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Captatio Benevolentiæ

Motivation

Quantum field theory (QFT) stands as one of the most remarkable mathematical frame-
works for understanding fundamental particles and their interactions. Its predictive
power has delivered profound insights into the behavior of particles, culminating in the
Standard Model of particle physics. However, the theory encounters significant chal-
lenges when confronted with the complexities of strong coupling regimes, such as those
governing phenomena like confinement and the nature of strongly interacting quarks
and gluons. These intriguing phenomena remain pivotal open questions in theoretical
and mathematical physics.
In this context, supersymmetry emerges as a powerful and elegant tool for exploring the
dynamics of strongly coupled gauge theories. Its application to gauge theories has led
to groundbreaking insights into the non-perturbative aspects of QFT, especially through
the concept of dualities. Supersymmetric dualities, in fact, usually provide weakly
coupled descriptions to asymptotically free gauge theories. These dualities have been
checked in various fashions: ’t Hooft anomaly matching, supersymmetric localization
for partition functions on various manifolds, good behavior under renormalization group
flows, matching of global symmetries and, as a more recent development, matching of
generalized symmetries by the SymTFT approach.
String theory and its higher-dimensional counterpart, M-theory, provide an elegant and
unified approach to these aspects. The dynamics of D-brane systems, as well as their
embedding in geometric engineering within M-theory, usually give a more fundamental
description of such dualities. Particularly interesting are non-Lagrangian theories that
can be built in string/M-theory. Likewise, the AdS/CFT correspondence also provides
the tools to probe the quantum dynamics of exotic gravitational systems such as black
holes (BH) by using QFT tools like the superconformal index. Here, the BH Hawking-
Page (HP) phase transition could be exploited to probe the confinement/deconfinement
transition in four-dimensional maximally supersymmetric YM and beyond.
Motivated by this, in this thesis we will mainly analyze supersymmetric QFTs in various
dimensions. Part of the thesis will be devoted to the study of supersymmetric duali-
ties, where we will initially discuss the fundamental result of Seiberg, and then apply

xiii



xiv Thesis overview

such reasoning to theories in three dimensions in the presence of adjoint matter. These
dualities will be checked by means of matching the 3d partition functions on both the
electric and magnetic sides. Then we will focus on the topic of generalized symmetries
in a special class of theories which are non-Lagrangian and arise in string theory by
stacking D3 branes on particular orbifold geometries. Next, we will delve into the realm
of AdS/CFT by using its powerful tools to, on one hand, compute observables of two-
dimensional SCFTs arising from compactifications of M5 branes on a special geometry
known as a Spindle, and on the other hand to compute the microstates of black holes in
the presence of probe defects from the dual field theory.

Thesis overview

This thesis is divided into two main parts: Review and Original Contributions. As the
title implies, the first part is devoted to broadly reviewing the basic topics needed for the
rest of the thesis. Nonetheless, some Chapters in the second part will begin by reviewing
in more detail the basics needed to understand the paper.

• Part I: Review

– Review 1: Supersymmetric Quantum Field Theories (QFTs)

* Supersymmetric QFTs: This section outlines the basic concepts of super-
symmetric QFTs and their significance in modern physics. It lays the
foundation for understanding more complex theories discussed later in
the thesis.

* Dynamics of SQCD: The dynamics of Supersymmetric Quantum Chromo-
dynamics (SQCD) is explored as a prototypical example featuring a dual
description. The fundamental results and applications to SQCD are dis-
cussed in detail.

– Review 2: String Theory and M-Theory

* The Bosonic String and the Superstring: This section begins with a discus-
sion of the classical bosonic string, introducing its formulation and signif-
icance in theoretical physics. It then extends to the inclusion of fermions,
which leads to the development of the superstring. Finally, the quantum
aspects of the string theory are explored.

* Extended Objects: The Branes: This section delves into branes, extended
objects that play a crucial role in string theory. Their dynamics and impli-
cations for theoretical physics are examined.

* M-Theory: This Chapter introduces M-theory, an extension of string the-
ory that unifies the five superstring theories. The importance and appli-
cations of M-theory in modern theoretical physics are discussed.

* The AdS/CFT Correspondence: The AdS/CFT correspondence, a powerful
duality between gravity and field theories, is explained. We give some
basics of this topic by following the original result by Maldacena.
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• Part II: Original Contributions

– Topic 1: Supersymmetric Dualities

* This chapter focuses on various supersymmetric dualities and collects the
results of [36, 37]. Initially, the idea of deconfinement is presented to then
give some basic results about 3d partition functions. We conclude the
introduction by spelling out the classification of 3d chiral and non-chiral
dualities.

* Sections 3.2 and 3.3 give the results of the aforementioned papers.

– Topic 2 : Generalized Symmetries

* This chapter delves into the topic of generalized symmetries by studying
the global structure for a special class of non-Lagrangian theories in four-
dimension. These theories arise in string theory by stacking D3 branes on
specific orbifold geometries, known as S-folds. The implications of these
symmetries are thoroughly examined by also postulating the existence of
non-invertible self-duality symmetries at certain values of the holomor-
phic coupling.

– Topic 3: AdS/CFT Correspondence and its Applications

* 2d SCFTs from M-theory: Using the AdS/CFT correspondence, in this sec-
tion we find the central charge of two-dimensional Super Conformal Field
Theories (SCFTs) resulting from the compactification of M5 branes on a
product geometry consisting of a Riemann surface and a Spindle. The
Spindle is an intriguing orbifold where supersymmetry is preserved in a
non-trivial manner. The computation of the central charge is done both
from field theory and from supergravity, where the final result can be
found without actually solving for the flow from AdS5 to AdS3. We con-
clude by matching the two results.

* Black Hole microstate counting: The entropy of a black hole system coupled
to a probe D3-brane is computed by considering the superconformal in-
dex of the dual field theory setup: N = 4 SYM in the presence of a specific
Gukov-Witten surface defect. The entropy is computed from the index in
two ways: following the Cardy-like limit and the Bethe Ansatz approach.
We then match the two results and get some conclusions about the fate of
the GW defect under dimensional reduction the thermal circle by study-
ing the 3d EFT arising from the Cardy-like procedure.

