 0 0 0
0 0 − 2nf

3Nc
2nf

3 − 2nf
3Nc 61−N2

c
Nc

+ 2nf
3 0 0 0 0

0 0 0 0 0 0 6
Nc

−6 0 0
0 0 −2(nu−nd/2)

3Nc
2(nu−nd/2)

3
−2(nu−nd/2)

3Nc
2(nu−nd/2)

3 0 61−N2
c

Nc
0 0

0 0 2
3Nc −2

3
2

3Nc −2
3 0 0 − 6

Nc
6

0 0 −2(nu−nd/2)
3Nc

2(nu−nd/2)
3

−2(nu−nd/2)
3Nc

2(nu−nd/2)
3 0 0 6 − 6

Nc


,

(4.60)

where nd is the number of active down-like quarks and nu the one of up-like quarks.
Moreover nf = nu + nd. The NLO anomalous dimension will have contributions
from O

(
α2
s

)
corrections, but also O(α) and O(αsα), like in eq. (3.52). The specific

form of the other coefficients can be found in [38, 53].
The NLO Wilson coefficients at the high scale are found by the matching procedure
to be

C1 (MW) = 11
2
αs (MW)

4π

C2 (MW) = 1− 11
6
αs (MW)

4π − 35
18

α

4π ,

C3 (MW) = −αs (MW)
24π Ẽ0 (xt) + α

6π
1

sin2 θW
[2B0 (xt) + C0 (xt)]

C4 (MW) = αs (MW)
8π Ẽ0 (xt) ,

C5 (MW) = −αs (MW)
24π Ẽ0 (xt) ,

C6 (MW) = αs (MW)
8π Ẽ0 (xt) ,

C7 (MW) = α

6π
[
4C0 (xt) + D̃0 (xt)

]
,

C8 (MW) = 0,

C9 (MW) = α

6π

[
4C0 (xt) + D̃0 (xt) + 1

sin2 θW
(10B0 (xt)− 4C0 (xt))

]
C10 (MW) = 0,

(4.61)
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where

B0(x) = 1
4

[
x

1− x + x ln x
(x− 1)2

]
C0(x) = x

8

[
x− 6
x− 1 + 3x+ 2

(x− 1)2 ln x
]

D0(x) = −4
9 ln x+ −19x3 + 25x2

36(x− 1)3 + x2 (5x2 − 2x− 6
)

18(x− 1)4 ln x

D̃0 (xt) = D0 (xt)−
4
9 .

(4.62)

4.1.7 Magnetic Penguin Operators

W

u,c,t u,c,t

g,γ

s d

Figure 4.5. Magnetic penguin operators.

In principle, two additional operators contribute to the ∆S = 1 transitions. These
are known as chromomagnetic and electromagnetic penguin operators and have the
following form

Q11 = gs
16π2mss̄iσ

µνtaijG
a
µν(1− γ5)dj , Q12 = eed

16π2mss̄σ
µνFµν(1− γ5)d. (4.63)

However their contribution for the K → 2π transitions are chiral suppressed two
times: one from the strange mass term and one from the operator matrix element
[24, 57], therefore we will not consider them from now on. Even in the RBC lattice
analysis, [2] this operator was excluded.

4.1.8 A Note on the Operator Basis

What we found until now is that the |∆S| = 1 transitions can be described by an
effective Hamiltonian containing ten operators

• Current-Current Operators:

Q1 = (s̄iγµPLuj)(ūjγµPLdi) Q2 = (s̄γµPLu)(ūγµPLd) (4.64)

• QCD-Penguins Operators

Q3 = (s̄γµPLd)
∑
q

(q̄γµPLq) Q4 = (s̄iγµPLdj)
∑
q

(q̄jγµPLqi)

Q5 = (s̄γµPLd)
∑
q

(q̄γµPRq) Q6 = (s̄iγµdj)
∑
q

(q̄jγµPRqi) (4.65)
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• Electrowark-Penguins Operators

Q7 = 3
2(s̄γµPLd)

∑
q

eq(q̄γµPRq) Q8 = 3
2(s̄iγµPLdj)

∑
q

eq(q̄jγµPRqi)

Q9 = 3
2(s̄γµPLd)

∑
q

eq(q̄γµPLq) Q10 = 3
2(s̄iγµdj)

∑
q

eq(q̄jγµPLqi)

(4.66)

where PL/R = (1∓ γ5)/2 are the chiral projectors and eq is the quark charge in units
of e.
These operators are useful in the lattice calculations but when it comes to renormal-
ization, another basis is better suited for the task: the so-called chiral basis. This
comes in handy since in the usual 10-operator basis, the operators are not linearly
independent. In fact, by Fierz transforming operators Q1, Q2 and Q3

Q̃1 = (s̄γµPLd)(ūγµPLu),
Q̃2 = (s̄iγµPLdj)(ūjγµPLui),
Q̃3 =

∑
q

(s̄iγµPLqj)(q̄jγµPLdi),
(4.67)

we can eliminate operators Q4, Q9 and Q10 in such a way

Q4 = Q̃2 + Q̃3 −Q1,

Q9 = 3
2Q̃1 −

1
2Q3,

Q10 = 1
2(Q1 − Q̃3) + Q̃2.

(4.68)

The remaining seven operators can then be recombined according to irreducible
representations (irrep) of the chiral flavour-symmetry group SU(3)L ⊗ SU(3)R. All
the details of the decomposition can be found in the literature [109]. The chiral
operator basis, which we will indicate with a primed, is thus given by

(27, 1) Q′1 = 3Q̃1 + 2Q2 −Q3,

(8, 1) Q′2 = 1
5(2Q̃1 − 2Q2 +Q3),

(8, 1) Q′3 = 1
5(−3Q̃1 + 3Q2 +Q3),

(8, 1) Q′5,6 = Q5,6,

(8, 8) Q′7,8 = Q7,8

(4.69)

where (L,R) denotes the respective irrep of SU(3)L ⊗ SU(3)R.
The conversion from the 7-operators chiral basis and the usual 10-operator basis is
simply given by

Qi =
∑
i

TijQ
′
j (4.70)
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Figure 4.6. Box diagrams contributing to the ∆S = 2 transitions.

where 1 ≤ i ≤ 10 and j ∈ {1, 2, 3, 5, 6, 7, 8} and the matrix T is given by

T =



1/5 1 0 0 0 0 0
1/5 0 1 0 0 0 0
0 3 2 0 0 0 0
0 2 3 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3/10 0 −1 0 0 0 0
3/10 −1 0 0 0 0 0


(4.71)

4.2 Effective Hamiltonian for ∆S = 2 Processes
Now we would like to do similar computations for ∆F = 2 processes like the
oscillations K0 → K̄0, which specifically are a ∆S = 2 process since the underlying
quark transition is given by s̄d→ d̄s.
Such FCNC process cannot arise at tree-level in the SM so we must consider one-
loop contributions that, not considering the Goldstone boson exchange for now, are
just the ones in fig. (4.6). Let us give now the computation for diagram (4.6a).
Considering the external quark momenta to be zero, the amplitude can be easily
found to be

iAa =
∫ dd`

(2π)d ū
s
(
ig2√

2

)
γµPLV

∗
ujs

i(/̀−mj)
`2 −m2

j

(
ig2√

2

)
γνPLVujdv

d

v̄s
(
ig2√

2

)
γνPLV

∗
uis

i(`−mi)
`2 −m2

i

γµPLVuidu
d

(
−i

`2 −M2
W

)2

= i
g4

2
4 V

∗
uisVuidV

∗
ujsVujd

∫ d4`

(2π)4(`2 −M2
W )2

ūsγµPL
/̀−mj

`2 −m2
j

γνPLv
dv̄sγνPL

/̀−mi

`2 −m2
i

γµPLu
d,

(4.72)

where mi is the mass of the up-like quark ui between the initial quarks and mj the
mass of the up-like quark uj between the final quarks. The terms proportional to
the mass in eq. (4.72) vanish because of the chiral projectors

mj ū
sγµPLγνPLv

d = mj ū
sγµγν PRPL︸ ︷︷ ︸ vd = 0, (4.73)
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therefore the amplitude simplifies to

i
g4

2
4 V

∗
uisVuidV

∗
ujsVujd

(
ūsγµPLγ

αγνPLv
d
)(
v̄sγνPLγ

βγµPLu
d
)
Iijαβ, (4.74)

where
Iijαβ =

∫ d4`

(2π)4
`α`β

(`2 −m2
i )(`2 −m2

j )2(`2 −M2
W )2 . (4.75)

Let us consider for now the tensor integral Iijαβ. We can simplify its structure by
means of partial fractioning as follows

1
(`2 −m2

i )(`2 −mj)2 = A

`2 −m2
i

+ B

`2 −m2
j

=
(A+B)`2 − (Am2

j +Bm2
i )

(`2 −m2
i )(`2 −m2

j )
,

(4.76)

which simply implies that

A = −B, A = 1
m2
i −m2

j

(4.77)

therefore
1

(`2 −m2
i )(`2 −m2

j )
= 1
m2
i −m2

j

(
1

`2 −m2
i

− 1
`2 −m2

j

)
. (4.78)

From this, we obtain that

Iijαβ =
Iiαβ − I

j
αβ

m2
i −m2

j

, (4.79)

where

Iiαβ =
∫ d4`

(2π)4
`α`β

(`2 −m− i2)(`2 −M2
W )2

= gαβ
4

∫ d4`

(2π)4
(`2 −m2

i ) +m2
i

(`2 −M2
W )2(`2 −m2

i )

= gαβ
4

[
m2
i

∫ d4`

(2π)4

(
1

(`2 −M2
W )2(`2 −m2

i )
+ 1

(`2 −M2
W )2

)]
.

(4.80)

The second term which does not depend on the quark mass cancels in the difference
in eq. (4.79), therefore we can neglect it. While the first term becomes∫ d4`

(2π)d
1

(`2 −M2
W )2(`2 −m2

i )
= 2

∫ 1

0
dx
∫ d4`

(2π)d
x[

(`2 −M2
W )x+ (`2 −m2

i )(1− x)
]3

= 2
∫ 1

0
dx
∫ d4`

(2π)4
x

[`2 − (xM2
W + (1− x)m2

i )]3
.

(4.81)

The integral in the loop momentum is convergent∫ d4`

(2π)4
x

[`2 − (xM2
W + (1− x)m2

i )]3
= − i

16π2
1
2

1
xM2

W + (1− x)m2
i

(4.82)
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as can be easily seen by analytically continuing to d-dimensions and then taking the
limit d→ 4. Hence the integral of eq. (4.81) becomes

= − i

16π2

∫ 1

0
dx x

xM2
W + (1− x)m2

i

= − i

16π2M2
W

∫ 1

0

x

x+ xi(1− x)

= − i

16π2M2
W

∫ 1

0
dx x

xi + x(1− xi)

= − i

16π2M2
W

∫ 1

0

dx
(1− xi)

(1− xi)x+ xi − xi
xi + x(1− xi)

= − i

16π2M2
W

( −xi
1− xi

∫ 1

0
dx 1

(1− xi)x+ xi
+ 1

1− xi

)
= − i

16π2M2
W

( 1
1− xi

+ xi log xi
(1− xi)2

)
,

(4.83)

where xi = m2
i /M

2
W . Thus, up to terms that do not depend on mi we get

Iiαβ = −gαβ4
i

16π2
m2
i

M2
W

( 1
1− xi

+ xi log xi
(1− xi)2

)
= −gαβ4

i

16π2J(xi),
(4.84)

where
J(xi) = xi

1− xi
+ x2

i log xi
(1− xi)2 . (4.85)

Therefore
Iijαβ = − gαβ

4M2
W

i

16π2A(xi, xj), (4.86)

where
A(xi, xj) = J(xi)− J(xj)

xi − xj
. (4.87)

This is our first, actually computed, Inami-Lim function [96] which encodes the loop
information of the diagram.
We now turn our attention to the Dirac structure of eq. (4.74)

ūdγµPLγ
αγνPLv

dv̄sγνPLγ
βγµPLu

d. (4.88)

By using the usual projector rules and Clifford algebra, together with the gαβ from
the integral, we can highlight the usual structure

ūsγµγαγν
(
PLv

dv̄sPR
)
γνγαγµu

d (4.89)

and by using the Fierz identities

(PLvdv̄sPR)αβ = −1
2 v̄

sγρPLv
d(γρPR)αβ (4.90)
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we obtain
− 1

2 v̄
sγρPLv

dūsγµγαγνγρPRγνγαγµu
d, (4.91)

then by jumping the PR over the gamma matrices

− 1
2 v̄

sγρPLv
dūsγµγαγνγργνγαγµPLu

d = 4v̄sγρPLvdūsγρPLud, (4.92)

where we used the usual relation γαγµγα = −2γµ four times.
Putting everything together we obtain the amplitude for the diagram (4.6a) as

iAa = − i

16π2
4g4

2
16M2

W

∑
i,j=u,c,t

V ∗isVidV
∗
jsVjdA(xi, xj)v̄sγµPLvdūsγµPLud

= − iG
2
FM

2
W

2π2

∑
i,j=u,c,t

λisdλ
j
sdA(xi, xj)v̄sγµPLvdūsγµPLud,

(4.93)

where λisd = V ∗isVid.
The computation of diagram (4.6b) goes along the same lines ad for diagram (4.6a),
where we just need to exchange an incoming s̄ to an outgoing s and vice-versa. If
we put the spinors in the amplitude

iAa = − iG
2
FM

2
W

2π2

∑
i,j=u,c,t

λisdλ
j
sdA(xi, xj)v̄sγµPLvdūsγµPLud

iAb = iG2
FM

2
W

2π2

∑
i,j=u,c,t

λisdλ
j
sdA(xi, xj)ūsγµPLudv̄sγµPLvd.

(4.94)

Both these amplitudes can be written as the matrix elements of the same local
operator, which lets us write the effective ∆S = 2 Hamiltonian as

H∆S=2
eff = Cs̄γµPLds̄γµPLd (4.95)

where C is a Wilson coefficient. This effective Hamiltonian generates the following
amplitude

− iC
〈
d̄s
∣∣∣s̄γµPLds̄γµPLd∣∣∣s̄d〉 = −2iC(ūsγµPLvdv̄sγµPLud − ūsγµPLudv̄sγµPLvd).

(4.96)
By matching with the full amplitude, we get that

Ca+b = G2
FM

2
W

4π2

∑
i,j=u,c,t

λisdλ
j
sdA(xi, xj). (4.97)

There remains to evaluate also the box diagrams with the Goldstone boson exchange.
We do not delve into the details of the calculation but, once evaluated, the same
matching procedure as before can be done, obtaining three more Wilson coefficients,
two coming from a single Goldstone exchange and one from the double Goldstone
exchange, which are given by

C2 = C3 = −G
2
FM

2
W

4π2

∑
i,j=u,c,t

λisdλ
j
sdA

′(xi, xj)xixj

C4 = G2
FM

2
W

8π2

∑
i,j=u,c,t

λisdλ
j
sdA(xi, xj)xixj ,

(4.98)
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where
A′(xi, xj) = J ′(xi)− J ′(xj)

xi − xj
, J ′(x) = 1

1− x + x log x
(1− x)2 . (4.99)

In the end, by putting everything together, we get

C = G2
FM

2
W

4π2

∑
i,j=u,c,t

λisdλ
j
sdĀ(xi, xj), (4.100)

where
Ā(xi, xj) = A(xi, xj)− xixjA′(xi, xj) + 1

4xixjA(xi, xj). (4.101)

By using the CKM unitarity, we can finally write down the full ∆S = 2 effective
Hamiltonian as

H∆S=2
eff = G2

FM
2
W

4π2

[
(λtsd)2S0(xt) + (λcsd)2S0(xc) + 2λtsdλcsdS0(xc, xt)

]
s̄γµPLds̄γµPLd,

(4.102)
where

S0(x) = Ā(x, x) + Ā(xu, xu)− 2Ā(xu, x),
S0(x, y) = Ā(x, y) + Ā(xu, xu)− Ā(xu, x)− Ā(xu, y).

(4.103)

All the calculations we have done so far are in the limit of zero external quark
momenta. This is a good limit if there is no explicit dependence on the quark
momenta. This turns out to be a good approximation but with some additional
details that we will not discuss here [46, 133].

What we might want now to do, is to include LO QCD corrections in the same
fashion as done for the ∆S = 1 effective Hamiltonian. What changes is that the
inclusion of loop corrections, does not add a new operator with a different color
structure to the basis since, by means of Fierz identities, we can go back to the
original color structure.
This leads to the following anomalous dimension

γ(0) = 6N − 1
N

. (4.104)

A complete treatment of the NLO QCD corrections is beyond the scope of this thesis
but can be found in the literature [31, 88, 89, 90]. These corrections are usually
parametrized by three factors η1, η2 and η3. The effective Hamiltonian is usually
written in the following form

H∆S=2
eff = G2

FM
2
W

4π2

[
(λtsd)2η2S0(xt) + (λcsd)2η1S0(xc)

+2λtsdλcsdη3S0(xc, xt)
]
s̄γµPLds̄γµPLd,

(4.105)

where ηi = 1 +O(αs).
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Chapter 5

Phenomenology of CP-violation

CP-violation is a key feature of the SM and it is encoded into the matrix elements
of the CKM matrix, as we discussed. Our current knowledge on the origin of
CP violation is rather limited, both at the experimental and theoretical levels.
This feature is of fundamental importance for many physical phenomena starting
from allowed particle decays to one possible explanation of the matter-antimatter
asymmetry in our universe. CP-violation has been observed in the neutral kaon
system1 which is the one we will focus on for the following chapter.
In this system, CP-violation can be tied to two observables called ε and ε′. The
second observable is often referred to as the ration ε′/ε. These two observables
measure the amount of CP-violation in the oscillations and decay respectively. We
call ε the parameter of indirect CP-violation, while we refer to ε′/ε as the parameter
of direct CP-violation.
In this chapter, we are going to discuss these two observables, their analytical form,
and the experimental and theoretical subtleties they carry. To do so, we first need to
introduce the neutral Kaon system, its isospin quantum numbers, which will help us
construct the relevant theoretical quantities associated with the two CP parameters.
A comprehensive review of the topics to be discussed can be found in [29, 59, 113].

5.1 The Neutral Kaon System

Figure 5.1. Pseudoscalar meson octet. Credits: Wikipedia - "Quark Model"

1Not only in the K mesons but also in B and D mesons.
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The neutral kaons K0 and K̄0 are two of the eight members of the pseudoscalar
meson octet, which also include charged kaons K±, the pions π± and π0, and the η.
These particles can be organised in the Cartan plane based on their strangeness S
and isospin Iz quantum numbers, as we can see in figure (5.1). This structure is a
result of the SU(3) flavour symmetry.
The kaons are strange particles, the strangeness of K0 and K+ being +1, while the
one for K̄0 and K− being −1 for convention.
Considering the Isospin quantum number, which is the relevant quantum number to
consider for evaluating matrix elements of Hamiltonians containing quarks, we have
that ∣∣∣K0

〉
∼
∣∣∣∣12 ,−1

2

〉 ∣∣∣K+
〉
∼
∣∣∣∣12 , 1

2

〉
∣∣K−〉 ∼ ∣∣∣∣12 ,−1

2

〉 ∣∣∣K̄0
〉
∼
∣∣∣∣12 , 1

2

〉
.

(5.1)

This classification will be useful later in conjunction with the SU(3) structure of the
∆S = 1, 2 Hamiltonians and the Wigner-Eckart theorem.
The reasoning we are going to give in the following is not specific only to the neutral
kaons. Besides the kaons, there are three neutral mesons that differ from their
antiparticles because of their flavour content and they are: D0, Bd, and Bs mesons.
They will decay, but moreover, they have the peculiarity of mixing with their relative
antimeson, just like the K0 and K̄0.

5.2 Kaon Mixing
If only electromagnetic and strong interactions existed, the K0 and K̄0 would be
stable and form particle-antiparticle pairs with the same mass m0. Because of weak
interactions, the two kaons decay. Moreover, neither electric charge conservation
nor any other conservation law respected by weak interactions can prevent K0

and K̄0 from having both real and virtual transitions to common states |n〉. As a
consequence, K0 and K̄0 can oscillate between themselves before decaying, which
entails a difference of mass and width between the two eigenstates [72].
A general state |ψ〉 which describes a neutral kaon, will be a linear combination of
the two strong and electromagnetic eigenstates |K〉 and

∣∣∣K̄0
〉
, that have definite

strangeness.
By introducing the vector of the components of |ψ〉, ψT = (ψ1 ψ2), such that
|ψ〉 = ψ1

∣∣K0〉+ψ2
∣∣∣K̄0

〉
, when we switch on the weak interactions, the time evolution

of the state, in the particle rest frame, is governed by Schrödinger’s equation

i
∂ψ(t)
∂t

= HWψ(t) =
(
M − i

2Γ
)
ψ(t), (5.2)

where the Hamiltonian is, in general, not Hermitian since we are restricting the total
Hilbert space to that of only the Kaons. This is because kaons can decay to other
particles and so the Hilbert space will contain even all possible decay products. This
simplification is known as the Wigner-Weisskopf approximation [144] which is rather
accurate because of the smallness of weak interactions.
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The matrices M and Γ in eq. (5.2) are Hermitian and are given, in second-order
perturbation theory [125], by the sum over intermediate states

Mij = m0δij + 〈i|HW |j〉+ PV
∑
n

〈i|HW |n〉 〈n|HW |j〉
m0 − En

,

Γij = 2π
∑
n

δ(m0 − En) 〈i|HW |n〉 〈n|HW |j〉 ,
(5.3)

where PV (f) is the principal value of f . The intermediate states |n〉 which contribute
to Mij are virtual states, while the ones contributing to Γij are real states to which
the two kaons can decay to. The matrix Γij encodes the possibility for the particles
to decay.
We can now impose different conditions on the elements of M and Γ by imposing
either CP-invariance or CPT-invariance, the second being a necessary requisite for
any Lorentz invariant QFT [129, 110]. In quantum mechanics, all kets may be
rephased at will without any consequence on the measured quantities∣∣∣K0

〉
→ eiα

∣∣∣K0
〉 ∣∣∣K̄0

〉
→ eiᾱ

∣∣∣K̄0
〉
. (5.4)

The diagonal matrix elements of the weak Hamiltonian HW are invariant under this
rephasing, in fact (

H11 H12
H21 H22

)
→
(

H11 ei(ᾱ−α)H12
ei(α−ᾱ)H21 H22

)
, (5.5)

where

HW =
(
H11 H12
H21 H22

)
=

 〈
K0∣∣HW

∣∣K0〉 〈
K0
∣∣∣HW

∣∣∣K̄0
〉〈

K̄0
∣∣∣HW

∣∣∣K̄0
〉 〈

K̄0
∣∣∣HW

∣∣∣K0
〉. (5.6)

As a consequence of this rephasing invariance, of the eight real numbers of HW , only
seven have physical significance.
The discrete CP transformation interchangesK0 with K̄0 and vice-versa. By choosing
CP 2 = 1 we get [108, 107]

CP
∣∣∣K0

〉
= eiξ

∣∣∣K̄0
〉

CP
∣∣∣K̄0

〉
= e−iξ

∣∣∣K0
〉
. (5.7)

In the same manner under CPT transformation we have

CPT
∣∣∣K0

〉
= eiν

∣∣∣K̄0
〉

CPT
∣∣∣K̄0

〉
= eiν

∣∣∣K0
〉
. (5.8)

since the CPT operator is anti-unitary. What does the invariance under these
discrete transformations say about HW ? The effects can be easily computed from
the matrix elements and the definitions in eqs. (5.7) and (5.8) and we summarize
them in table (5.1).

Table 5.1. Effects under discrete symmetries

Symmetry Diagonal Elements Off-Diagonal Elements
CP M11 = M22, Γ11 = Γ22 M21 = exp(2iξ)M12, Γ21 = exp(2iξ)Γ12
CPT M11 = M22, Γ11 = Γ22 -
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CP conservation gives us information about the off-diagonal matrix elements,
and the result can be parametrized in a more convenient way as

H12 = e2iξH21 =⇒ |H12| = |H21| =⇒ Im(M∗12Γ12) = 0, (5.9)

or equivalently
Im
( Γ12
M12

)
= 0. (5.10)

The two eigenstates of the Hamiltonian HW , being non-Hermitian, are going to be,
in general, complex and we may rewrite them as

λ1,2 = m1,2 −
i

2Γ1,2, (5.11)

where m1,2 are the masses of the two eigenstates K1,2 while Γ1,2 are their decay
widths. If we define

∆m = m1 −m2 ∆Γ = Γ1 − Γ2 (5.12)

we may ask ourselves what are the signs of these two quantities. Generally speaking,
we could have two cases: one where ∆m > 0 and so K1 is heavier than K2 or
∆Γ > 0 where the lifetime of K2 is greater than the one of K1. In the case of the
neutral kaons, we distinguish the two eigenstates based on their lifetime, and so
we label them by L for the Long lived kaon KL and S for the Short lived kaon KS .
Experimentally one finds [152]

τL = 1
ΓL

= (5.116± 0.021)× 10−8 s,

τS = 1
ΓS

= (8.954± 0.009)× 10−11 s,
(5.13)

while
∆m = (3.491± 0.009)× 10−12 MeV. (5.14)

Usually one also defines the quantities

m = mL +mS

2 , Γ = ΓS + ΓL
2 ,

x = ∆m
Γ , y = ∆Γ

2Γ ,

(5.15)

where x and y are dimensionless parameters. In the case of the neutral kaons system
∆Γ = ΓL − ΓS ≈ −ΓS and Γ ≈ ΓS/2. Moreover x ≈ −y ≈ 1. The average of the
mass of the neutral kaons is [152]

mK = 497.611± 0.012 MeV. (5.16)

Let us rewrite the eigenstates KL,S as follows

|KL,S〉 = p
∣∣∣K0

〉
± q

∣∣∣K̄0
〉
, with |p|2 + |q|2 = 1, (5.17)
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or equivalently ∣∣∣K0
〉

= 1
2p(|KL〉+ |KS〉),∣∣∣K̄0

〉
= 1

2q (|KL〉 − |KS〉).
(5.18)

Then, under this parametrization, we have that

H11p±H21q = λL,Sp =⇒ H11 ±
p

q
H12 = H11 ±

√
H12H21 (5.19)

where we used the diagonalization of the Hamiltonian in eq. (5.6) that gives λL/S =
H11 ±

√
H12H21. Then eq. (5.19) gives

q

p
=
√
H21
H12

=
∆m− i

2∆Γ
2M12 − iΓ12

. (5.20)

Now we can easily see that CP conservation, using eq. (5.10), implies

q

p
= eiξ =⇒

∣∣∣∣qp
∣∣∣∣ = 1. (5.21)

Thus, we denote the condition of CP violation in mixing or indirect CP-violation, as∣∣∣∣qp
∣∣∣∣ 6= 1. (5.22)

In the limit where CP is an exact symmetry, the two CP eigenstates are given, under
a suitable choice of the phases in eq. (5.4), by the following linear combinations

|K1〉 = 1√
2

(∣∣∣K0
〉

+
∣∣∣K̄0

〉)
, |K2〉 = 1√

2

(∣∣∣K0
〉
−
∣∣∣K̄0

〉)
, (5.23)

where |K1〉 is the CP-even (or CP-positive) eigenstate, while |K2〉 is CP-odd (or
CP-negative).

Finally, CP-violation in mixing can be also expressed in terms of the parameter
δ defined as

δ = |H12| − |H21|
|H12|+ |H21|

= 〈KL|KS〉 = |p|2 − |q|2 = 1− |q/p|2

1 + |q/p|2
. (5.24)

Equivalently
|p|2 = 1 + δ

2 , |q|2 = 1− δ
2 . (5.25)

Notice that the transformation in eq. (5.17) is unitary only if |p|2 − |q|2 = δ = 0, so
only if CP is conserved. Therefore, if CP is violated, one must be careful with the
definition of the bra states 〈KL,S | using the so-called reciprocal basis. We are not
going into the details but many references are available [65, 124, 132, 148].
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5.3 Kaon Decay
Before going into the various definitions of the observables that we can associate to
CP violation in both mixing and decay, we must deal with the other CP-violating
physics in the kaon system: nonleptonic decays, in particular K → 2π decays.

We can start by analyzing the isospin decomposition of the various matrix
elements that can be constructed then make use of the Wigner-Eckart theorem to
find the non-zero ones based on the isospin form of the weak |∆S| = 1 Hamiltonian.
Both kaons and pions are spinless particles, therefore when a neutral kaon decays to
two pions, the final state must come with zero angular momentum. Moreover, pions
are bosons and so their total wavefunction must be symmetric. With all of this, the
angular momentum part is symmetric and therefore their isospin state must be even.
This means that the total isospin I must be either I = 0, 2. This is true since pions
form an isospin triplet and so their tensor product must have total isospin either 0, 1
or 2.
With this in mind, let us start from the definition〈

π+
∣∣∣ = 〈1, 1| ,

〈
π0
∣∣∣ = 〈1, 0| ,

〈
π−
∣∣ = 〈1,−1| . (5.26)

The relevant two pions final states that we can construct are

〈2, 1| = 1√
2

(〈
π+π0

∣∣∣+ 〈
π0π+

∣∣∣),
〈2, 0| = 1√

6

(〈
π+π−

∣∣∣+ 〈
π−π+

∣∣∣+ 2
〈
π0π0

∣∣∣),
〈0, 0| = 1√

3

(〈
π+π−

∣∣∣+ 〈
π−π+

∣∣∣− 〈π0π0
∣∣∣),

(5.27)

where we used the Clebsh-Gordan decomposition [145]. On the other hand, kaons
form two distinct isospin doublets which are given in eq. (5.1). What we need to
evaluate are matrix elements of the form

out〈2π, I|H
|∆S|=1
eff |K〉in . (5.28)

If we take, for example, the decay K+ → π0π0 we see that〈
π+π0

∣∣∣H|∆S|=1
eff

∣∣∣K+
〉
∼
〈

2, 1
∣∣∣∣H|∆S|=1

eff

∣∣∣∣12 , 1
2

〉
6= 0 ⇐⇒ H|∆S|=1

eff ∼
∣∣∣∣32 , 1

2

〉
(5.29)

by virtue of the Wigner-Eckart theorem, so that not all the operators for the
|∆S| = 1 Hamiltonian contribute to the matrix element. The Hamiltonian contains
also I = 1/2 components. Therefore, the action of the effective Hamiltonian on the
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initial kaon states can be parametrized as follows2

Heff
∣∣∣K0

〉
=
(
H3/2,1/2 +H1/2,1/2

) ∣∣∣∣12 ,−1
2

〉
,

= 1√
2
A3/2 |2, 0〉+ 1√

2
A3/2 |1, 0〉+ 1√

2
A1/2 |1, 0〉+ 1√

2
A1/2 |0, 0〉

Heff
∣∣∣K+

〉
=
(
H3/2,1/2 +H1/2,1/2

) ∣∣∣∣12 , 1
2

〉
=
√

3
4A3/2 |2, 1〉 −

1
2A3/2 |1, 1〉+A1/2 |1, 1〉

(5.30)

again by virtue of the Clebsh-Gordan decomposition. Using what we found in
eq. (5.30) and the definitions in eq. (5.27), we see that

A(K+ → π+π0) =
√

3
2
√

2
A3/2,

A(K0 → π+π−) = 1
2
√

3

(
A3/2 +A1/2

)
,

A(K0 → π0π0) = 1√
6

(√
2A3/2 −A1/2

)
.