Organizational note

Throughout the thesis, references to papers and the author’s contributions are color-
coded, with regular citations in red and the author’s papers in green.
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CHAPTER 1

Supersymmetric Theories with Four Supercharges in
Diverse Dimensions

Contents
1.1 Basic Elements of Supersymmetry 5

1.1.1 The SUSY Algebra 5

1.1.2 Supersymmetric QFTs 11

1.2 Dynamics of Super-QCD 12

1.2.1 Dualities 13

1.2.2 Phases of SQCD 14

1.3 Elements of 3d N = 2 16

1.3.1 Real Masses 18

1.3.2 Moduli space 19

1.3.3 One-loop CS terms 21

During the 20th century, the development of Quantum Field Theory (QFT), a mathemat-
ical framework for understanding the subatomic world, marked a significant milestone
in theoretical physics. Alongside it, the Standard Model (SM) emerged as a cornerstone,
providing deep insights into the behavior and interactions of the fundamental building
blocks of our universe: particles. These particles are categorized into two main groups:
fermions, which exhibit half-integer statistics and constitute matter, and bosons, with
integer statistics, responsible for mediating interactions.
Despite the remarkable successes of the SM, it poses several intriguing puzzles. In addi-
tion to the gravity can only be treated classically (a topic we will explore in the follow-
ing Chapter), we are interested in the non-perturbative aspects of Quantum Chromody-
namics (QCD) at low energies. The challenge of confinement, a phenomenon central to
QFT, becomes more manageable with the introduction of supersymmetry, a space-time
symmetry that associates to every fermion a bosonic partner and viceversa. Beyond its
conceptual elegance, supersymmetry offers a way for studying strongly coupled Quan-
tum Field Theories (QFTs). While our focus will not extend to all its facets, two key
phenomenological benefits of supersymmetry within the SM context include addressing
the hierarchy problem through the presence of supersymmetric partners influencing the
Higgs mass’s loop behavior and achieving the unification of all gauge interactions in the
minimal supersymmetric extension of the SM, where all gauge couplings converge at
very high energies.
This Chapter will explore the basics of theories with various degrees of supersymmetry
determined by the number of fermionic generators, or SUSY charges. The number of
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4

Table 1.1: Possible allowed SUSY algebras in various dimensions for theories without gravity. In
two and six dimensions left and right spinors are independent and therefore the SUSY algebras
are specified by the number of spinors in each chirality (NR,NL).

Space-time dimensions Possible number of (global) SUSY N

2 (1, 0), (1, 1), (2, 0), (2, 2), (4, 0), (4, 4), (8, 8)
3 1, 2, 3, 4, 5, 6, 8
4 1, 2, 3, 4
5 2, 4
6 (2, 0), (2, 2)

supercharges depends on the space-time dimension, since different dimensions feature
distinct fermionic representations. Considering global supersymmetry alone imposes an
upper limit on the number of supercharges, which, in turn, depends on the space-time
dimension. For instance, in four dimensions, the maximum amount of supersymmetry
is N = 4. Beyond this limit, the number of supercharges introduces particles with higher
spin: in four dimensions, for N ≤ 8, there is a spin 2 representation which contains a
graviton. Table 1.1 provides a summary of physically allowed values of N in various
dimensions for theories without gravity.
This Chapter primarily draws upon several excellent texts and reviews available [96,
107, 135, 300, 301, 308].
This Chapter is organized as follows. We start in Section 1.1 by summarizing the basic
elements of supersymmetry. In Subsection 1.1.1, we study the possible supersymme-
try algebras in general dimensions and then construct their representations for d= 4.
In Subsection 1.1.2, we delve into the Lagrangian formulation of 4D supersymmetric
quantum field theories (SQFTs) by constructing the supersymmetric counterparts of the
vector field, needed for gauge interactions, and the chiral field, needed to add matter
possibly beyond the adjoint representation.
Then, in Subsection 1.2, we examine the prototypical example of a supersymmetric
gauge theory: the supersymmetric version of Quantum Chromodynamics (SQCD). We
will see that for a generic number of flavors, the theory possesses a very intricate phase
diagram. This theory admits a weakly coupled description in its strongly coupled regime.
This behavior, denoted as ”duality”, is discussed in Subsection 1.2.1 and serves as a pro-
totypical example for understanding later Chapters.
By the end of the Chapter, in Section 1.3, we review the theory of 3d SQFTs, particu-
larly how they can arise from dimensional reduction from 4d and the prominent role
played by monopole operators. This topic is analyzed in Subsection 1.3.2. We conclude
the Chapter in Subsection 1.3.3 by briefly describing the role played by Chern-Simons
interactions in these theories.



Supersymmetric Theories with Four Supercharges in Diverse Dimensions 5

1.1 Basic Elements of Supersymmetry

1.1.1 The SUSY Algebra

In this section we are going to lay down the basics of supersymmetric theories, starting
from four dimensions. As mentioned in the introduction, supersymmetry associates to
every fermion in a theory a boson and vice-versa thus balancing the number of fermionic
and bosonic degrees of freedom. In a generic QFT, both degrees of freedom need not be
the same and in usual phenomenological models they actually are not the same.
The fundamental theoretical reason to why supersymmetry is a viable option for a QFT
lies in the Coleman-Mandula theorem [155] which states that given a theory that can
be described by an S-matrix which is consistent with some fundamental conditions like
locality, positivity and finiteness number of particles, the only possible symmetries are
those generated by the Poincarè group plus some internal symmetry group which com-
mutes with space-time symmetry.
If there were to be additional bosonic symmetries other than those, the S-matrix would
be trivial, i.e. all theories would be free field theories.
The only “shady” request by Coleman and Mandula is the fact that symmetry genera-
tors must be bosonic, i.e. that symmetries are given by Lie algebras. It was later shown
[210] that this requirement can be relaxed by considering graded Lie superalgebras, thus
including the possibility of having anticommuting generators known as supercharges.
Supersymmetry is the only S-matrix quantum symmetry that may connect states of dif-
ferent spins.
A graded Lie superalgebra is a vector space with a Z grading obtained by

g =
⊕
n∈Z

gn (1.1)

such that the Lie bracket respects this gradation

[gn, gm] ⊂ gn+m. (1.2)

The supersymmetry algebra is given by a grade one Lie superalgebra g = g0 ⊕ g1
where g0 is the Poincarè algebra plus any internal symmetry while g1 = (QAα , Q̄

A
α̇ ), with

A = 1, . . . ,N are supercharges: a set of 2N anti-commuting fermionic generators which,
depending on the space-time dimension, transform in the minimal spinor representation
of the Lorentz group. In table 1.2 we give a list of such representations.