(5.31)

Here we neglected the effects of isospin breaking which come from the difference in
the mass of the up and down quarks and from EM interactions [49]. These effects will
be considered later on. Most of the times, it is convenient to define the amplitudes
as A0,2 = 1/

√
6A1/2,3/2. In both A0 and A2 there are two main phases: a strong

phase which comes from the scattering of the final states and are CP-invariant, and
a weak phase which is not CP-invariant. Under the elastic threshold, there are only
two strong phases. Let us consider the 2π → 2π scattering solely under the influence
of the strong interaction. Denoting Sstrong the strong isospin conserving S-matrix,
we define

out〈2π, I|2π, I〉out = 〈2π, I|Sstrong|2π, I〉 . (5.32)

Assuming that we are below elastic threshold, given the unitarity of the S-matrix

S†strongSstrong = 1 =⇒ Sstrong = e2iδI . (5.33)

Under these conditions, Watson’s theorem [69, 141] assures us that the weak phase
is just half of the strong phase of eq. (5.33) describing the strong interaction of the
final state.
Then we can explicitly extract a CP-invariant phase δ0,2 from each isospin amplitude,
so that A0,2 → A∗0,2 under CP. With this definition one finds

A(K0 → π+π−) = A0e
iδ0 + A2√

2
eiδ2 ,

A(K0 → π0π0) = −A0e
iδ0 +

√
2A2e

iδ2 ,

A(K+ → π+π0) = 3
2A2e

iδ2 .

(5.34)

2The same goes for the other kaon doublet.
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When considering neutral kaons decaying to some final state f , we can find the con-
dition of CP-invariance in decay from the decay amplitudes. In fact, by considering
how CP acts on the initial kaons, in eq. (5.7), and how it acts on the final states

CP |f〉 = eiξf
∣∣∣f̄〉 , CP

∣∣∣f̄〉 = e−iξf |f〉 (5.35)

we are led to the condition of CP-invariance for the decay amplitudes

Āf̄ = ei(ξf−ξ)Af , Af̄ = ei(ξf+ξ)Āf , (5.36)

where Af =
〈
f
∣∣H∣∣K0〉 with the other straightforward definitions. We can recast the

condition in a more suitable form as

|Af | =
∣∣∣Āf̄ ∣∣∣, ∣∣∣Af̄ ∣∣∣ =

∣∣∣Āf ∣∣∣. (5.37)

These conditions are what one would expect if CP was a symmetry: the probability of
the decay K0 → f should be the same as the one for the decay K̄0 → f̄ . Analogous
conditions hold for the decay of charged kaons. When the conditions of eq. (5.37)
are not met, we speak of CP-violation in decays or direct CP-violation.

5.3.1 The ∆I = 1/2 Rule

The most important experimental feature of kaon decays is that there is a striking
dominance of the ∆I = 1/2 amplitude, which contributes to A0, over the ∆I = 3/2
amplitude, which contributes only to A2. What is found experimentally is that

Γ
(
K0 → π+π−

)
Γ(K+ → π+π0) ' 400, (5.38)

which gives us that

|A0|2 + |A2|2

|A2|2
' 400 =⇒ A0 � A2. (5.39)

This phenomenon is known as the ∆I = 1/2 rule [15, 72, 73], or octet enhancement
[13]. The latter is due to the fact that in A2 enters a 27 of SU(3), while in A0 and
8.
This rule can be cast in a more convenient form as

ReA2
ReA0

' 1
22 . (5.40)

One of the most difficult problems in the study of these weak decays is in fact the
theoretical prediction of this ratio. From what we knew before the lattice results
from the RBC-UKQCD collaboration [2], part of the reason for the enhancement
is due to the RG evolution of the dominant Wilson coefficients. This accounts for
a factor of two. Another contribution comes from QCD penguin operators being
purely ∆I = 1/2 [138]. Still, this does not account for the full 22 times enhancement.
The effect must largely come from the hadronic matrix elements which are much
harder to evaluate due to their nonperturbative nature.
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Is here that the RBC results [2, 18] come into play. What they found not only gave
the expected enhancement on the A2/A0 amplitude, but underlined a large deviation
from the naïve factorizations based on the Vacuum Insertion Approximation (VIA)
in the matrix elements of the current-current operators. In fact using VIA, one finds
that the two Wick contractions of the operator

Q(27,1) = 3Q̃1 + 2Q2 −Q3, (5.41)

where Q̃1 is the Fierz transform of Q1

Q̃1 = (s̄d)V−A(ūu)V−A, (5.42)

come with the same sign plus a factor of 3 due to color contractions. In reality, the
two Wick contractions have the opposite sign, effectively cancelling each other (see
fig. 11 of [18]).
Quoting the result from the article [2], the RBC collaboration found that

ReA0
ReA2

= 19.9(2.3)(4.4), (5.43)

where the first error is statistical while the latter is systematic.

5.4 CP Observables
We are now ready to construct the two fundamental observables connected to CP
violation in the kaon system.
Conventionally it is useful to define, for an arbitrary decay channel f , the parameters

ηf = |ηf |eiφf = 〈f |H|∆S|=1
eff |KL〉

〈f |H|∆S|=1
eff |KS〉

r, (5.44)

where the factor r is there for rephasing invariance [100, 105]. We shall assume
r = 1 from now on. It is also convenient to define the four decay amplitudes by
normalizing them by the largest one

ω = 〈2π(2)|H|∆S|=1
eff |KS〉

〈2π(0)|H|∆S|=1
eff |KS〉

,

ε = 〈2π(0)|H|∆S|=1
eff |KL〉

〈2π(0)|H|∆S|=1
eff |KS〉

,

ε2 = 〈2π(2)|H|∆S|=1
eff |KL〉

〈2π(0)|H|∆S|=1
eff |KS〉

,

(5.45)

where 〈2π(I)| ≡ 〈2π, I|. Notice that the parameters ε and ε2 violate CP, while the
parameters ω and ε2 violate the ∆I = 1/2 rule. Instead of ε2 we define another
parameter which violates both CP and the ∆I = 1/2 rule

ε′ = ε2 − εω√
2

= 〈2π(2)|H|∆S|=1
eff |KL〉 〈2π(0)|H|∆S|=1

eff |KS〉 − 〈2π(0)|H|∆S|=1
eff |KL〉 〈2π(2)|H|∆S|=1

eff |KS〉√
2 〈2π(2)|H|∆S|=1

eff |KL〉 〈2π(0)|H|∆S|=1
eff |KS〉2

.

(5.46)
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If ε′ 6= 0 we have the condition for direct CP-violation, i.e. CP-violation in the decay
amplitudes.
Following eqs. (5.44) to (5.46) we find that

η+− = ε+ ε′

1 + ω/
√

2
≈ ε+ ε′,

η00 = ε− 2ε′

1−
√

2ω
≈ ε− 2ε′,

(5.47)

where we used the fact that |ω| � 1 due to the ∆I = 1/2 rule. These constitute the
definition of the two observables ε and ε′ in terms of measurable quantities. It is
useful to cast them in a more "experimentalist" form

ε = 2η+− + η00
3 , ε′ = η+− − η00

3 . (5.48)

5.4.1 Kaon Mixing and εK

We have seen that if CP is a symmetry, the mass eigenstates
∣∣∣KL/S

〉
would become

CP eigenstates of the form in eq. (5.23). In this limit

|KL〉 → |K1〉 , |KS〉 → |K2〉 , (5.49)

and so the KS would decay only into CP-even final states, like the ππ state, whereas
KL would decay only to CP-odd eigenstates like πππ. This also explains why the
two particles have such a different lifetime: the 3π state has a considerably smaller
phase space than the 2π states, the decay width of the former is much bigger than
the latter making its lifetime smaller.
It is convenient to expand the KL/S state on the basis of the CP-eigenstates as
follows

|KL〉 = 1√
1 + |ε̄|2

(|K2〉+ ε̄ |K1〉),

|KS〉 = 1√
1 + |ε̄|2

(|K1〉+ ε̄ |K2〉),
(5.50)

where, in the convention of eq. (5.17)
q

p
= 1 + ε̄

1− ε̄ . (5.51)

By the definition of ε in eq. (5.45), with eqs. (5.34) and (5.50), given that ε̄� 13
and neglecting terms of order (ImA0/ReA0)2, we get that

ε = (1 + ε̄)A∗0 − (1− ε̄)A0
(1 + ε̄)A∗0 + (1− ε̄)A0

= (A0 −A∗0) + ε̄(A0 +A∗0)
(A0 +A∗0) + ε̄(A0 −A∗0)

= i ImA0 + ε̄ReA0
ReA0 + iε̄ ImA0

= ε̄+ i ImA0/ReA0
1 + iε̄ ImA0/ReA0

'
(
ε̄+ i

ImA0
ReA0

)(
1− iε̄ ImA0

ReA0

)
' ε̄+ i

ImA0
ReA0

.

(5.52)

3CP violation in SM is small.
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The ε̄ coefficient is tied to the diagonalization of the matrix of eq. (5.6), thus, by
means of eq. (5.51), we have

ε̄ = p− q
p+ q

' i

2
ImM12 − i Im Γ12/2
ReM12 − iRe Γ12/2

' 1
2
M12 −M21 − i/2(Γ12 − Γ21)

∆m+ i/2∆Γ . (5.53)

Experimentally, one finds that for the kaon system ∆m/∆Γ ≈ −1. Thus we can
simplify the above expression as

ε̄ ' 1 + i

2
ImM12

2 ReM12
− 1− i

2
Im Γ12

2 Re Γ12
. (5.54)

In addition, from the definition of eq. (5.3) and the fact that the decay K0 → 2π is
dominated by the I = 0 transition due to the ∆I = 1/2 rule, we have

Γ12 = 2π
∑
n

δ(m− k − En)
〈
K0
∣∣∣HW

∣∣∣n〉 〈n∣∣∣HW

∣∣∣K̄0
〉
' (A∗0)2, (5.55)

therefore

Im Γ12 = −2 ReA0 ImA0, Re Γ12 = Re2A0 − Im2A0. (5.56)

Using this in eqs. (5.52) and (5.54), with the usual expansion, we find

ε ' 1 + i

2
ImM12

2 ReM12
+ 1− i

2
ReA0 ImA0

Re2A0 − Im2A0
+ i

ImA0
ReA0

= 1 + i

2
ImM12

2 ReM12
+ 1− i

2
ImA0
ReA0

1(
1− Im2 A0

Re2 A0

) + i
ImA0
ReA0

' 1 + i

2

( ImM12
2 ReM12

+ ImA0
ReA0

)
= ei

π
4
√

2

( ImM12
2 ReM12

+ ImA0
ReA0

)
.

(5.57)

To first approximation

ε ' −e
iπ4
√

2

( ImM12
∆mk

)
(5.58)

since −2 ReM12 ' ∆mk.
We are now ready to connect the general theory for the observable with the relevant
effective Hamiltonian that lets us make theoretical predictions on the value of such
observable. In order to calculate M12 it is necessary to use the |∆S| = 2 effective
Hamiltonian which fortunately we found in the previous chapter and is given in
eq. (4.105). Since

ImM12 = 1
2mK

Im
( 〈
K̄0
∣∣∣H∆S=2

eff

∣∣∣K0
〉)
, (5.59)

it can be easily seen that

|ε| = G2
FM

2
W

4
√

2π2mk∆mk

A2λ6σ sin δ
〈
K̄0
∣∣∣s̄γµPLds̄γµPLd∣∣∣K0

〉
×
[
η3S0(xc, xt)− η1S0(xc) +A2λ4(1− σ cos δ)η2S0(xt)

]
,

(5.60)
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where A, λ are the Wolfenstein CKM parameters introduced in eq. (1.103), while σ
and δ are defined as σeiδ = ρ+ iη. Notice that both the NLO-QCD parameters ηi
and the hadronic matrix element depend on the renormalization scale µ but their
product is scale independent.
The most problematic factor to evaluate is the hadronic matrix element. This can
be parametrized at LO in the following way [55, 54]〈

K̄0
∣∣∣(s̄LγµdL)2

∣∣∣K0
〉

= 8
3f

2
Km

2
kBKαs(µ)6/25, (5.61)

where fK is the Kaon decay constant and BK is a bag parameter which is µ-
independent and encodes all the hadronic contributions.

5.4.2 Kaon Decays and ε′/ε

This is the parameter we are most interested in. Starting from the definitions in
eqs. (5.34) and (5.46), we can easily show that

ε′ = ei(δ2−δ0)
√

2

[
((1 + ε̄)A2 − (1− ε̄)A∗2)((1 + ε̄)A∗0 + (1− ε̄)A0)

((1 + ε̄)A∗0 + (1− ε̄)A0)2

− ((1 + ε̄)A0 − (1− ε̄)A∗0)((1 + ε̄)A∗2 + (1− ε̄)A2)
((1 + ε̄)A∗0 + (1− ε̄)A0)2

]

= ei(δ2−δ0)
√

2

[
(i ImA2 + ε̄ReA2)(ReA0 + iε̄ ImA0)

(ReA0 + iε̄ ImA0)2

− (i ImA0 + ε̄ReA0)(ReA2 + iε̄ ImA2)
(ReA0 + iε̄ ImA0)2

]
.

(5.62)

Neglecting terms of order ε̄2, the numerator becomes

i ImA2 ReA0 + iε̄ ImA2 ImA0 + ε̄ReA2 ReA0

− i ImA0 ReA2 − ε̄ReA0 ReA2 − iε̄ ImA0 ImA2

= i(ImA2 ReA0 − ImA0 ReA2).
(5.63)

By explicitly taking our a ReA0 and introducing the parameter ω from eq. (5.45),
which is ω = ReA2/ReA0, then eq. (5.62) becomes

ε′ = iei(δ2−δ0)
√

2
ReA0(ImA2 − ω ImA0)
Re2A0 + 2iε̄ReA0 ImA0

= iei(δ2−δ0)
√

2
ω

ReA0

ω−1 ImA2 − ImA0
1 + 2i(ε̄ ImA0/ReA0) .

(5.64)

Since ImA0 � ReA0 then we can expand the denominator in orders of the parameter
in brackets, obtaining the desired result

ε′ ' iωei(δ2−δ0)
√

2

[ ImA2
ReA2

− ImA0
ReA0

]
. (5.65)
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Most of the time, ε′ is normalized to ε

ε′

ε
= iωei(δ2−δ0)

√
2ε

[ ImA2
ReA2

− ImA0
ReA0

]
.. (5.66)

Note that this new quantity, being the ratio of two CP-violating parameters, is not
itself CP-violating.
The experimental world average of ε′/ε from NA48 [23] and KTeV [5, 11] collabora-
tions reads (

ε′

ε

)
exp

= (16.6± 2.3)× 10−4. (5.67)

The theoretical analysis of ε′/ε has been subject to different refinements over the
years. To obtain a non-zero value for ε′, one must compute the loop level corrections.
These corrections, as well as the operators that they generate in the effective theory,
have been discussed before. It is important to note that the gluonic penguins play
a central role in the generation of a non-vanishing ε′ [76, 131, 138]. Moreover,
electroweak penguins, due to their increasing contribution with the top quark mass
mt, become important for a sufficiently heavy top [35, 62, 111]. Not only that, but
electroweak penguins tend to counteract the effect of the gluonic penguins, making
the value of ε′ smaller with an increasing top mass. These strong cancellations are
what make the computation of ε′/ε so difficult. Moreover, because of the uncertainties
in the determination of the hadronic matrix elements, an accurate prediction of ε′/ε,
which was in line with the experimental value, was not possible.
This was before the RBC collaboration made enormous progress in the precise
determination of both A0 [2] and A2 [18], where special attention was given to
decreasing the uncertainties on the hadronic matrix elements as much as possible.
For a comprehensive review on the history of ε′/ε and its recent development, one
can read ref. [32].
Now we have an analytical formula per ε′/ε that depends on the two amplitudes A0
and A2 which we can compute using the ∆S = 1 effective Hamiltonian [30]

AIe
iδI = GF√

2
V ∗usVud

10∑
i=1

[zi(µ) + τyi(µ)]
〈

2π, I
∣∣∣Qi(µ)

∣∣∣K0
〉

(5.68)

where τ = −V ∗tsVtd/V ∗usVud. Here zi and yi are a suitable redefinition of the Wilson
coefficients computed in the MS scheme as a function of the scale µ. The hadronic
matrix elements of the 10 operators we found in the previous chapter, also depend
on the scale µ in such a way that the product of it with the Wilson coefficients is
scale independent. These operator matrix elements are what made difficult the task
of predicting the value of ε′/ε over the years. Some basic estimates have been done
using the VIA approximation but it should be stressed that this method has no
QCD basis and gives even the wrong sign for the 1/N corrections to the hadronic
matrix elements [20, 21, 22, 34] which was even numerically confirmed by the RBC
collaboration [2].
Nonetheless, it is instructive to see how this approximation works and the results it
leads to. Usually, the hadronic matrix elements are given in terms of the B-parameters
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K+ π+

π0

s̄

u

d̄

u

Figure 5.2. Wick contraction (disconnected) diagram for the K+ → π+π0 transition with
effective operator insertion. The Vacuum Insertion Approximation is done by cutting
along the red line.