6 1.1 Basic Elements of Supersymmetry

Table 1.2: Superalgebras in diverse dimensions. The automorphism group of the SUSY algebra is
usually known as R-symmetry. The tensor B = CΓ0 where C is the charge-conjugation matrix,
while JAB is the usual invariant symplectic tensor. For d odd the superalgebra can be extended by
a central term which we do not write explicitly. Here, we follow the conventions of [135].

Space-time d 1 2

Supercharges Majorana Majorana-Weyl

Reality condition (QA)† = QA (QA±)
† = Q̄±A = QA±

Superalgebra
{
QA, QB

}
= HδAB

{
QA±, Q

B
±
}
= 2δABP±{

QA+, Q
B
−
}
= ZAB

Automorphism SO(N) SO(N+)× SO(N−)

Space-time d 3 4

Supercharges Majorana Weyl

Reality condition (QAα )
† = QAα (QAα )

† = Q̄α̇A

Superalgebra
{
QAα , Q

B
β

}
= 2δAB(ΓµΓ0)αβPµ

{
QAα , Q̄β̇B

}
= 2δAB(σ

µ)αβ̇Pµ{
QAα , Q

B
β

}
= ϵαβZ

AB

Automorphism SO(N) U(N)

Space-time d 5 6

Supercharges Symplectic-Majorana Symplectic-Majorana-Weyl

Reality condition (QIα)
† = JABB

β
α QBβ (QIα)

† ≡ Q̄αA = JABB
β

α QBβ

Superalgebra
{
QAα , Q

B
β

}
= 2JAB(ΓµC)αβPµ

{
QAα , Q̄

B
β

}
= 2JAB(Σµ)αβPµ{

QAα , Q̄
B
β̇

}
= Cαβ̇Z

AB

Automorphism Sp(N) Sp(NR)× Sp(NL)
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Focusing ourselves to the case of d = 4 we give here the full superPoincarè algebra

[Mµν ,M
ρσ] = −2δ[ρ[µM

σ]
ν] ,

[Pµ,Mνρ] = ηµ[ν Pρ],

[Pµ, Pν ] = 0,[
Pµ, Q

A
α

]
= 0,[

Pµ, Q̄α̇A
]
= 0,[

Mµν , Q
A
α

]
= i(σµν)

β
α QAβ ,[

Mµν , Q̄α̇A
]
= i(σ̄µν)

β̇
α̇ Q̄β̇A,{

QAα , Q̄β̇B

}
= 2δAB(σ

µ)αβ̇Pµ,{
QAα , Q

B
β

}
= ϵαβZ

AB ,{
Q̄α̇A, Q̄β̇B

}
= ϵα̇β̇(ZAB)

∗.

(1.3)

The elements ZAB in (1.3) are central charges which commute with all the other symme-
try generators by definition.
From (1.3) we notice that QA1 and (QA2 )

† are raising operators for the z-component of the
spin, making the spin increase by 1

2 while QA2 and (QA1 )
† are lowering operators. This is

exactly the property needed for relating bosons to fermions and vice versa: in any rep-
resentation of the SUSY algebra there are going to be both fermions and bosons related
by powers of the relevant Qs.
A last comment is needed concerning the commutator of the supersymmetry generators
and internal global symmetries. In general theQs carry some representation of the inter-
nal symmetry group. The largest symmetry which acts non-trivially on these generators
is given by the automorphism group of the SUSY algebra. In four dimensions this is
given by U(N) in the absence of central terms. The SUSY algebra dictates that also the
central charges are in non-trivial representations of the automorphism group and there-
fore, whenever these are non-zero, only a subgroup of the automorphism group remains.
This is what is called R-symmetry group.
The discussion can be extended by adding another space-time symmetry: conformal
invariance. Superconformal QFTs are going to be relevant for us in the coming sections
being the RG-fixed point of any theory conformal, and for further details we refer the
reader to the seminal paper [160].
With the SUSY algebra (1.3) at hand, we can now dive into its representations. The
Poincarè group is still a subgroup of its supersymmetric counterpart, and is well known
that representations of the Poincarè group can be classified by the two Casimir invariants

P 2 = PµP
µ W 2 =WµW

µ (1.4)

where Pµ is the 4-momentum and Wµ = 1
2ϵ
µνρσPνMρσ is the Pauli-Lubanski vector. We
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can divide representations into two categories based on their mass m and spin j

Massive rep: Pµ = (m, 0, 0, 0)

{
P 2 = −m2

W 2 = m2j(j + 1)

Massless rep: Pµ = (E, 0, 0, E)

{
P 2 = 0

W 2 = 0
Wµ =M12P

µ

(1.5)

Thus for massless representations the two Casimir are proportional with proportionality
constant M12 = ±j which we call helicity and representations are labelled by it as well
as the energy E.
To build representations of the superPoincarè algebra, the Pauli-Lubanski vector is not a
well-defined Casimir anymore since the supercharges mix particles with different spin j
in the same multiplet. We call a representation of the superPoincarè algebra a supermul-
tiplet.
Consider for now the case where the algebra (1.3) has no central extension ZAB = 01.
Then the SUSY algebra tells us2

{
QAα , Q̄α̇B

}
= δABσ

µ

αβ̇
Pµ

{
QAα , Q

B
β

}
= {Qα̇A,β̇B} = 0 (1.6)

Consider first states of positive massm > 0 and, going to the rest frame Pµ = (m, 0, 0, 0),
the algebra is {

QAα , Q̄α̇B
}
= δABδαβ̇m (1.7)

which together with the remaining anti-commutators in (1.6) is the algebra for 2N fermionic
creation and annihilation operators. So an irreducible representation has dimension 22N.
The massless case m = 0 we consider the frame where Pµ = (E, 0, 0, E) in which case
the algebra is {

QAα , Q̄α̇B
}
= δAB2E

(
1 0

0 0

)
αβ̇

(1.8)

together with the remaining zero anti-commutators. The only difference between the
two algebras is that one of the eigenvalues has been turned from a one to a zero. Focusing
on the case α = β̇ = 2 we see that{

QA2 , Q̄2A

}
=
{
QA2 , (Q

A
2 )

†} = 0 Here there is no sum over A (1.9)

where in the first step we used the Weyl condition3. Since in general the anti-commutator
of any operator with its adjoint is positive definite, the only possibility is that on massless

1This is indeed necessary for massless representations due to the positivity of the Hilbert space as we later
in the Chapter.