(B for bag as before)

〈2π, I = 0|Qi(µ)|K〉 = B
(1/2)
i (µ) 〈2π, I = 0|Qi|K〉VIA

〈2π, I = 2|Qi(µ)|K〉 = B
(3/2)
i (µ) 〈2π, I = 2|Qi|K〉VIA

(5.69)

where the subscript VIA stands for the matrix elements in the Vacuum Insertion
Approximation. If we take, as an example, the matrix element of the Q2 type
current-current operator〈

π+π0
∣∣∣s̄LγµuLūLγµdL∣∣∣K+

〉
'
〈
π0
∣∣∣s̄LγµuL∣∣∣K+

〉 〈
π+
∣∣∣ūLγµdL∣∣∣0〉 (5.70)

which, given that both the K+ and the pions are pseudoscalars, can be simplified,
following the cut on the disconnected diagram in fig. (5.2), to〈

π0
∣∣∣s̄LγµuL∣∣∣K+

〉 〈
π+
∣∣∣ūγµγ5dL

∣∣∣0〉
=
[
f+(q2)(ππ0 + pK+)µ + f0(q2)(ππ0 − pK+)µ

]
ifπp

µ
π+ ,

(5.71)

where q2 = m2
π+ . Given that

pµπ+ + pµK+ = pµπ0 =⇒ ππ+ · pπ+ = 1
2
(
m2
π+ +m2

π0 −m2
K+

)
(5.72)

and similarly
pπ+ · pK+ = 1

2
(
m2
K+ +m2

π+ −m2
π0

)
, (5.73)

then the matrix element becomes

= ifπ

[1
2
(
f+(m2

π+) + f0(m2
π+)

)(
m2
π+ +m2

π0 −m2
K+

)
+1

2
(
f+(m2

π+)− f0(m2
π+)

)(
m2
K+ +m2

π+ −m2
π0

)]
= ifπ

[
f0(m2

π+)
(
m2
π0 −m2

K+

)
+ f+(m2

π+)m2
π+

]
.

(5.74)

And this is the VIA approximation for one of the two Wick contractions of the Q2
hadronic matrix element. The other Wick contraction can be Fierzed back to the
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one just found but with a factor 1/N .
For µ < mc one finds that the various matrix elements are given in VIA by [38]

〈Q1〉0 = −1
9XB

(1/2)
1 , (5.75)

〈Q2〉0 = 5
9XB

(1/2)
2 , (5.76)

〈Q3〉0 = 1
3XB

(1/2)
3 , (5.77)

〈Q4〉0 = 〈Q3〉0 + 〈Q2〉0 − 〈Q1〉0 , (5.78)

〈Q5〉0 = 1
3B

(1/2)
5

〈
Q6
〉

0
, (5.79)

〈Q6〉0 = −4
√

3
2

[
m2

K
ms(µ) +md(µ)

]2
Fπ
κ
B

(1/2)
6 (5.80)

〈Q7〉0 = −
[1

6
〈
Q6
〉

0
(κ+ 1)− X

2

]
B

(1/2)
7 (5.81)

〈Q8〉0 = −
[1

2
〈
Q6
〉

0
(κ+ 1)− X

6

]
B

(1/2)
8 (5.82)

〈Q9〉0 = 3
2 〈Q1〉0 −

1
2 〈Q3〉0 , (5.83)

〈Q10〉0 = 〈Q2〉0 + 1
2 〈Q1〉0 −

1
2 〈Q3〉0 , (5.84)

〈Q1〉2 = 〈Q2〉2 = 4
√

2
9 XB

(3/2)
1 (5.85)

〈Qi〉2 = 0, i = 3, . . . , 6 (5.86)

〈Q7〉2 = −
[
κ

6
√

2

〈
Q6
〉

0
+ X√

2

]
B

(3/2)
7 (5.87)

〈Q8〉2 = −
[
κ

2
√

2

〈
Q6
〉

0
+
√

2
6 X

]
B

(3/2)
8 (5.88)

〈Q9〉2 = 〈Q10〉2 = 3
2 〈Q1〉2 , (5.89)

where

κ = Fπ
FK − Fπ

, (5.90)

X =
√

3
2Fπ

(
m2
K −m2

π

)
, (5.91)

and 〈
Q6
〉

0
= 〈Q6〉0
B

(1/2)
6

. (5.92)

As stated in eq. (5.34), electromagnetic contributions break isospin symmetry
which generates two different A2 amplitudes. The difference in mass between the
up and down quark induces a mixing between the π0 and the two isospin-singlet η
and η′. As a consequence, the transition K0 → π0π0 can also occur through the
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intermediate state π0η or π0η′. Due to the ∆I = 1/2 rule we know that A0 � A2;
since isospin breaking corrections are perturbative we can neglect isospin breaking
effects in A0. Therefore, the effect of isospin breaking can be reduced to corrections
to ImA2 which are proportional to ImA0 [62]. One can define [35, 62]

ImA2 = ImA′2 + ΩIBω ImA0, (5.93)

where A′2 is the ∆I = 3/2 transition without isospin breaking effects. The ΩIB term
can be estimated using ChPT [50].
Thus, the analytical formula for ε′/ε in eq. (5.66) can be updated to include isospin-
breaking effects

ε′ = iei(δ2−δ0)ω√
2

1
ReA0

[
ω−1 ImA′2 − (1− ΩIB) ImA0

]
. (5.94)
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Chapter 6

UTfit Analysis

As seen in section 1.4.8, the Unitarity Triangle encodes all the important features of
the flavour structure of the Standard Model. It is then of fundamental importance
that the elements of the CKM matrix be measured with as much precision as possible.
There are of course loads of observables we can look at to find the value of the
CKM matrix elements, but one compelling way of inferring their value is by using
all the possible measurements and theoretical predictions to constrain the (ρ̄, η̄)
vertex. This kind of statistical analysis is central since it enables us not only to find
the best possible prediction for the CKM matrix elements but even to constrain
nonperturbative parameters, New Physics (NP) models and the energy scales at
which the NP becomes relevant. This is due to the fact that we need to fit two
parameters but the space of possible measurements and theoretical predictions is
much bigger than two. This overconstrains the system enabling us to use the fitted
values of the CKM parameters to find the posterior distribution of other interesting
quantities.
Of course, one can take two possible statistical routes to find the posterior distribution
of any given parameter or observables: one is the frequentist approach, which is
followed by the CKMfitter group [47], and the other is the Bayesian approach [28]
which is the one used by the UTfit collaboration and the one we will focus on. Both
methods are valid in their own way and having two different approaches gives us the
opportunity to check for consistency between the two results.
In this chapter, we are going to briefly discuss the basic idea behind this kind of
analysis and how the Bayesian framework works. Then we give the specific setup to
analyze and include in the updated UT analysis the direct CP-violation observable
ε′/ε. For the second task, we are going to implement the code using the HEPfit
library [60].

6.1 Statistical Methods
Imagine having a set of measured quantities, for example ∆md/∆ms, |εK |, Γ(b→
u)/Γ(b→ c) and so on. All these constraints, we label them as cj , are related in some
fashion to the CKM-triangle parameters ρ̄, η̄. The theoretical formulas which relate
the CKM parameters and the constraints contains also other various parameters, we
call it ancillary parameters, x = {x1, x2, · · · , xN}. Some examples of these relations
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can be found in section 6.3. What we have is some kind of equation of the form

cj = cj(ρ̄, η̄,x). (6.1)

In theory, the exact knowledge of cj and x, would imply the exact knowledge of
both ρ̄, η̄ as long as the constraints are at least two. Each of the constraints cj traces
a curve in the (ρ̄, η̄) plane, whose intersection would give the vertex of the UT. In
the realistic case, we do not know precisely the values of the constraints cj and
neither do for the model parameters x. Moreover, we would like to give different
probabilities to those values which we "know" must be in some region. For example,
in the case of ε′/ε we are more likely to accept a value of zero than a value of a
hundred. This means that instead of curves in the plane, we will have regions that
depend on the distribution of the set {cj ,x} and our confidence on the values of ρ̄
and η̄ clusters in a region of the plane. This can be formalised using the Bayesian
approach [58].
If we consider the distribution of the various parameters ρ̄, η̄, cj and x given the
measured values of the constraints ĉj , we can make use of Bayes theorem so that

f(ρ̄, η̄, cj ,x|ĉj) ∝ f(ĉj |cj , ρ̄, η̄,x) · f(cj , ρ̄, η̄,x), (6.2)

where f(·) is the probability distribution and f(·|·) is the conditional probability
distribution.
If we assume the independence of the different quantities and the fact that ĉj depends
on (ρ̄, η̄,x) only via cj , then by making use of simple probability rules we get

f(ρ̄, η̄, cj ,x|ĉj) ∝ f(ĉj |cj) · f(cj |ρ̄, η̄,x) · f(x, ρ̄, η̄). (6.3)

It is safe to assume that the distribution of the constraints given ρ̄, η̄ and x is simply
given by

f(cj |ρ̄, η̄,x) ∝ δ(cj − cj(ρ̄, η̄,x)), (6.4)

then
f(ρ̄, η̄, cj ,x|ĉj) ∝ f(ĉj |cj) · δ(cj − cj(ρ̄, η̄,x)) · f(x) · fo(ρ̄, η̄). (6.5)

In eq. (6.5) enters the first important new quantity, fo(ρ̄, η̄) which is the prior
distribution of the two parameters. This distribution is chosen to be flat most of the
time since we do not have any reason to consider some values as more probable than
others. The specific choice of the prior distribution is the most debated subject when
dealing with the Bayesian approach, even if the choice of a flat prior is sensible.
At the end, to find the distribution of the CKM parameters f(ρ̄, η̄), is just a matter
of integrating eq. (6.5) over cj and x.
This is the basic concept behind Bayesian inference. The extension of these concepts
to the case of several constraints is straightforward

f(ρ̄, η̄,x|ĉ1, ĉ2, · · · , ĉM ) ∝
M∏
j=1

fj(ĉj |ρ̄, η̄)×
N∏
i=1

fi(xi) · fo(ρ̄, η̄), (6.6)

where the explicit dependence on the cj has been excluded by integration. If we
then integrate over x, we get the interesting relation

f(ρ̄, η̄|ĉ) ∝ L(ĉ|ρ̄, η̄,x) · fo(ρ̄, η̄), (6.7)
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where ĉ stands for the set of measured constraints, and

L(ĉ|ρ̄, η̄,x) ∝
∫ M∏

j=1
fj(cj |ρ̄, η̄,x)

N∏
i=1

fi(xi) (6.8)

is the likelihood function.
We can see now that, even if a priori all the values of ρ̄ and η̄ are considered equally
likely, a posteriori the probability clusters around the point which maximises the
likelihood. In conclusion, the final probability distribution obtaining starting from a
flat prior of ρ̄ and η̄ is

f(ρ̄, η̄) ∝
∫ M∏

j=1
fj(ĉj |ρ̄, η̄,x)

N∏
i=1

fi(xi) dxi . (6.9)

The normalization of this distribution is trivial.
In general, the posterior distribution specified in eq. (6.9), cannot be computed
easily. The integration has to be done using Monte Carlo sampling algorithms that
can, in most cases, lead to unacceptable computing time because of the intrinsic
inefficacy of sampling the parameter space. In the case of the HEPfit library, this
problem is overcome by means of Markov Chain Monte Carlo (MCMC) methods
using a Metropolis-Hastings algorithm for the sampling [44] a summary of which is
given in Appendix B.

6.2 Preliminary Setup
As a first step, we need to build up the code for the determination of ε′/ε starting from
the hadronic matrix elements given by the RBC collaboration which come with their
own errors and correlation matrix. Since in the relevant formula for ε′/ε, given in
equation eq. (5.66), there appears both the ∆I = 1/2 and the ∆I = 3/2 amplitudes,
we will take the first contributions from the recent paper [2] and implement them
directly in the code the determination for the A0 amplitude while for the latter we
will directly use the values of the amplitudes found in the companion paper [25]
since no correlation matrix for the hadronic matrix elements is given in that case.
I will now outline the two main strategies for the determination of ε′/ε

The pure lattice strategy: in this case we will start from the unrenormalized
infinite-volume lattice matrix elements in the chiral basis and then implement in
the code the renormalization to the non-perturbative scheme [115] SMOM(/q, /q),
the perturbative matching to MS and the conversion to the 10-operator basis.
To check if the result is consistent, we will also cut out a step, starting from the
SMOM(/q, /q) renormalized matrix elements in the chiral basis and implement
only the perturbative matching and the conversion to the 10-operator basis.
Then, in both cases, the lattice values of both A0 and A2 are used in the
evaluation ε′/ε.

Mixed lattice-experimental strategy: in this case we will use the experimen-
tal value of ReA0 as input to the lattice value of ImA0 in order to decrease
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the error [37, 102]. The specific procedure is discussed in the RBC article [2]
and we will give a brief overview later. Then for the evaluation of ε′/ε the
improved lattice value of ImA0, the standard lattice value of ImA2 and the
experimental values of ReA0 and ReA2 are used.

When the basic code is implemented, we can make a Monte Carlo simulations by
varying all the relevant parameters which, besides the hadronic matrix elements,
are: the values of the SMOM(/q, /q) renormalization matrix elements, where used, the
CKM matrix elements which enter in the formula for ε′/ε, the Fermi constant GF ,
the strong phases δ0 and δ2, the ε parameter, the experimental values of ReA0 and
ReA2, the lattice value of ReA2 and ImA2. All these parameters, together with
their central values and errors are given in table (6.1).
It is important to note that when the full UT-analysis is in place, the coefficients
related to the CKM matrix are going to be extrapolated by the various input
parameters and are going to be varied accordingly. Therefore the CKM coefficients
are in tab. (6.1) are temporary, used for the preliminary results to reconstruct the
RBC value of ε′/ε.
For the moment, we did not implement the evaluation of the Wilson coefficients
directly in the code. This is indeed needed for the Monte Carlo to calculate the
error associated to the truncation of the perturbative series. The Wilson coefficients
of table (6.2) were therefore taken directly from the RBC article and the error on
the final result was added as a systematic error taking the significant figure given
by the RBC collaboration [2]. This is for now a good approximation, but we are
currently working on adding the code to the HEPfit package.
We are now going to give more details on the two approaches mentioned before.
In the HEPfit framework, all the parameters which enter in the Monte Carlo

simulations, are given to the code by a configuration file. In this file, we list the
various parameters with their central values as well as their error which we can give
as both a standard error associated to normal prior distribution for the values of
the parameter, or as the error associated to a flat prior distribution. In our case,
the priors are all chosen to be gaussian.