2It is amusing to see that the SUSY algebra is fixed to be of this kind thanks to the Coleman-Mandula
theorem. In fact, the first anti-commutator has to be proportional to the 4-momentum being it the only Lorentz
vector (or possibly the special conformal transformation in the case of conformal theories). The remaning
anti-commutators are more subtle since by the product of two spinors of the same kind we could get either
a Lorentz scalar or a (anti-)self dual tensor. The tensor cannot be there without conformal invariance and so
only scalars remain, the ZAB central charges.

3We are always in Lorentz signature unless otherwise stated.
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states the two operators QA2 and Q̄2A are zero. This sets half of the Qs to zero, therefore
the picture is the same as for positive mass but with only N creation and annihilation op-
erator: an irreducible massless representation has dimension 2N. There is an additional
caveat: since in general helicities will not be distributed symmetrically around zero, to
have a CPT-invariant theory, we will need to double up each multiplet.
Consider now small values of N, namely N = 1. The massless representations are la-
belled by the helicity j and in N = 1 we have only a pair of creation and annihilation
operator. So in each supermultiplet we have two particles with helicity differing by 1

2 .
Since we will only consider theories without gravity, as stated in the introduction, we
will reduce ourselves to the case of representations with |j| ≤ 1. In this case, for m = 0

and N = 1 there are only two such representations

−1 − 1
2

0 1
2

1j

Vector Multiplet
Chiral Multiplet

Q̄1̇

(1.10)

Both representations have 4 states. Note that the doubling of the spectrum is due to the
requirement of CPT-invariance. Some comments are in order: the chiral multiplet can
get a mass in a completely supersymmetric fashion while the vector multiplet cannot.
This is clear since there is no state of zero helicity in a massless vector supermultiplet. To
acquire a mass it needs to combine with a scalar which becomes its longitudinal.
Going now to the case of N = 2 we have two supercharges of each kind, the massless
multiplets can be found accordingly. Starting with the state of the lowest helicity −j

−j −j + 1
2

−j + 1j

1 2 1 ⊕
CPT conjugate

(1.11)

where the numbers give the number of states with given helicity. The case of j = 1
2 is

peculiar: it may or not be CPT self-conjugate. When it is, we call it half hypermultiplet
and contains only the states above. If it is not, the representation is doubled and we call it
hypermultiplet. It is very useful to think of N = 2 representations in terms of N = 1 ones.
The N = 2 vector multiplet, whose lowest helicity state is j = 0, is comprised of an N = 1

vector multiplet plus a chiral multiplet both transforming in the adjoint representation
of the gauge group. The case of j = 1

2 , the (half) hypermultiplet, comprises (one) two
N = 1 chiral multiplets with opposite chirality.
At last, consider the maximally supersymmetric N = 4 algebra4. Here we have only
one multiplet which in N = 1 language contains one vector multiplet and three chiral
multiplets, all transforming in the adjoint representation.

Let us readily mention massive representations, for more details one consult one of the
many reviews on the subject cited in the introduction. As discussed before, massive

4Without gravity.
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representations are usually longer than massless ones since they have dimension 22N.
Moreover, for massive representations we cannot set the central charges ZAB to zero,
the most we can do in 4d is to make the central charge matrix skew-diagonal by an
opportune U(N) action. Without loss of generality, we consider the simpler case where
N is an even number5. Then the eigenvalues of the ZAB are Zk ≥ 0 with k = 1, . . . , N2 .
For the case of N = 2 the SUSY algebra takes the form{

QAα , Q̄β̇B

}
= 2σµ

αβ̇
Pµδ

A
B{

QAα , Q
B
β

}
= ϵαβϵ

ABZ{
Qα̇A, Qβ̇B

}
= ϵα̇β̇ϵABZ

(1.12)

Positivity of the Hilbert space leads to a bound on the mass of the states

2m ≥ |Z| (1.13)

from which follows that for massless states there cannot be any central charge as men-
tioned before. The bound (1.13) is generalized to higher values of N. Depending on
whether this bound is saturated or not, theories with extended SUSY admit massive
multiplets with different lengths

• Long multiplets: if 2m > |Zk| ∀k we have exactly 2N creation and annihilation
operators and therefore the multiplet contains 22N states.

• Short multiplets: if 2m = |Zk| ∀k ̸= N
2 some of the creation and annihilation

operators are trivially realized and only 2N − 2k remain. Therefore this multiplet
contains 22N−2k states.

• Ultra-short multiplets: if 2m = |Zk| ∀k half of annihilation and creation operators
are trivially realized. Therefore, this multiplet contains 2N states, which is the same
dimension as their massless counterpart.

The mass bound (1.13) is reminiscent of the Bogomol’nyi-Prasad-Sommerfeld bound for
solitonic solutions in gauge theories. This is no coincidence. The origin of the central
extension can be understood [317] as follows: remember that the SUSY charges Q, Q̄,
being conserved charges, are integrals of expressions in the fields. By computing anti-
commutators, one encounters surface terms which are normally neglected. However, in
the presence of electric and magnetic charges, these surface terms are non-zero and give
rise to the central charges.
Due to this connection with the Bogomol’nyi-Prasad-Sommerfeld bound, short multi-
plets are also called BPS multiples, and the inequality (1.13) is also known as BPS bound.
For BPS states, the relationship between charge and mass is dictated by supersymme-
try and does not recive perturbative nor non-perturbative contributions in the quantum
theory. This is so because any modification of this relation implies that states no longer
belong to short multiplets. On the other hand, quantum corrections are not expected to

5When N is odd, the matrix ZAB has additional zero eigenvalues.
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generate any extra degrees of freedom needed to convert a short multiplet into a long
multiplet. We conclude then that for short multiplets the condition 2m = |Z| cannot be
modified either perturbatively nor non-perturbatively.

1.1.2 Supersymmetric QFTs

With the representation theory discussed, we now aim to understand how to construct
Lagrangians that are manifestly invariant under a certain amount of supersymmetry.
Generally, we focus on constructing minimal SUSY Lagrangians, since representations of
higher supersymmetry can always be embedded into the minimal one, as we discussed
in the previous section. Being supersymmetric, the Lagrangian must contain on-shell
the same number of fermionic and bosonic degrees of freedom. Here, we will primarily
discuss the cases of 4d N = 1 and postpone the discussion to 3d N = 2 to the forthcoming
section. The two have the same number of supercharges, with the latter derivable from
the former by dimensional reduction on S1.
The contents of a representation of the SUSY algebra are collected into superfields, which
depend not only on a space-time point xµ but also on a set of anti-commuting Grassmann
coordinates, usually denoted as θα, θ̄α̇, associated with the supersymmetry generators.
This construction takes us from the usual 4d Minkowski space, defined as the group
coset, to the N = 1 superspace

M1,3 ≡
ISO(1, 3)

SO(1, 3)
−→M4|1 ≡

Osp(4|1)
SO(1, 3)

. (1.14)

In this formalism, the most general superfield one can construct, based on the fact that
θα, θ̄α̇ are Grassmann variables, is the following:

Φ(xµ, θα, θ̄α̇) = f(x) + θαψ
α(x) + θ̄α̇χ̄

α̇(x) + θαθ
αm(x) + θ̄α̇θ̄

α̇n(x)

+ θασ
µαβ̇θβ̇vµ(x) + θαθ

αθ̄α̇λ̄
α̇(x) + θ̄α̇θ̄

α̇θ̄αρ
α(x) + θαθ

αθ̄α̇θ̄
α̇d(x).

(1.15)

Essentially, each superfield is a collection of ordinary fields, both bosonic and fermionic.
From (1.15) we can construct more specific superfields that realize the supermultiplets
mentioned before. We won’t delve into the details of the calculation and refer the reader
to more in-depth texts, but we will provide some basics and see how to constrain the
general superfield to encode, on-shell, only the degrees of freedom of each supermulti-
plet.
Consider the massless representations (1.10). The (anti-)chiral superfield Φ encodes the
degrees of freedom of the chiral multiplet and is defined by the condition

Dα̇Φ = 0, DαΦ = 0, (1.16)

where Dα, D̄α̇ are covariant derivatives in superspace:{
Dα = ∂α + iσµ

αβ̇
θ̄β̇∂µ,

Dα̇ = ∂̄α̇ + iσµα̇βθ
β∂µ.

(1.17)
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These conditions impose the following expansion for the field:

Φ(x, θ, θ̄) = ϕ(x) +
√
2θψ(x) + iθσµθ̄∂µϕ(x)− θθF (x)−

i√
2
θθ∂µψ(x)σ

µθ̄ − 1

4
θθθ̄θ̄2ϕ(x),

(1.18)
with the obvious contractions. For the anti-chiral superfield, the story is the same, just
put a bar over most of the components. As one can see, on-shell, this superfield contains
exactly the right degrees of freedom for a chiral multiplet. The field F is an auxiliary
field that vanishes on-shell.
The vector superfield is defined by the reality condition

V = V̄ . (1.19)

As usual with vector fields, the explicit form of the expansion depends on a specific
choice of gauge. Arguably, the easiest is the Wess-Zumino gauge, where the vector su-
perfield expansion is

V (x, θ, θ̄) = θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (1.20)

Here, the D-field is an auxiliary field that vanishes on-shell.

1.2 Dynamics of Super-QCD

One gauge theory that will serve as the foundation for the rest of this section is the su-
persymmetric version of QCD (SQCD). This theory, like its non-supersymmetric coun-
terpart, is an SU(N) gauge theory coupled to Nf chiral and anti-chiral multiplets6. For
completeness, we now present the Lagrangian for the theory

LSQCD =
1

32π2
Im

(
τ

∫
d2θTrWαWα

)
+ 2g

∑
A

ξA

∫
d2θ d2θ̄ V A

+

∫
d2θ d2θ̄ Φ̄ae2gV Φa +

∫
d2θW (Φ) +

∫
d2θ̄ W (Φ̄), (1.21)

where the first term is the gauge kinetic term, the second term, known as the Fayet-
Iliopoulos term, is only present when there are abelian gauge factors, the third term is
the kinetic term for the chiral fields, and the last term represents their interactions. The
charges of the various fields and the symmetries of the theory are given in Table 1.3.

The R-charge of the fields is fixed by requiring anomaly cancellation, which determines
RQ to be

RQ = 1− N

Nf
, (1.22)

while the axial symmetry is anomalous.

6Both are needed to cancel the triangle gauge anomaly.
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Table 1.3: Field content of N = 1 SQCD with gauge group SU(N) and their charges under the
classical global symmetries of the theory. The last entry is the gaugino from the vector multiplet,
which carries a non-trivial R-charge. The axial symmetry is anomalous.

SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R
Qi 2 1 1 1 RQ
Q̃i 1 2 1 −1 RQ
λ 1 1 0 0 1

Next, let us consider the situation where the theory is conformal. This occurs when
the β-function of the theory is zero. At the conformal point, additional supercharges
impose, for chiral fields, the relation ∆(Q) = 3

2R(Q), where R(Q) is the superconformal
R-symmetry. In our case, we find that the anomalous dimension for the chiral fields in
SQCD is given by

∆(Q) =
3

2
− 3N

2Nf
=⇒ γ(Q) = −3N −Nf

2Nf
. (1.23)

This anomalous dimension at the superconformal fixed point is exact [290]. We can
infer that this theory has very interesting dynamics depending on the amount of flavor
Nf . Indeed, when Nf is close to 3N , there is a weakly-coupled superconformal fixed
point. If we continue to lower Nf , we encounter another bound, the unitarity bound.
Consider the gauge invariant operator QQ̃. This operator has a conformal dimension of
3(1 − N

Nf
). Since unitarity requires that the scaling dimension of any scalar operator be

greater than one, we need Nf ≥ 3N/2 to have a conformal point. Below this bound, the
operator QQ̃ violates unitarity. Consequently, we expect an accidental U(1) symmetry
to emerge along the RG flow. This accidental symmetry will mix with the R-symmetry
which will therefore be not the superconformal R-symmetry. Here the IR dynamics is
better understood in terms of another theory, the magnetic dual theory, which we explain
in the next section.