6.2.1 The Pure Lattice Strategy & General Remarks

When we started from the unrenormalized infinite-volume lattice matrix elements,
even the SMOM(/q, /q) matrix elements have to be given by the configuration file
since they come with their own error being evaluated on the lattice.
The values of the matrix elements are given in table (6.3), while the ones for the
SMOM(/q, /q) renormalization matrix ZSMOM(/q,/q)←lat

ij are given in table (6.4).
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Table 6.1. Standard Model and other experimental inputs required to determine A0 and
Re(ε′/ε). These values are obtained from thew PDG Review of Particle Physics [152],
apart from those of ReA0, ReA2 and their ratio ω, that were taken from [18]. The
parameter τ is given by the CKM ratio τ = −V ∗tsVtd/V ∗usVud. The quantities marked
with (†) are the ones which error enters in the statistical error while the ones marked
with (∗) enter as systematic errors. The second block of parameters enter in the Wilson
coefficients.

Quantity Value
GF 1.16638× 10−5 GeV−2

λ 0.2255
A 0.82
ρ̄ 0.132
η̄ 0.351
φε 0.7596 rad (†)
τ 0.001558(65)− 0.000663(33)i (∗)
|ε| 0.002228(11) (†)
ω 0.04454(12) (†)
δ0 32.3(2.1)◦ (†)
δ2 −11.6(2.8)◦ (†)

Re (A0)expt 3.3201(18)× 10−7 GeV (†)
Re (A2)expt 1.479(4)× 10−8 GeV (†)
Re(A2)lat 1.50(15)× 10−8 (†)
Im(A2)lat −8.34(1.03)× 10−13 (†)
mc (mc) 1.27(2) GeV (∗)
mb (mb) 4.18(3) GeV (∗)
mW (mW ) 80.379(12) GeV (∗)
mZ (mZ) 91.1876(21) GeV (∗)
mt (mt) 160.0(4.8) GeV (∗)

α
Nf=5
s (mZ) 0.1181 (∗)

α 1/127.955(10) (∗)
sin2 (θW ) 0.23122(3) (∗)
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Table 6.2. MSbar Wilson coefficients at µ = 4.006 GeV computed via NLO QCD+EW
perturbation theory.

i yi zi
1 0 −0.199111
2 0 1.08976
3 0.0190166 −0.00525073
4 −0.0560629 0.0244698
5 0.0132642 −0.00607434
6 −0.0562033 0.0174607
7 −0.000271245 0.000134906
8 0.000521236 −0.000119628
9 −0.00946862 5.60698× 10−5

10 0.00186152 9.34113× 10−5

Table 6.3. Bare lattice matrix elements in the 7-operator basis given by the minimization
procedure discussed in the article. These are quoted in physical units and contain the
Lellouch-Lüscher finite-volume correction.

i Q′i

(
GeV3

)
1 0.143(93)
2 −0.147(24)
3 0.233(23)
4 −
5 −0.723(91)
6 −2.211(144)
7 1.876(52)
8 5.679(107)
9 −
10 −

Table 6.4. Renormalization matrices for SMOM(/q, /q) scheme at µ = 4.006 GeV.

0.42011(43) 0 0 0 0 0 0
0 0.422(38) -0.207(36) -0.005(13) 0.0084(77) 0 0
0 -0.094(24) 0.570(24) -0.0120(83) 0.0059(47) 0 0
0 -0.14(14) -0.15(12) 0.424(44) 0.013(26) 0 0
0 -0.030(63) -0.073(66) -0.106(23) 0.620(15) 0 0
0 0 0 0 0 0.47715(49) -0.02113(24)
0 0 0 0 0 -0.05960(55) 0.6030(14)

Of fundamental importance for our analysis is the correlation between the
operators. Instead of correlations, the authors give the covariance between them,
but the two are related by the simple formula

Σij = σiσjρij , (6.10)
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where Σij is the covariance matrix, σi is the error associated to the operator Qi and
ρij is the correlation matrix. Both correlation and covariance matrices between the
unrenormalized infinite-volume lattice matrix elements in the chiral basis are given
in table (6.5).

Table 6.5. The 7 × 7 covariance (upper) and correlation (lower) matrices between the
un-renormalized, infinite-volume matrix elements in the chiral basis.

0.008592 0.0001823 -0.0003235 0.0006934 -0.001432 0.002596 0.003095
0.0001823 0.0005819 -0.0001568 0.0008119 0.0007138 6.741× 10−5 -0.0005478
-0.0003235 -0.0001568 0.0005280 0.0004485 0.001028 -0.0001371 0.0003523
0.0006934 0.0008119 0.0004485 0.008201 0.004850 -0.0004420 -0.001480
-0.001432 0.0007138 0.001028 0.004850 0.02069 -0.001612 -0.005933
0.002596 6.741× 10−5 -0.0001371 -0.0004420 -0.001612 0.002693 0.004010
0.003095 -0.0005478 0.0003523 -0.001480 -0.005933 0.004010 0.01145

1. 0.0816756 -0.151239 0.0819331 -0.10693 0.536807 0.311024
0.0816756 1. -0.284058 0.371749 0.206539 0.0540144 -0.213318
-0.151239 -0.284058 1. 0.214286 0.310386 -0.114632 0.143153
0.0819331 0.371749 0.214286 1. 0.370116 -0.0934066 -0.151998
-0.10693 0.206539 0.310386 0.370116 1. -0.215278 -0.38506
0.536807 0.0540144 -0.114632 -0.0934066 -0.215278 1. 0.720705
0.311024 -0.213318 0.143153 -0.151998 -0.38506 0.720705 1.

To check the final result, rather than starting from the unrenormalized matrix
elements, for which the renormalization matrix enters in the Monte Carlo, we started
from the SMOM(/q, /q) renormalized matrix elements whose values are given in table
(6.6).

Table 6.6. Physical, infinite-volume matrix elements in the SMOM(/q, /q) scheme at µ = 4.007
GeV in the chiral basis.

i SMOM(/q, /q)
(
GeV3

)
1 0.060(39)
2 −0.125(19)
3 0.142(17)
4 −
5 −0.351(62)
6 −1.306(90)
7 0.775(23)
8 3.312(63)
9 −
10 −

While their covariance, as well as correlation, matrices are given in table (6.7).
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Table 6.7. The 7 × 7 covariance (upper) and correlation(lower) matrices between the
renormalized, infinite-volume matrix elements in the SMOM(/q, /q) scheme in the chiral
basis.

0.001516 5.385× 10−5 −9.167× 10−5 0.0001252 −0.0003965 0.0004930 0.0007192
5.385× 10−5 0.0003563 −4.099× 10−5 0.0007596 0.0002981 2.914× 10−5 −0.0002118
−9.167× 10−5 −4.099× 10−5 0.0002808 0.0003784 0.0004679 −4.656× 10−5 0.0001516

0.0001252 0.0007596 0.0003784 0.003904 0.001679 −8.000× 10−5 −0.0004013
−0.0003965 0.0002981 0.0004679 0.001679 0.008188 −0.0003817 −0.002110
0.0004930 2.914× 10−5 −4.656× 10−5 −8.000× 10−5 −0.0003817 0.0005395 0.0009460
0.0007192 −0.0002118 0.0001516 −0.0004013 −0.002110 0.0009460 0.003937

1. 0.0726721 -0.138265 0.0517783 -0.112963 0.54961 0.292715
0.0726721 1. -0.126904 0.644822 0.174327 0.0666819 -0.176942
-0.138265 -0.126904 1. 0.359013 0.305817 -0.119079 0.14155
0.0517783 0.644822 0.359013 1. 0.300896 -0.056101 -0.102739
-0.112963 0.174327 0.305817 0.300896 1. -0.184396 -0.372134
0.54961 0.0666819 -0.119079 -0.056101 -0.184396 1. 0.652864
0.292715 -0.176942 0.14155 -0.102739 -0.372134 0.652864 1.

The following step is then, in both cases, to match the non-perturbative matrix
elements to a perturbative scheme. In this case, since the Wilson coefficients are
given in the MS scheme, we need to match to this. The perturbative matching is
known up to first order in αs [109]. We give here the result for the matching from
SMOM(/q, /q) given in the article where

Z
MS←SMOM(/q,/q)
ij = 1 + αs(µ)

4π

(
∆rMS←RI

ij /
αs(µ)

4π

)
(6.11)
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where ξ is the gauge fixing parameter1, C0 ≈ 2.34391 is a constant whose definition
can be found in reference and Nc is the number of colors. The value of αs at the
relevant scale µ = 4.006 GeV is

αs(µ = 4.006 GeV) = 0.21499825. (6.12)

Once we have the MS renormalized, infinite-volume, matrix elements in the chiral
basis, we need to go to the usual 10-operator basis. To do this we employ the
transformation of eq. (4.70).
Sadly, we could not start directly from the MS 10-operator matrix elements since the
covariance matrix given in the article had a negative determinant. This is probably
due to the precision to which the matrix is given. We reached out to the authors of
the article, which gave us a covariance matrix with more digits, for which I am very
grateful, but still, the issue remained. In the end, we implemented the code starting
from either the lattice matrix elements with their associated covariance matrix or
the SMOM renormalized matrix elements with their covariance matrix.
Now we had all the ingredients to evaluate the A0 amplitude and consequently ε′/ε.
We leave the results to the following chapter.

6.2.2 Mixed Lattice-Experimental Strategy

For this approach, only the unrenormalized, infinite-volume, lattice matrix elements
are used. This is because of the specific procedure which is discussed in the paper
and we are going to summarize now.
The general idea is to use the experimental value of ReA0 to "eliminate" one of
the lattice matrix elements in order to decrease the error. The operator which is
eliminated is chosen based on how much the final error decreases. What the authors
found is that the most significant gain in statistical error is achieved by replacing
the matrix elements M3.
The final formula then becomes

ImA0 = GF√
2
V ∗usVud

7∑
k=1
k 6=3

Im(wMS←lat
k )M ′latk

+ Im(wMS←lat
3 )

Re(wMS←lat
3 )

ReA0 −
GF√

2
V ∗usVud

7∑
k=1
k 6=3

Re(wMS←lat
k )M ′latk

,
(6.13)

where

Re
(
wMS←lat
k

)
=

10∑
i=1

7∑
j=1

(
zMS
i + Re(τ)yMS

i

)
TijZ

MS← lat
jk

Im
(
wMS←lat
k

)
=

10∑
i=1

7∑
j=1

(
Im(τ)yMS

i

)
TijZ

MS←lat
jk

(6.14)

1We will set this to ξ = 1 which is the Landau gauge used in the RBC article.
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are the "Lattice Wilson Coefficients" and ZMS←lat is the product of the SMOM
renormalization matrix and the MS matching matrix. M ′latk are the lattice matrix
elements in the chiral basis.
This value of ImA0 is then used to find Re(ε′/ε) where now ReA0 and ReA2 are
taken from experiments and ImA2 is still the lattice result.

6.2.3 Including Isospin-Breaking Contributions

All the discussions carried so far are based on the hypothesis that isospin is a
perfectly valid quantum number. Unfortunately, this is not the case. There are
many sources of isospin symmetry breaking, the main one being the difference in
mass between the two first family quarks induced by electromagnetic interactions:
the up and the down quarks. Being their masses different, we cannot consider them
as part of the same SU(2) doublet. This mass difference is very tiny but, while for
most quantities the corrections including isospin breaking are very small, for ε′ this
behaviour does not hold.
As we can see from the master formula for ε′/ε eq. (5.66), the two amplitudes for
the I = 0 and I = 2 case enter with the same weight. However, we know from the
∆I = 1/2 rule, eq. (5.40), that the amplitude of A2 is much greater than A0, thus
even a small correction to A0 can introduce a 20 times bigger correction to A2 and
potentially a similar order of magnitude correction to ε′.
The effects of isospin breaking have been thoroughly studied before by means of
chiral perturbation theory [35, 49, 50, 51], and even very recently including the
effects of the η0 to the chiral Lagrangian [7, 36]. As we have seen in the previous
chapter, the contribution is parametrized by a quantity Ω̂IB which includes the
appropriate correction due to the electroweak penguin. Following the master formula
of [49], which is just a rearrangement of eq. (5.94),

ε′

ε
= iω+e

i(δ2−δ0)
√

2ε

 Im (Aemp
2 )

Re
(
A

(0)
2

) − (1− Ω̂IB)
Im
(
A

(0)
0

)
Re
(
A

(0)
0

)
, (6.15)

they find Ω̂IB = (17.0+9.1
−9.0)× 10−2. This parameter can be simply introduced in our

evaluation of ε′/ε by taking Re
(
A

(0)
0,2

)
ad the experimental ones, while Im (Aemp

2 )

and Im
(
A

(0)
0

)
are given by the lattice results. The quantity ω+ = Re(A+

2 )/Re(A0)
coming from the charged kaon decay is given, again, experimentally.

6.3 Standard UT Analysis
Virtually any process involving weak interactions is connected in some way to the
CKM matrix. Its matrix elements are therefore fundamental parameters and should
be measured as precisely as possible.
One way of finding these matrix elements is by combining all experimental, as well as
theoretical, observables and fit them together under a chosen statistical framework.
This is the idea behind the standard Unitarity Triangle analysis. In particular,
the UTfit collaboration, uses a Bayesian framework to infer the region of highest
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probability for the various CKM parameters.
Let us give some basic examples of observables and how they relate to the UT

• The ratio of the semileptonic decay rates of charmed and charmless b-hadrons
allows to measure the ratio∣∣∣∣VubVcb

∣∣∣∣ = λ

1− λ2/2

√
ρ̄2 + η̄2, (6.16)

where the RHS has been experimentally measured and is tied to the Wolfenstein
parameters ρ̄, η̄.

• The mass difference between the light and heavy mass eigenstates of the
B0
d − B̄0

d system

∆md = G2
F

6π2M
2
W ηcS(xt)A2λ6

[
(1− ρ̄)2 + η̄2

]
mBdf

2
Bd
B̂Bd , (6.17)

where S(x) is the relevant Inami-Lim function [96], xt = m2
t /m

2
w and mt is the

top quark mass in the MS scheme at the top quark mass. The other factors,
beside the CKM ones, encode nonperturbative quantities. This is most of the
time used as a ratio with ∆ms.

• The indirect CP-violation parameter in the kaon system, as of eq. (5.60),

|εK | = CεA
2λ6η̄

[
−η1S0(xc) + η2S0(xt)

(
A2λ4(1− ρ̄)

)
+ η3S0(xc, xt)

]
B̂K ,

(6.18)
where again S0(x), S0(xi, xj) are the appropriate Inami-Lim functions [30, 40,
96].

and many more. If we knew these observables with infinite precision, they would
trace curves in the (ρ̄, η̄) plane whose intersection would give us the precise value
of ρ̄, η̄. Of course, this is not the case and every measurement, as well as lattice
quantity, comes with its own error. In this case, we would not find curves but regions
whose intersection would give us the highest probability region for both ρ̄ and η̄.
Since the observables we have at hand are much more than the two parameters we
are trying to extract, the system is clearly over-constrained. This means that we
can not only find the CKM parameters but even infer the value of other quantities
like other observables, like ∆ms, or nonperturbative parameters like f2

Bd
B̂Bd .