1.2.1 Dualities

Before hitting the unitarity bound, the anomalous dimension (1.23) becomes of order one
and therfore the theory is not perturbative. In this range, Seiberg found [289] that the
theory is better understood from another theory whose dynamics is perturbative. Here
we state the result of our first example of duality: the following gauge theories are dual

• SU(N) SQCD withNf pairs of fundamental quarksQi and anti-fundamental quarks
Q̃i with vainishing superpotential W = 0.

• SU(Nf − N) SQCD with Nf pairs of fundamentals qi and anti-fundamentals q̃i, a
set of singlets M i

j with superpotential W = qiM
i
j q̃
j .

When saying that two theories are dual to each other, what we mean is that, when Nf >
3N/2, they describe the same superconformal theory in the IR. While when Nf < 3N/2,
the dual theory can be understood as the IR limit of the original one.
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Table 1.4: Mapping betwen fundamental quarks and gauge-invariant chiral operators between
Seiberg dual SQCDs. The operators B, B̃, b, b̃ are (anti-)baryon operators.

Electric Magnetic

Qai q̃ai
Q̃ia qia

Qai Q̃
j
a M j

i

Bi1,...,iN := ϵa1,...aNQi1a1 · · ·Q
iN
aN bi1,...,iNf−N

:= ϵa1,...aNf−N
qa1i1 · · · q

aNf−N

iNf−N

B̃i1,...,iN := ϵa1,...aN Q̃
a1
i1
· · · Q̃aNiN b̃i1,...,iNf−N := ϵa1,...aNf−N q̃i1a1 · · · q̃

iNf−N

aNf−N

Nf

Electric
theory

Magnetic
theory

N N + 1 3
2N

3N

UV-free βe < 0 IR-free βe > 0

IR-free βm > 0 UV-free βm < 0

Conformal WindowRunaway

Figure 1.1: Phase diagram of both the electric and magnetic phases of SQCD as a function of the
number of flavors Nf

The duality is corroborated by many non-trivial checks, which we are just going to state
here. Indeed, one can prove that the two theories have the same ’t Hooft anomalies and
a map between gauge invariant operators can be constructed. Explicitly the mapping is
given in table 1.4.

The continuous symmetries are also the same. Moreover, when integrating out flavors
on the original electric theory, this can be proven to correspond to an Higgsing on the
dual magnetic theory. Of course, being a duality of one takes the dual of the dual theory,
this gives the initial theory.

1.2.2 Phases of SQCD

We can now discuss the various phases of SQCD and its dual in function of the number
of flavors Nf . A summary is spelled out in figure 1.1.

1.2.2.1 Phase for N < Nf < 3N

As discussed before, when N/Nf ∼ 1/3, the electric theory flows to a weakly-coupled
SCFT, while the dual theory becomes strongly coupled7. As we increaseN/Nf , the origi-
nal theory becomes more strongly coupled, while the dual theory becomes more weakly
coupled. At N/Nf ∼ 2/3, we hit the unitarity bound for the meson operator QQ̃. The

7Remember that the one-loop beta function coefficient is 3N −Nf .
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region where (3/2)N < Nf < 3N is known as the conformal window. Beyond this point,
as N/Nf increases further, the meson operator violates unitarity, and thus we cannot
expect the theory to be superconformal in the IR anymore. The same reasoning applies
to the dual theory, where the beta function is no longer zero, and the theory cannot be
conformal.

1.2.2.2 Phase for Nf = N + 1

We start from the case ofNf = N+1, in which the dual theory has rankN ′ := Nf−N ≥ 1.
To understand the behavior of this limiting case, we can consider starting withNf flavors
and integrating out N ′ − k of them. This is done in the electric theory by turning on a
mass deformation for N ′ − k quarks

We = mj
iQ

iQ̃j , i, j = N ′ − k, . . . , Nf , (1.24)

which corresponds on the dual side to a deformation of the form

Wm = qMq̃ +mj
iM

i
j . (1.25)

This deformation on the magnetic side breaks SU(N ′) → SU(k) with N + k flavors.
Assuming that the final SU(k) theory is in the weakly-coupled regime, instanton com-
putations, holomorphy, and symmetry completely fix the effective superpotential. In the
case of interest, k = 1, we get a superpotential

Wm = qMq̃ − detM. (1.26)

Note that in this case qi ∼ bi, and therefore the theory is described only by composite
gauge-invariant operators. Hence, we conclude that the IR dynamics of SU(N) SQCD
with N + 1 flavors is described by an almost free theory of gauge-invariant operators
interacting with the superpotential

W =
1

Λ3N−(N+1)
(BiM

i
jB̃

j − detM). (1.27)

This is an example of confinement without chiral symmetry breaking, usually called s-
confinement. This is the prototypical example for the results of [36].

1.2.2.3 Phase for Nf = N

We can continue to vary the values of N and Nf as long as we have N ′ := Nf −N ≥ 0.
The first limiting case occurs when N ′ = 0, i.e., when Nf = N . We can compute the
dynamics of this theory by integrating out an additional quark from the theory (1.27).
Again, by adding a mass term to one quark, the IR theory is described by an SU(N)

SQCD with N flavors and superpotential

W = λ(detM −BB̃ − Λ2N ). (1.28)
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This result is quite interesting for the following reason: the equation of motion for λ
imposes the expected quantum constraint on the moduli space of vacua for this theory.
When Nf = N , the moduli space is parametrized by the solutions to the classical con-
straint [263]

detM = BB̃, where B = det(Q), B̃ = det(Q̃), (1.29)

which, at the quantum level, is modified to

det(M)−BB̃ = Λ2N , (1.30)

where Λ is a holomorphic scale treated as a spurion. This is exactly the constraint arising
from (1.28).