Moreover, one can check for SM consistency since if we find an observable whose
curve in the (ρ̄, η̄) plane does not intersect with the others in the right spot, then
we clearly have a case where Beyond the SM contributions are relevant and need to
be taken into account.
In the case of this thesis, what we are going to do is to first implement the UT
analysis into HEPfit and then find how much the inclusion of ε′/ε changes the result
on the various CKM related parameters.
A complete list of the observables and parameters used in our analysis can be found
in Appendix C, where all the relevant configuration files used in the analysis are
given. The name of the various parameters and observables can be easily understood.
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6.4 BSM Analysis
A similar analysis can be carried out to infer the bounds of relevant BSM contributions
to a given observable. In this thesis, we are not going to delve into the BSM analysis
but in the near future, we certainly will. Particularly in the case of ε′/ε since it is
thought that BSM contributions to this observable are really important and help us
get a theoretical value that is consistent with the experimental one [8, 9, 10].
What one can do is, not only to bound the value of effective operator hadronic
matrix elements which are hard to evaluate, but even bound the Wilson coefficients
together with the scale at which the NP contribution associated to such operators
becomes relevant [28].
The BSM analysis will be the subject of a future study.
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Chapter 7

Results

In this chapter, we give a summary of the various results obtained in this thesis work.
We start from the preliminary analysis on Re(ε′/ε) as discussed in the previous
chapter, with some comments on the comparison between our results and the RBC
ones. Then we are going to discuss the UT fit results with and without the inclusion
of ε′/ε and see how much the result changes between the two. We do not expect an
appreciable difference between the two results and this is in fact what we will find.

7.1 Preliminary Results
Here we give the results for the posterior distributions of Re(ε′/ε) found by Monte
Carlo simulations for the two strategies outlined in the previous chapter. We will
start with the plots and then make some comments and checks with the results
found by the RBC collaboration. Of course, we need to remember that the RBC
collaboration used a jackknife technique on all lattice quantities when evaluating
their central values and errors.

7.1.1 Pure Lattice Approach

As we can see from figures (7.1) and (7.2), the central values are consistent with
each other

Re(ε′/ε)lat = 0.00305± 0.00127 Re(ε′/ε)SMOM = 0.00309± 0.00114. (7.1)

But these results are somewhat different from the smaller value found by the RBC
collaboration. In their case, they find

Re(ε′/ε)RBC
lat = 0.00293± 0.00104. (7.2)

This difference can be probably caused by the different analysis methods used by
us vs the one used by the RBC collaboration. In the latter, the authors used a
bootstrap method to find the central value and the error [45], while we followed a
Monte Carlo procedure.
In any case, this result will not be added to the analysis since the relevant result
is the one that includes the experimental values of ReA0/2 together with isospin
breaking corrections.
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Figure 7.1. Posterior distribution for Re(ε′/ε) from Monte Carlo simulation starting from
unrenormalized, infinite-volume, lattice matrix elements.
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Figure 7.2. Posterior distribution for Re(ε′/ε) from Monte Carlo simulation starting from
SMOM renormalized, infinite-volume, lattice matrix elements.
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7.1.2 Mixed Lattice-Experimental Approach
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Figure 7.3. Posterior distribution for Re(ε′/ε) from Monte Carlo simulation using the
experimental value of ReA0,2.

With this approach, we find that

Re(ε′/ε)mix = 0.00216± 0.00030 (7.3)

which is quite in line with the result found by the RBC collaboration

Re(ε′/ε)RBC
mix = 0.00217± 0.00026. (7.4)

This particular result is what we are going to use in the following UT analysis.
What remains now, before introducing this result in the UTfit, is a careful treatment
of the systematic, which contains not only the errors associated to the lattice
calculations but also, most importantly, the ones coming from the scale dependence
of the Wilson coefficients. This is important since currently, the variation of the
Wilson coefficients is not implemented yet in the code, but is not so crucial for a
simple UT analysis. Fortunately, the authors of the RBC paper had us covered since
they give all the relevant contributions to the systematic errors both in the I = 1/2
and in the I = 3/2 cases. The relevant figure they find is that the systematic errors
amount to 20.7% on Im(A0). We can brute force this figure in the code by simply
adding a parameter SysImA0 = (0.00± 0.207) to the configuration file, and changing
the final contribution from Im(A0) in the code for ε′/ε to (1 + SysImA0) ImA0. This
gives in fact the expected systematic error which, from the RBC result, should be

Re(ε′/ε)RBC
mix = 0.00216± 0.00062sys (7.5)
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Figure 7.4. Posterior distribution for Re(ε′/ε) from Monte Carlo simulation using the
experimental value of ReA0,2; only systematic errors.

while we get, as seen in figure (7.4), a value of

Re(ε′/ε)mix = 0.00214± 0.00062sys. (7.6)

7.2 Final Result Including IB
Once a careful treatment of the systematic errors is in place, we can introduce the
isospin breaking correction. Due to the fact that the Ω̂IB parameter has asymmetric
errors, we first symmetrize it to Ω̂IB = (17.05± 9.05)× 10−2. This drastically lowers
the value of Re(ε′/ε) making it more in line with the experimental result, whilst
having an appreciable error. The final posterior distribution for the mix result
including isospin breaking and systematic errors is found in figure (7.5).
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Figure 7.5. Posterior distribution for Re(ε′/ε) from Monte Carlo simulation in the mixed
case, including systematic errors and isospin breaking contribution.

The final result comes out to be

Re(ε′/ε) = 0.00169± 0.00063. (7.7)

If we do consider, like the authors of [2], the error associated with not considering
isospin breaking as the difference between the results with and without the correction,
the final result comes out to be

Re(ε′/ε) = 0.00216± 0.00030stat ± 0.00062sys ± 0.00047IB, (7.8)

to be compared with the result in [2]

Re(ε′/ε)RBC = 0.00217± 0.00026stat ± 0.00062sys ± 0.00050IB. (7.9)

7.3 Standard UT analysis
Now that we have the code for ε′/ε that gives the expected result, eq. (7.7), we
can insert it into the analysis of the Unitarity Triangle together with all the other
interesting observables at our disposal.
Before doing so, we need to first compute the value of ρ̄, η̄ without including ε′/ε so
to check how much this new observable influences the result. The obtained result
can be found in fig. (7.6), where we can see that the obtained best fit value for the
ρ̄, η̄ CKM parameters is given by

ρ̄ = 0.1695± 0.0146, η̄ = 0.3667± 0.0176. (7.10)
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Figure 7.6. Posterior distribution of the ρ̄ (upper left) and η̄ (upper right) parameters.
Joint distribution in the (ρ̄, η̄) plane (lower). The colored regions represent the 69%
(blue), 95% (red) and 99% (orange) confidence intervals. The best fit value represents
the CKM UT vertex in the (ρ̄, η̄) plane. This result does not contain ε′/ε.

Another interesting CKM parameter that we can find by this analysis is the
Jarlskog invariant JCP which we defined in section 1.6.4. As we explained in that
section, JCP is a rephasing invariant parameter of the CKM matrix which measures
the amount of CP-violation in the Standard Model. In that section, we gave the
value of JCP as given by [152]. What we find is that

JCP = (3.19± 0.12)× 10−5 (7.11)

as can be seen in figure (7.7).
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Figure 7.7. Posterior distribution for the Jarlskog invariant in the SM without the inclusion
of ε′/ε.

A full list of the results found by this first UT analysis is given in tables (7.1)
and (7.2).

Then we can add ε′/ε to the UT analysis and see how much the result changes.
We do not expect a noticeable difference between the two results. The obtained
result can be found in fig. (7.8), where we can see that the obtained best fit value
for the ρ̄, η̄ CKM parameters is given by

ρ̄ = 0.1702± 0.0150, η̄ = 0.3677± 0.0185. (7.12)
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Table 7.1. Standard Model fit results with and without the inclusion of ε′/ε.

Parameter SM fit with ε′/ε SM fit without ε′/ε
ρ̄ 0.1702± 0.0150 0.1695± 0.0146
η̄ 0.3677± 0.0185 0.3667± 0.0175
ρ 0.1743± 0.0154 0.174± 0.015
η 0.3774± 0.0189 0.376± 0.018
A 0.8104± 0.0117 0.811± 0.0113
λ 0.2258± 0.0003 0.2258± 0.0003

sin θ12 0.2258± 0.0003 0.2258± 0.0003
sin θ23 0.04132± 0.00058 0.04132± 0.00056
sin θ13 0.003878± 0.000169 0.003867± 0.000163
δ [rad] 1.138± 0.030 1.139± 0.029
α [◦] 90.95± 1.95 91.000± 1.891
β [◦] 23.9± 1.3 23.83± 1.24
γ [◦] 65.18± 1.69 65.21± 1.67

2β + γ [◦] 113± 3 112.9± 2.7
βs [◦] −0.0391± 0.0019 −0.039± 0.002

sin(2β) 0.7401± 0.0303 0.7385± 0.0290
cos(2β) 0.6719± 0.0335 0.6738± 0.0319
JCP × 105 3.198± 0.122 3.19± 0.12

fBs 0.2299± 0.0012 0.2299± 0.0012
fBs/fBd 1.208± 0.005 1.208± 0.005
BBs 0.8653± 0.0245 0.865± 0.024

BBs/BBd 1.029± 0.028 1.029± 0.028
BK 0.5546± 0.0120 0.5544± 0.0115

|εK | × 103 2.227± 0.0011 2.227± 0.011
ε′/ε× 103 1.696± 0.657 -

Rb 0.4053± 0.0210 0.4042± 0.0196
Rt 0.9079± 0.0121 0.9081± 0.0118
Rts 1.0090± 0.0008 1.0090± 0.0008

SJ/ψK 0.7395± 0.0303 0.7376± 0.0290
BR(B → τν)× 105 9.643± 0.860 9.585± 0.822
BR(Bd → µµ)× 1011 9.113± 0.679 9.097± 0.678
BR(Bs → µµ)× 109 3.1± 0.2 3.095± 0.214
BR(B̄s → µµ)× 109 3.311± 0.228 3.307± 0.229

∆ms [ps−1] 17.77± 0.01 17.77± 0.01
∆md [ps−1] 0.5065± 0.0019 0.5065± 0.0019
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Table 7.2. Moduli of the CKM matrix elements from the UT fit with and without the
inclusion of ε′/ε.

Parameter SM fit with ε′/ε SM fit without ε′/ε
|Vud| 0.97420± 0.00008 0.97420± 0.00008
|Vus| 0.2258± 0.0003 0.2258± 0.0003
|Vub| 0.003878± 0.000169 0.003867± 0.000163
|Vcd| 0.2257± 0.0003 0.2257± 0.0003
|Vcs| 0.97330± 0.00008 0.97330± 0.00008
|Vcb| 0.04132± 0.00058 0.04132± 0.00056
|Vtd| 0.008472± 0.000152 0.008474± 0.000148
|Vts| 0.04063± 0.00057 0.04063± 0.00054
|Vtb| 0.99910± 0.00002 0.99910± 0.00002
|Vtd/Vts| 0.2086± 0.0030 0.2086± 0.0028
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Figure 7.8. Posterior distribution of the ρ̄ (upper left) and η̄ (upper right) parameters.
Joint distribution in the (ρ̄, η̄) plane (lower). The colored regions represent the 69%
(blue), 95% (red) and 99% (orange) confidence intervals. The best fit value represents
the CKM UT vertex in the (ρ̄, η̄) plane. This result does contain ε′/ε.
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Table 7.3. Highest probability regions (HPR) for ρ̄ and η̄ in the two analyses with and
without ε′/ε.

HPR Without ε′/ε With ε′/ε

68% ρ̄ (0.154, 0.184) (0.155, 0.185)
η̄ (0.349, 0.384) (0.347, 0.385)

95% ρ̄ (0.14, 0.199) (0.14, 0.201)
η̄ (0.331, 0.402) (0.331, 0.404)

99% ρ̄ (0.127, 0.213) (0.126, 0.216)
η̄ (0.316, 0.422) (0.313, 0.425)

0 0.002 0.004 0.006 0.008 0.01
∈'/∈

0

50

100

150

200

250

300

350

400 Entries  2000000
Mean   0.003225
Std Dev    0.001405

Entries  2000000
Mean   0.003225
Std Dev    0.001405HEP fit

Figure 7.9. Posterior distribution for ε′/ε from the UT analysis using the pure lattice
result.

What we see is an increase in both ρ̄ and η̄, but the difference can be probably
traced to statistical fluctuations in the Monte Carlo, more than a relevant impact of
the inclusion of ε′/ε. The two results are, in fact, in the same range when considering
the associated errors. If we consider the two results in the 69%, 96% and 99%
probability regions, as given in table (7.3), we can easily see that the two results
agree pretty well.

For completeness, we also ran the analysis using the pure-lattice strategy described
in section 6.2.1, and we found that

ρ̄ = 0.1697± 0.0149 η̄ = 0.3672± 0.0178 (7.13)

as can be seen in figure (7.10). The resulting value for ε′/ε is

Re(ε′/ε) = 0.003225± 0.001405 (7.14)

as can be seen from the Monte Carlo in figure (7.9). This is to be compared with
the similar value found before in eq. (7.1).
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Figure 7.10. Posterior distribution of the ρ̄ (upper left) and η̄ (upper right) parameters.
Joint distribution in the (ρ̄, η̄) plane (lower). The colored regions represent the 69%
(blue), 95% (red) and 99% (orange) confidence intervals. The best fit value represents
the CKM UT vertex in the (ρ̄, η̄) plane. This result does contain ε′/ε evaluated with the
pure lattice strategy.
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Chapter 8

Conclusions and Prospects

In this thesis, an updated analysis of the Unitarity Triangle within the Standard
Model has been presented. Besides the usual observables and parameters, we included
the new and improved result on ε′/ε which was finally calculated in lattice QCD
with acceptable results by the RBC collaboration [2, 18].
What we found is that the updated analysis, not surprisingly, gave us results that
were in line with the previous ones which did not contain the new observable. In
particular, what we found was that, without ε′/ε, the two relevant CKM Wolfenstein
parameters were

ρ̄ = 0.1695± 0.0146, η̄ = 0.3667± 0.0176, (8.1)

while by including ε′/ε gave

ρ̄ = 0.1702± 0.0150, η̄ = 0.3677± 0.0185, (8.2)

thus we did not find any appreciable difference.
This was to be expected since even if some New Physics effects are at play in the
small value of ε′/ε, these effects would be really small and would not influence very
much the Standard Model value, thus the result would be very much consistent with
it.
The final result for ε′/ε from the full UT fit, including isospin breaking corrections,
in the mixed strategy which includes information from the experimental value of
ReA0, comes out to be

Re(ε′/ε) = (16.96± 6.57)× 10−4. (8.3)

In the future, we will implement the code for the evaluation of the Wilson
Coefficients which is fundamental to get a more accurate result. Moreover, we are
going to work on a possible BSM analysis of ε′/ε since we hope that this observable
can give interesting insights on the scales and contributions of NP effects.
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Appendix A

Mathematical Tools

We give here a brief mathematical appendix on the relevant methods and integrals
which can commonly be found in field theories when evaluating loop diagrams.

A.1 Feynman Parametrization
The Feynman parametrization is a very useful tool that is employed almost every
time one has to isolate divergences from loop integrals.
The simplest Feynman parametrization is the following

1
AB

=
∫ 1

0
dx 1

[A+ (B −A)x]2
=
∫

dx dy δ(x+ y − 1) 1
[xA+ yB]2

(A.1)

which can be easily proven. The powers in the denominator can be raised by simple
derivation

1
ABn

= (−1)n−1

(n− 1)!
∂n−1

∂Bn−1
1
AB

=
∫ 1

0
dx dy δ(x+ y − 1) nyn−1

[xA+ yB]n+1 . (A.2)

More terms in the denominator can be added by simple iteration of eq. (A.1)

1
ABC

= 1
AB

1
C

= 2
∫ 1

0
dx dy dz δ(x+ y + z − 1) 1

[xA+ yB + zC]3
. (A.3)

From this, one can get the most general formula which gives

n∏
k=1

1
Ackk

= Γ(
∑
k ck)∏

k Γ(ck)

1∫
0

n∏
k=1

xck−1
k dxk δ

(
n∑
k=1

xk − 1
)

1
[
∑n
k=1 xkAk]

∑
k
ck
, (A.4)

where Γ(z) is the Euler gamma function.

A.2 Scalar One-Loop Integrals
Here we give a list of interesting integrals which come up in this thesis. The general
scalar one loop integral with n external massive legs, with masses mi, carrying
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momentum pi is of the form

I =
∫ dd`

(2π)d
1[

(`+ p1)2 −m2
1 + iε

][
(`+ p12)2 −m2

2 + iε
]
· · · [(`+ p12···n)2 −m2

n + iε]
,

(A.5)
where we employed dimensional regularization, ` is the loop momenta and p12···n =∑n
k=1 pk.

Using the Feynman parametrization eq. (A.4) we can write

I = Γ(n)
1∫

0

n∏
k=1

dxk
∫ dd`

(2π)d
δ(
∑n
k=1 xk − 1)

[
∑n
k=1 xkAk]

n , (A.6)

where
n∑
k=1

xkAk =
n∑
k=1

xk
[
(`+ p12···k)2 −m2

k + iε
]

= `2 + 2` ·
(

n∑
k=1

xkp12···k

)
+

n∑
k=1

xk
(
p2

12···k −m2
k + iε

)
= `2 + 2` · P +K2 + iε.

(A.7)

Therefore, by substitution in the integral and translating the loop momentum
integration `→ `+ P , one gets

I = Γ(n)
1∫

0

n∏
k=1

dxk δ
(

n∑
k=1

xk − 1
)∫ dd`

(2π)d
1

(`2 −m2 + iε)n , (A.8)

where m2 = K2 − P 2. The integral over the loop momentum can be performed
by Wick rotating the temporal `0 coordinate and then using polar coordinates in
Euclidean space. Therefore the integral I becomes

I = iΓ(n)
1∫

0

n∏
k=1

dxk δ
(

n∑
k=1

xk − 1
)∫ d`E0 dd−1`

(2π)d
1(

−(`E0 )2 − |`|2 −m2
)n

= (−1)niΓ(n)
(2π)d

1∫
0

n∏
k=1

dxk δ
(

n∑
k=1

xk − 1
)∫

ddΩ d`E
`d−1
E(

`2E +m2)n
= (−1)niΓ(n)Ωd

2(2π)d B

(
d

2 , n−
d

2

) 1∫
0

n∏
k=1

dxk δ
(

n∑
k=1

xk − 1
)

(m2)
d
2−n, (A.9)

where in the last step we changed variables x = 1
1+`2E/m2 and used the definition of

the Beta function
B(a, b) =

∫ 1

0
dxxa−1(1− x)b−1. (A.10)
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Ending with a few manipulations on m2

m2 = P 2 −K2 =
(

n∑
i=1

xkp1···i

)2

−
n∑
i=1

xk(p2
1···i −m2

i + iε)

=
n∑
i=1

α2
i p

2
1...i + 2

n∑
i>j

αiαjp1...ip1...j −
n∑
i=1

αip
2
1...i +

n∑
i=1

αim
2
i − iε

= −
n∑
i=1

αi
∑
j 6=i

αjp
2
1...i + 2

n∑
i>j

αiαjp1...ip1...j +
n∑
i=1

αim
2
i − iε

= −
n∑
i>j

αiαjp
2
1...i −

n∑
i>j

αiαjp1...ip1...j

= −
n∑
j>i

αiαjp
2
1...i −

n∑
j>i

αjαip1...jp1...i +
n∑
i=1

αim
2
i − iε

= −
n∑
i>j

αiαjp1...ipj+1...i +
n∑
j>i

αiαjp1...ipi+1...j +
n∑
i=1

αim
2
i − iε

= −
n∑
i>j

αiαjp
2
j+1...i +

n∑
i=1

αim
2
i − iε = ∆.

(A.11)

In summary

I = (−1)n i

(4π)d/2
Γ
(
n− d

2

) 1∫
0

n∏
k=1

dxk δ
(

n∑
k=1

xk − 1
)

1
∆n−d/2 (A.12)

A.2.1 One-point Green Function

The integral for the one point Green function, which appears in tadpole diagrams, is
given by

A0(m2) =
∫ dd`

(2π)d
1

`2 −m2 + iε
=
−iΓ

(
2−d

2

)
(4π)d/2

∫ 1

0
dx δ(x− 1)(xm2 − iε)

d−2
2

=
iΓ
(

2−d
2

)
(4π)d/2

(m2 − iε)
2−d

2 .

(A.13)

When the mass of the particle propagating in the loop is zero we get that A0 = 0
which is what we expect since there are no dimensionful variables that carry the
dimension of A0 after integrating.
When m 6= 0, defining as usual d = 4− 2ε, the integral diverges as 1/ε as ε→ 0, in
fact

A0(m2) = i

16π2
(4π)εΓ(1 + ε)
ε(1− ε) (m2)1−ε. (A.14)
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A.2.2 Two-point Massless Green Function

The two point function is more interesting in our case, in particular when the
particles in the loop are considered massless. If the particles in the loop are massless
m1 = m2 = 0, the external particles need to carry a non zero momentum p2 6= 0
otherwise the whole integral would be zero just like A0. The integral is given by

B0(p2) =
∫ dd`

(2π)d
1

[`2 + iε][(`+ p)2 + iη]

=
iΓ
(

4−d
2

)
(4π)d/2

∫ 1

0
dx dy δ(x+ y − 1) 1

(−xyp2 − iη)
4−d

2

=
iΓ
(

4−d
2

)
(4π)d/2

∫ 1

0
dx
(
x(1− x)(−p2 − iη)

)− 4−d
2

=
iΓ
(

4−d
2

)
(4π)d/2

(−p2 − iη)
4−d

2
Γ2
(
d−2

2

)
Γ(d− 2) .

(A.15)

Choosing d = 4− 2ε we have

B0(p2) = i

16π2
(4π)εΓ(ε)Γ2(1− ε)

Γ(2− 2ε) (−p2 − iη)−ε. (A.16)

In the limit ε→ 0, the multiplicative factors are finite and amount to a one, while
we have to deal with the p2 term

(−p2 − iη)−ε = 1− ε log
(
−p2 − iη

)
+O(ε2). (A.17)

When p2 < 0 the logarithm is perfectly defined while if p2 > 0, then −p2 − iη is a
complex negative number with a small imaginary part, so that is below the branch
cut for the definition of the logarithm. In this case

(−p2 − iη)−ε = 1− ε
[
log
(
p2
)
− iπ

]
+O(ε2). (A.18)

In general

B0(p2) = i

16π2
Γ2(1− ε)
Γ(2− 2ε)

[
1
ε
− γE − log

(
− p

2

4π

)
+O(ε2)

]
, (A.19)

where the factor (4π)ε has been absorbed into the factor (−p2)−ε and the Γ(ε) has
been expanded

Γ(ε) = 1
ε

+ ψ(1) + ε

2

[
π2

6 + ψ2(1)− ψ′(1)
]

+O(ε2), (A.20)

where ψ(1) = −γE is the digamma function evaluated in one and ψ′(1) = π2/6 is its
derivative.
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A.3 Passarino-Veltman Tensor Integral Decomposition
Up to now, we have only dealt with scalar integrals. For tensor integrals, we can use
the Passarino-Veltmann [118] decomposition with which, in many cases, we can go
back to a scalar integral times some tensor quantity that depends on the specific
form and properties of the integrand. We will give now some useful examples that
we will use throughout the thesis.

A.3.1 Vector Two-Point Function

Let us first compute the simplest tensor integral

Bµ(p) =
∫ dd`

(2π)d
`µ

`2(`+ p)2 , (A.21)

where p2 6= 0 and we employ dimensional regularization. We can easily see that the
only relevant 4-vector on which the integral can depend is pµ, therefore we can write

Bµ(p) = B11p
µ. (A.22)

In order to find the coefficient, we can just project onto pµ and get back to a scalar
integral

pµBµ(p) = B11p
2 =

∫ dd`
(2π)d

p · `
`2(`+ p)2 . (A.23)

Since (`+ p)2 = p2 + `2 + 2p · ` we have that

p · ` = 1
2
[
(`+ p)2 − `2 − p2

]
. (A.24)

Using this in the integral we have

p2B11 = 1
2

∫ dd`
(2π)d

[
1
`2
− 1

(`+ p)2 −
p2

`2(`+ p)2

]
, (A.25)

but this are just scalar one-loop integrals of the form of eq. (A.15), therefore

p2B11 = −p
2

2 B0(p2) =⇒ B11 = −B0(p2)
2 . (A.26)

This gives us the final result

Bµ(p2) = −B0(p2)
2 pµ. (A.27)

This computation gives the basic idea behind the Passarino-Veltmann decomposition:
if we have a general p-tensor integral, we list all the possible p-tensors upon which
the integral can depend. Then we project on such tensors by simply contracting the
integral with them and one obtains a set of linear equations that can be solved to
find the coefficients.
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A.3.2 2-Tensor Two-Point Funcion
We would like to compute now the 2-tensor two point function, which is a tensor
integral of the form

Bµν(p) =
∫ dd`

(2π)d
`µ`ν

`2(`+ p)2 . (A.28)

The only 2-tensors we can construct are pµpν and gµν , therefore

Bµν(p) = B21p
µpν +B22g

µν . (A.29)

By projecting onto the two tensors

pµBµν(p) = pν
(
p2B21 +B22

)
= 1

2

∫ dd`
(2π)d

`ν

`2(`+ p)2

[
(`+ p)2 − `2 − p2

]
, (A.30)

gµνBµν(p) = p2B21 + dB22 =
∫ dd`

(2π)d
`2

`2(`+ p)2 = 0. (A.31)

From eq. (A.31) one obtains that

B22 = −p
2

d
B21, (A.32)

while from eq. (A.30)

pν
(
p2 − p2

d

)
B21 = −pν p

2B11
2 , (A.33)

which gives

B21 = d

d− 1
B11
2 = d

d− 1
B0(p2)

4 (A.34)

and consequently

B21 = − p2

d− 1
B0(p2)

4 . (A.35)

Therefore
Bµν(p) = 1

d− 1

[
d

4B0(p2)pµpν − p2

4 B0(p2)gµν
]
. (A.36)
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Appendix B

Markov Chain Monte Carlo and
Metropolis-Hastings Algorithm

In general, the posterior distribution of eq. (6.9) cannot be computed easily, especially
when there are many model parameters. Using a naive Monte Carlo sampling
algorithm can lead to enormous computing times because of their inherent inefficiency
in sampling the parameter space. Then, the Markov Chain Monte Carlo (MCMC)
technique can help us overcome this problem and make the application of Bayes
theorem feasible. On the surface, a MCMC technique is nothing but a way of
sampling the parameter space using Markov Chains.
In HEPfit, the implementation of the MCMC is done using a Metropolis-Hastings
algorithm to sample the parameter space from the posterior. The basic steps, starting
from a probability density f(x), are as follows

• Start at a random point in the parameter space x.

• Generate a proposal point y according to a symmetric probability distribution
g(x,y).

• Compare the value of the function f at the proposal point y with the value
at the point x. The proposal point is accepted if f(y) ≥ f(x). Otherwise, a
random number r is generated from a uniform distribution in [0, 1] and accept
the proposal if f(y)/f(x) > r. If neither conditions are satisfied, the proposal
point is rejected.

• Start from point 1.

In our case, the probability density f(y) is the unnormalized posterior of eq. (6.9).
the MCMC implementation in the HEPfit code consists in two main parts. The first
is the pre-run where the chains start from arbitrary random points in the parameter
space and reach a steady state after a certain number of iterations. After the pre-run
is made, the samples of the parameter space are collected in the main run to get
the marginalized distributions of all the parameters and the corresponding posterior
distributions of the observable and of any other derived quantity that may have
been defined.
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Appendix C

Configuration Files for the UT
Analysis

In this section, we give the various configuration files used in the UT analysis. For
the relevant commands that are passed to HEPfit for the analysis, one can read the
HEPfit documentation [60].
Elements with the hash # are being commented out and do not enter in the final
analysis.

C.1 Standard Model input Parameters
StandardModel.conf

StandardModel
######################################################################
# Mandatory configuration files
#---------------------------------------------------------------------
IncludeFile Flavour.conf
IncludeFile UTfit.conf
#
######################################################################
# Optional configuration files
#---------------------------------------------------------------------
# IncludeFile GeneralSUSY.conf
# IncludeFile THDM.conf
#
######################################################################
# Model Parameters
# name ave errg errf
#---------------------------------------------------------------------
### Parameters in StandardModel
ModelParameter GF 1.1663787e-5 0. 0.
# alpha=1/137.035999074
ModelParameter ale 7.2973525698e-3 0. 0.
ModelParameter AlsMz 0.11792 0.00094 0.
ModelParameter dAle5Mz 0.02766 0.00010 0.
ModelParameter Mz 91.1875 0.0021 0.
ModelParameter Mw_inp 80.354 0.007 0.
ModelParameter delMw 0. 0. 0.
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ModelParameter delSin2th_l 0. 0. 0.
ModelParameter delSin2th_q 0. 0. 0.
ModelParameter delSin2th_b 0. 0. 0.
ModelParameter delGammaZ 0. 0. 0.
ModelParameter delsigma0H 0. 0. 0.
ModelParameter delR0l 0. 0. 0.
ModelParameter delR0c 0. 0. 0.
ModelParameter delR0b 0. 0. 0.
# mtpole
ModelParameter mtop 172.58 0.45 0.
ModelParameter mHl 125.09 0. 0.
#
# light quark masses at 2 GeV
ModelParameter mup 0.00250 0.00017 0.
ModelParameter mdown 0.00488 0.00020 0.
ModelParameter mstrange 0.09291 0.00068 0.
# mcmc
ModelParameter mcharm 1.289 0.007 0.
# mbmb
ModelParameter mbottom 4.191 0.014 0.
ModelParameter muc 1.3 0. 0.
ModelParameter mub 4.177 0. 0.
ModelParameter mut 163.74 0. 0.
#ModelParameter mut 170. 0. 0.
#
ModelParameter mneutrino_1 0. 0. 0.
ModelParameter mneutrino_2 0. 0. 0.
ModelParameter mneutrino_3 0. 0. 0.
ModelParameter s12_pmns 0. 0. 0.
ModelParameter s13_pmns 0. 0. 0.
ModelParameter s23_pmns 0. 0. 0.
ModelParameter delta_pmns 0. 0. 0.
ModelParameter alpha21_pmns 0. 0. 0.
ModelParameter alpha31_pmns 0. 0. 0.
ModelParameter melectron 5.109989e-4 0. 0.
ModelParameter mmu 0.10565837 0. 0.
ModelParameter mtau 1.77682 0. 0.
#
######################################################################
#Observable MtMSbar MtMSbar MtMSbar 1. -1. noMCMC noweight
#Observable Mw Mw Mw 0. 0. noMCMC noweight

C.2 Flavour Parameters
In the Flavour.conf file are contained the relevant model parameters for ε′/ε like
the values of the hadronic matrix elements of the effective operators and, where
given, the correlation matrix between them. Not only this, but the non-perturbative
renormalization matrix elements, called Zqq, are given in this file.