1.2.2.4 Phase for 0 < Nf < N : Breaking SUSY

Decoupling an additional flavor as before we consider the superpotential

W = λ(detM −BB̃ − Λ2N ) +mMN
N (1.31)

which, after computing the equations of motion for λ and MN
N , becomes

W =
mΛ3N−(N−1)

detM
. (1.32)

This result was originally found by Affleck, Dine and Seiberg [2] and correctly repro-
duces the effective superpotential of N = 1 pure SYM in the limit where all flavors
decouple. In general, when decoupling k flavors the effective superpotential is of the
form

W = k

(
Λ3N−(N−k)

detM

) 1
k

. (1.33)

The potential generated by this superpotential is always non-zero as long as M is non-
zero and finite. Therefore, the theory does not admit any stable vacuum at finite distance
in field space so that the classical moduli space is completely lifted at the quantum level.
This behavior is known as runaway; supersymmetry is broken at finite distances8.
A summary of the phases of SQCD with varying number of flavors is given in table 1.5.

1.3 Elements of 3d N = 2

In the previous sections we mainly focused on the case of 4d N = 1 QFTs in which
fundamental results like Seiberg duality were first conjectures. Now we would like to
focus on 3d N = 2 QFTs which can be obtained by the latter by dimensional reduction on
S1. In fact, as a first check, we see that the number of supercharges between 4d N = 1 and
3d N = 2 is the same. For a more in depth discussion on the topic the reader can consult
[3, 12, 15, 112, 170, 235]. The matter content of these theories can be handily obtained

8One should to be careful in treating possible non-canonical Kähler potential terms, but it can be proven
that these would not generate any SUSY minima at finite distance.
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Table 1.5: Summary of the phases of SQCD and its dual for varying number of flavor at fixed
number of colors N .

Nf Dual group Behaviour
3N − 1 SU(2N − 1) Superconformal
2N SU(N) Superconformal and self-dual

(3/2)N SU(N/2) Superconformal
(3/2)N − 1 SU(N/2− 1)

↓ ↓ IR-free with W = qMq̃

N + 2 SU(2)

N + 1 SU(1) S-confinement with W = BMB̃ − detM

N - Quantum deformed W = λ(detM −BB̃ − Λ2N )

N − 1 - ADS superpotential
0 - Pure SYM, N vacua

by dimensional reduction of 4d N = 1 gauge theories. Thus the reduction of the chiral
superfield (1.18) still comprises of a complex scalar and an auxiliarry field, whilst the
Weyl fermion decomposes into two real independent Majorana fermions. Similarly, the
vector superfield (1.20) decomposes as

V = −iθθ̄σ − θγiθ̄Ai + iθ2θ̄λ− iθ̄2θλ+
1

2
θ2θ̄2D, (1.34)

where Ai9 is the 3 dimensional vector field, σ is the real gauge scalar descending from
A3, λ are the gauginos and D is a real auxiliary field. Crucially the 3d vector field
(1.34) differs from its 4d counterpart (1.20) by the presence of an additional scalar field
σ which may acquire a vacuum (vev) thus describing a new branch of the moduli space
of the theory known as Coulomb branch. At a generic point of the Coulomb branch, i.e.
when ⟨σ⟩ ̸= 0, the gauge group is completely broken to its maximal torus. For example
SU(N) → U(1)N−1. However, this is not the only scalar which may acquire a vev. In-
deed, in 3d the vector field Ai has only one propagating degree of freedom which may
be dualized to a scalar by means of Hodge duality. Take the theory at a generic point of
the Coulomb branch, the 2-form F = dA may be dualized

⋆F = dγ , (1.35)

where γ is a scalar known as dual photon. This scalar describes the only degree of freedom
of the vector fieldAi. Charge quantization imposes that γ takes value on S1, which forces
the Coulomb branch topology to be R × S1. On this, the natural coordinate is given by
the complex modulus

ϕ = σ + iγ. (1.36)

We are going discuss further the moduli space of 3d N = 2 in the following section.

9Hereafter we use the latin indices i to denote vectors of the 3d Lorentz group.
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The action for N = 2 theories can be constructed in the same way as described for the
4d ones in 1.1.2. In addition, there are two terms which arise in 3d. One can add a
supersymmetric Chern-Simons (CS) term

SCS =

∫
d3xTr

[
ϵijk

(
Ai∂jAk + i

2

3
AiAjAk

)
+ 2Dσ − λ†λ

]
. (1.37)

Note that for Abelian gauge groups we can also have mixed CS terms. Indeed, if A(a)

is the gauge field for the gauge group U(1)a and A(b) for the gauge group U(1)b, we can
write a term of the form

SCS, mixed =

∫
d3x ϵijkA

(a)
i ∂jA

(b)
k +D(a)σ(b) +D(b)σ(a). (1.38)

This terms are going to be fundamental in the forthcoming discussion for [37]. The
second term we can add has a topological origin. Indeed, 3d Abelian gauge theories
posses an additional topological global symmetry coming from the conservation of the
current J = ⋆F . Indeed, the Bianchi identity for F implies that d ⋆ F = dJ = 0. In
supersymmetry, any conserved current belongs to a multiplet known as linear superfield
Σ satisfying D2Σ = D̄2Σ = 0. Since this new symmetry U(1)J is generated by ⋆F , the
vector superfield (1.34) may be described by the linear superfield Σ as

Σ = − i

2
ϵαβD̄αDβV. (1.39)

From this one can construct a scalar superfield Φ dual to Σ whose lower scalar compo-
nent is exactly the scalar ϕ in (1.36). In particular the scalar component of Φ, ϕ = ϕR+iϕI ,
can be related to the gauge degrees of freedom as

ϕR =
2π

e2
σ,

∂iϕI = −
π

e2
Ji.

(1.40)

1.3.1 Real Masses

In 3d there are two possible ways to generate a mass term for matter fields. The usual
mass, known as complex mass, arises in vector-like theories by adding a relevant defor-
mation of the form

WC−mass = mCQQ̃, (1.41)

where Q a putative matter field. The parameter mC is a complex parameter, hence the
name. But now, for 3d N = 2 we can induce a mass on the chiral multiplet by setting
⟨σ⟩ ≠ 0. The kinetic term for a chiral multiplet contains in fact terms of the form

QeVQ† ⊃ ϕ†Qσ
2ϕQ − iψ†

Qσψ
⟨σ⟩̸=0−−−−→ m2

R
2
|ϕQ|2 + imRϵ

αβψ̄αψβ . (1.42)
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Moreover, by weakly gauging a non-anomalous global symmetry we can induce a real
mass by similar arguments. Crucially, since global symmetries match across dualities,
real mass deformations can be mapped between dual theories preserving the underlying
duality. This fact is going to be extensively used in chapter 3.1.4.