Flavour.conf

######################################################################
# Model Parameters
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# name ave errg errf
#---------------------------------------------------------------------
ModelParameter tKl 5.116e4 2.1e2 0.
ModelParameter lambdaB 0.350 0. 0.150
ModelParameter SM_M12D 0. 0. 0.
ModelParameter tD 0.4101 0.0015 0.
ModelParameter MD 1.865 0. 0.
ModelParameter BD1 0.765 0.025 0.0
ModelParameter BD2 0.65 0.02 0.0
ModelParameter BD3 0.99 0.05 0.0
ModelParameter BD4 0.98 0.06 0.0
ModelParameter BD5 1.05 0.09 0.0
#ModelParameter BD1 0.77 0.05 0.0
#ModelParameter BD2 0.64 0.04 0.0
#ModelParameter BD3 0.97 0.08 0.0
#ModelParameter BD4 0.95 0.07 0.0
#ModelParameter BD5 1.05 0.11 0.0
ModelParameter FD 0.2092 0.0033 0.0
ModelParameter BDscale 3. 0. 0.
ModelParameter BDscheme 0. 0. 0.
######################################################################

ModelParameter BK_RBC1/2scale 4.006 0. 0.
ModelParameter BK_RBC1/2scheme 0 0 0
CorrelatedGaussianParameters BFactorsRBC 7
ModelParameter BK_RBC1/21 0.143 0.093 0.
ModelParameter BK_RBC1/22 -0.147 0.024 0.
ModelParameter BK_RBC1/23 0.233 0.023 0.
ModelParameter BK_RBC1/24 -0.723 0.091 0.
ModelParameter BK_RBC1/25 -2.211 0.144 0.
ModelParameter BK_RBC1/26 1.876 0.052 0.
ModelParameter BK_RBC1/27 5.679 0.107 0.
1. 0.0816756 -0.151239 0.0819331 -0.10693 0.536807 0.311024
0.0816756 1. -0.284058 0.371749 0.206539 0.0540144 -0.213318
-0.151239 -0.284058 1. 0.214286 0.310386 -0.114632 0.143153
0.0819331 0.371749 0.214286 1. 0.370116 -0.0934066 -0.151998
-0.10693 0.206539 0.310386 0.370116 1. -0.215278 -0.38506
0.536807 0.0540144 -0.114632 -0.0934066 -0.215278 1. 0.720705
0.311024 -0.213318 0.143153 -0.151998 -0.38506 0.720705 1.

ModelParameter BK_RBC3/2scale 3. 0. 0.
ModelParameter BK_RBC3/2scheme 0. 0. 0.
ModelParameter BK_RBC3/21 0.0292 0.0008 0.
ModelParameter BK_RBC3/22 0.579 0.013 0.
ModelParameter BK_RBC3/23 2.56 0.07 0.

ModelParameter ImA2_RBC -8.34e-13 1.03e-13 0.
ModelParameter ReA2_RBC 1.50e-08 0.15e-08 0.
ModelParameter ReTau 0.001558 0.000065 0.
ModelParameter ImTau -0.000663 0.000033 0.

ModelParameter ReA0_Kd 3.3201e-07 0.0018e-07 0. #Modificato
ModelParameter ReA2_Kd 1.479e-08 0.004e-08 0 #Modificato
ModelParameter omega 0.04454 0.00012 0. #Aggiunto
ModelParameter delta_0 32.3 2.1 0. #Aggiunto
ModelParameter delta_2 -11.6 2.8 0. #Aggiunto
ModelParameter EpsK 0.002228 0.000011 0.
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ModelParameter SysImA0 0. 0.207 0.
ModelParameter SysReA0 0. 0.198 0.

ModelParameter OmegaIB 0.1705 0.0905 0.

ModelParameter Zqq00 0.42011 0.00043 0.
ModelParameter Zqq11 0.422 0.038 0.
ModelParameter Zqq12 -0.207 0.036 0.
ModelParameter Zqq13 -0.005 0.013 0.
ModelParameter Zqq14 0.0084 0.0077 0.
ModelParameter Zqq21 -0.094 0.024 0.
ModelParameter Zqq22 0.570 0.024 0.
ModelParameter Zqq23 -0.0120 0.0083 0.
ModelParameter Zqq24 0.0059 0.0047 0.
ModelParameter Zqq31 -0.14 0.14 0.
ModelParameter Zqq32 -0.15 0.12 0.
ModelParameter Zqq33 0.424 0.044 0.
ModelParameter Zqq34 0.013 0.026 0.
ModelParameter Zqq41 -0.030 0.063 0.
ModelParameter Zqq42 -0.073 0.066 0.
ModelParameter Zqq43 -0.106 0.023 0.
ModelParameter Zqq44 0.620 0.015 0.
ModelParameter Zqq55 0.47715 0.00049 0.
ModelParameter Zqq56 -0.02113 0.00024 0.
ModelParameter Zqq65 -0.05960 0.00055 0.
ModelParameter Zqq66 0.6030 0.0014 0.

C.3 UT Parameters and Observables
UTfit.conf

ModelFlag FlagCsi false
ModelFlag Wolfenstein false
######################################################################
# Model Parameters
# name ave errg errf
#---------------------------------------------------------------------
### Parameters for Flavour Mandatory for all models
# scheme for bag parameters [NDR=0, HV=1, LRI=2]
#ModelParameter lambda 0.2 0. 0.1
#ModelParameter A 0.8 0. 0.3
#ModelParameter rhob 0.0 0. 1.0
#ModelParameter etab 0.0 0. 1.0
ModelParameter V_us 0.2249 0.0004 0.
ModelParameter V_cb 0.0411 0.0010 0.0
ModelParameter V_ub 0.00389 0.00021 0.
ModelParameter gamma 1.154 0.061 0.
#ModelParameter V_us 0.225787 0.0004 0.
#ModelParameter V_cb 0.0408948 0.00 0.01
#ModelParameter V_ub 0.0035987 0.00013 0.
#ModelParameter gamma 1.22173 0.07 0.
ModelParameter MBd 5.2796 0. 0.
ModelParameter tBd 1.519 0.004 0.
ModelParameter MBs 5.3668 0. 0.
ModelParameter tBs 1.516 0.006 0.
# exp number in the meanwhile
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ModelParameter DGs_Gs 0.128 0.009 0.
ModelParameter MBp 5.2793 0. 0.
ModelParameter tBp 1.638 0.004 0.
ModelParameter MK0 0.49761 0. 0.
ModelParameter MKp 0.49368 0. 0.
ModelParameter MKstar 0.89581 0. 0.
ModelParameter MKstarP 0.89166 0. 0.
ModelParameter tKstar 1. 0. 0.
ModelParameter Mphi 1.019461 0. 0.
ModelParameter tphi 1. 0. 0.
ModelParameter FK 0.1561 0. 0.
ModelParameter FBs 0.2301 0.0012 0.
ModelParameter FKstar 0.225 0. 0.
ModelParameter FKstarp 0.185 0. 0.
ModelParameter Fphi 0.2 0. 0.
ModelParameter Fphip 0.215 0. 0.
ModelParameter alpha2phi 0. 0. 0.
ModelParameter FBsoFBd 1.208 0.005 0.
ModelParameter BBsoBBd 1.032 0.038 0.
ModelParameter BBs1 0.888 0.04 0.
ModelParameter BBs2 0.75 0.03 0.
ModelParameter BBs3 0.97 0.1 0.
ModelParameter BBs4 0.98 0.08 0.
ModelParameter BBs5 1.66 0.13 0.
#ModelParameter BBs2 0.77 0.06 0.
#ModelParameter BBs3 1. 0.17 0.
#ModelParameter BBs4 1.03 0.12 0.
#ModelParameter BBs5 1.7 0.18 0.
ModelParameter BBd2 0.73 0.03 0.
ModelParameter BBd3 0.93 0.11 0.
ModelParameter BBd4 0.99 0.08 0.
ModelParameter BBd5 1.58 0.18 0.
#ModelParameter BBd2 0.74 0.06 0.
#ModelParameter BBd3 0.98 0.2 0.
#ModelParameter BBd4 1.05 0.13 0.
#ModelParameter BBd5 1.67 0.26 0.
ModelParameter BBsscale 4.177 0. 0.
ModelParameter BBdscale 4.177 0. 0.
# Scheme [NDR=0, HV=1, LRI=2];
ModelParameter BBsscheme 0. 0. 0.
ModelParameter BBdscheme 0. 0. 0.
ModelParameter muw 80. 0. 60.
#ModelParameter muw 100. 0. 60.
ModelParameter phiEpsK 43.51 0.05 0.
ModelParameter KbarEpsK .97 0.02 0.
ModelParameter DeltaMK 3.483e-15 0.006e-15 0.
ModelParameter DmkSM 5.5e-15 1.7e-15 0.
ModelParameter BK1 0.552 0.012 0.
ModelParameter BK2 0.495 0.016 0.
ModelParameter BK3 0.774 0.026 0.
ModelParameter BK4 0.904 0.053 0.
ModelParameter BK5 0.618 0.114 0.
#ModelParameter BK2 0.49 0.04 0.
#ModelParameter BK3 0.77 0.06 0.
#ModelParameter BK4 0.89 0.10 0.
#ModelParameter BK5 0.65 0.13 0.
ModelParameter BKscale 2. 0. 0.
ModelParameter BKscheme 0. 0. 0.
######################################################################
Observable MtMSbar MtMSbar MtMSbar 1. -1. noMCMC noweight
Observable Dmd DmBd #Deltam_{d} 1. -1. MCMC weight 0.5065 0.0019 0.
Observable Dms DmBs #Deltam_{s} 1. -1. MCMC weight 17.765 0.006 0.
Observable EpsilonK EpsilonK #epsilon_{K} 1. -1. MCMC weight 0.002228 0.000011 0.
Observable EpsiloP_o_Epsilon EpsiloP_o_Epsilon #epsilon’/#epsilon 0. 0. noMCMC noweight
#
### Flag 2019 + Hardy & Towner
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Observable Vus Vus V_{us} 1. -1. noMCMC noweight 0.2249 0.0004 0.
Observable Vud Vud V_{ud} 1. -1. MCMC weight 0.97370 0.00014 0.
#
### Vcb from exclusive, inclusive, and UTfit combination
Observable Vcb Vcb V_{cb} 1. -1. noMCMC noweight 0.0409 0.0011 0.
Observable Vub Vub V_{ub} 1. -1. noMCMC noweight 0.00381 0.00040 0.
#
### alpha from UTfit combinations: pipi, rhopi, and rhorho
Observable alpha_pipi alpha_2a #alpha 1. -1. MCMC file input/pipi_sum21 Input/pipi_input_alpha
Observable alpha_rhopi alpha_2a #alpha 1. -1. MCMC file input/rhopi_win10 Input/alpharhopi
Observable alpha_rhorho alpha_2a #alpha 1. -1. MCMC file input/rhorho_sum21 Input/rhorho_input_alpha
Observable alpha alpha #alpha 1. -1. noMCMC noweight 93.3 5.6 0.
#
### gamma from UTfit combination
#Observable gamma gamma #gamma 1. -1. noMCMC file input/gamma_sum16 Input/gamma_all
#
### S coefficient of JPsiK time-dependent CPA
Observable SJPsiK SJPsiK S_{J/#PsiK} 1. -1. noMCMC noweight 0.688 0.020 0.
Observable C2beta C2beta Cos2#beta 1. -1. MCMC file input/cos2b_sum18 Input/input_cos2b
#
Observable Phis_JPsiPhi Phis_JPsiPhi #beta_{s} 1. -1. MCMC weight -0.05 0.019 0.
### posterior histograms
Observable BK1 BK1 B_{K} 1. -1. noMCMC noweight
Observable FBsoFBd FBsoFBd F_{B_{s}}/F_{B_{d}} 1. -1. noMCMC noweight
Observable FBs FBs F_{B_{s}} 1. -1. noMCMC noweight
Observable BBsoBBd BBsoBBd B_{B_{s}}/B_{B_{d}} 1. -1. noMCMC noweight
Observable BBs1 BBs1 B_{B_{s}} 1. -1. noMCMC noweight
Observable btaunu btaunu BRB#to#tau#nu 1. -1. noMCMC noweight
Observable etab etab #overline{#eta} 1. -1. noMCMC noweight
Observable rhob rhob #overline{#rho} 1. -1. noMCMC noweight
Observable gammaAR CKM_gamma #gamma 1. -1. noMCMC noweight
Observable lambda lambda #lambda 1. -1. noMCMC noweight
Observable A A A 1. -1. noMCMC noweight
Observable beta CKM_beta #beta 1. -1. noMCMC noweight
Observable 2betapgamma CKM_2betapgamma 2#beta+#gamma 1. -1. noMCMC noweight
Observable s2beta CKM_s2beta sin2#beta 1. -1. noMCMC noweight
Observable c2beta CKM_c2beta cos2#beta 1. -1. noMCMC noweight
Observable sintheta12 CKM_sintheta12 sin#theta_{12} 1. -1. noMCMC noweight
Observable sintheta13 CKM_sintheta13 sin#theta_{13} 1. -1. noMCMC noweight
Observable sintheta23 CKM_sintheta23 sin#theta_{23} 1. -1. noMCMC noweight
Observable ckmdelta CKM_delta #delta 1. -1. noMCMC noweight
Observable J_CP J_CP J_{CP} 1. -1. noMCMC noweight
Observable Rt Rt R_{t} 1. -1. noMCMC noweight
Observable Rts Rts R_{ts} 1. -1. noMCMC noweight
Observable Rb Rb R_{b} 1. -1. noMCMC noweight
Observable VtdoVts VtdoVts V_{td}/V_{ts} 1. -1. noMCMC noweight
Observable CKM_rho CKM_rho #rho 1. -1. noMCMC noweight
Observable CKM_eta CKM_eta #eta 1. -1. noMCMC noweight
### CKM elements absolute values
Observable Vud Vud V_{ud} 1. -1. noMCMC noweight
Observable Vus Vus V_{us} 1. -1. noMCMC noweight
Observable Vub Vub V_{ub} 1. -1. noMCMC noweight
Observable Vcd Vcd V_{cd} 1. -1. noMCMC noweight
Observable Vcs Vcs V_{cs} 1. -1. noMCMC noweight
Observable Vcb Vcb V_{cb} 1. -1. noMCMC noweight
Observable Vtd Vtd V_{td} 1. -1. noMCMC noweight
Observable Vts Vts V_{ts} 1. -1. noMCMC noweight
Observable Vtb Vtb V_{tb} 1. -1. noMCMC noweight
#
### Correlations
Observable2D alphavsgamma CKM_alpha #alpha 1. -1. noMCMC noweight CKM_gamma #gamma 1. -1.
Observable2D etavsrho rhob #rho 1. -1. noMCMC noweight etab #eta 1. -1.
######################################################################
# B to mu mu decays
Observable BR_Bdmumu BR_Bdmumu BRB_{d}#rightarrow#mu#mu 1. -1. noMCMC noweight
Observable BR_Bsmumu BR_Bsmumu BRB_{s}#rightarrow#mu#mu 1. -1. noMCMC noweight
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Observable BRbar_Bsmumu BRbar_Bsmumu BRB_{s}#rightarrow#mu#mu 1. -1. noMCMC noweight
######################################################################
### Observables not used
#measurement Bs2llBR = 2.9e-9, 0.7e-9, 0.000
#measurement Bd2llBR = 0.39e-9, 0.15e-9, 0.000

# Observable BRbar_Bdmumu BRbar_Bdmumu BRB_{d}#rightarrow#mu#mu 1. 1. MCMC weight 1.05e-10 0 0.
# Observable2D M12vsphi12 ArgD #Phi_{12} -180. 180. MCMC file input/ANP_DDmix Input/HNP M12D M_{12}^D 0. 0.03
# Observable Amumu_Bd Amumu_Bd A#mu#mu^{B_{d}} 1. 1. noMCMC noweight 1 0 0.
# Observable Smumu_Bd Smumu_Bd S#mu#mu^{B_{d}} 1. 1. noMCMC noweight 1 0 0.
# Observable Amumu_Bs Amumu_Bs A#mu#mu^{B_{s}} 1. 1. noMCMC noweight 1 0 0.
# Observable Smumu_Bs Smumu_Bs S#mu#mu^{B_{s}} 1. 1. noMCMC noweight 1 0 0.
######################################################################
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