1.3.2 Moduli space

We can now describe the classical moduli space of 3d N = 2 SU(N) gauge theories [112].
We start by analyzing theories without CS terms. The full moduli space is now described
by two branches

• Higgs branch (HB): This is present also in 4d and is defined by the solutions to the
D-term equations. In 3d, it is still defined this way, but one also needs to impose
that ⟨σ⟩ = 0. The coordinates on HB are the vevs of gauge-invariant composites
subject to classical constraints.

• Coulomb branch (CB): This branch, present also in 4d N ≥ 2, is parameterized in
3d by the vevs of σ while setting the matter fields to zero.

Previously, we discussed how to give a vev to the scalar σ in abelian gauge theories.
In non-abelian theories, the story is similar. Without any loss of generality, we can use
gauge transformations to diagonalize the σ’s and write the general vev as valued in the
Cartan subalgebra of the gauge group. This gives rise to a mass for all matter fields,
breaking the gauge group to its maximal torus. Additionally, to eliminate the leftover
gauge redundancy, we impose constraints that restrict σ to a Weyl chamber

⟨σ⟩ = diag(σ1, σ2, . . . , σN ), (1.43)

with the ordering σ1 > σ2 > . . . > σN−1 > σN while imposing the traceless condition∑
i σi = 010. From this analysis, we can conclude that in the absence of matter CB has

topology R× S1 and is described by N − 1 massless chiral multiplets

Yi ∼ eΦi , (1.44)

where the Φi are the chiral superfields for the unbroken U(1)’s dual to the linear super-
field (1.39). It can be shown that in the full UV theory, the Yi operators are realized as
”disorder operators” that impose a unit magnetic flux on all Euclidean S2 spheres en-
closing a given point in the path integral. For this reason, the Yi are often called monopole
operators. In principle, we can choose the Yi’s to correspond to any basis of low-energy
U(1)’s we prefer. As we will soon see, it will prove convenient to choose our Yi’s so that
their lowest (scalar) component is classically equivalent to

Yi = exp

(
2π

g2
(σi − σi+1) + i(ai − ai+1)

)
, i = 1, . . . , N − 1. (1.45)

10The scalar σ is in the adjoint of the group
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Yi Y ′
i Ỹ ′

iỸi

Higgs Branches

Coulomb Branches

Figure 1.2: Moduli space of 3d N = 2 in presence of matter. The Coulumb branches pinch off
where they meet the Higgs branches. At these points there is additional massless matter.

The presence of matter and non-perturbative effects significantly alter this classical pic-
ture. Specifically, in the presence of matter fields, there can be regions where the HB
pinches the CB. This occurs because the vev for the scalar field σ provides an effective
mass to the matter fields, and this mass can vanish in certain scenarios. For fields in the
fundamental representation, this happens when one or more of the σi vanish. Similar
constraints hold for different representations. In these regions of the CB, we can turn
on vev for the massless matter fields, leading to an intersection between the CB and HB.
These intersection regions are referred to as ”pinches” in the CB as shown pictorially in
figure 1.2. Consequently, the CB is divided into several regions, each separated by the
HB, necessitating a description that combines the relevant terms instead of solely relying
on (1.44). However, this combined description is only necessary near the pinches. In the
bulk of the CB, far from the pinches, all matter fields can be integrated out at a scale
where gauge interactions remain perturbative.

In addition to matter fields, non-perturbative corrections also modify the classical pic-
ture. In 3d N = 2 SU(N) gauge theories, there are instantons resembling the 4d ’t Hooft-
Polyakov monopoles, with the scalar field σ in the 3d gauge multiplet acting like the
adjoint Higgs scalar in 4d. Therefore, these instantonic configurations are also referred
to as monopoles. There are N − 1 such configurations, each corresponding to a specific
embedding SU(2) ↪→ SU(N). This establishes a one-to-one correspondence between
these monopole instantons and the monopole operators defined in (1.45).
If a charged fermion under a U(1) symmetry has zero modes in this instanton/monopole
background, then Yi acquires charge under such U(1). Since the zero mode counting
varies across different regions of the CB, the charge of Yi also changes. This discontinu-
ity necessitates two independent operators, Yi and Ỹi, to describe each side of the CB.
In a pure SU(N) theory, the monopole instanton configurations generate the low-energy
superpotential [3]

Wmonopoles =
∑
i

Y −1
i , (1.46)

which entirely lifts the CB. This picture changes in the presence of matter. These fields
may have zero modes, according to the Callias index theorem [131]. These zero modes
can suppress some of the monopole contributions to the potential (1.46), leaving parts
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of the CB unlifted [12]. This does not always happen: each instanton/monopole is as-
sociated with an SU(2) embedded in SU(N), and this subgroup can be broken by the
vev of the matter field, according to the decomposition of its representation under this
subgroup. This vev sets the monopole scale, which for the monopole corresponding to
the operator Yi is

1

ρi
=

1

2
|σi − σi+1|. (1.47)

We have to compare this scale with the induced mass of some of the fermions that trans-
form under the SU(2) embedding corresponding to the monopole. If this mass is larger
than the monopole scale, these fermions will be integrated out before they can affect
the effective superpotential (1.46). Conversely, the fermions contribute to the zero mode
counting, with a number of zero modes depending on the representation. The first sce-
nario always realizes in the bulk of the CB; that is to say, every configuration in the bulk
of the CB can be taken to a configuration where a superpotential is generated without
having to go through a pinch. Even for these, it is often possible to make the mass of
some matter fields arbitrarily larger than some of the monopole scales, so that only a
very restricted part of the pinch regions will actually survive. So, for a theory with only
fields in the fundamental and antifundamental representation, the non-perturbative ef-
fects leave unlifted the part of the CB corresponding to the non-vanishing semi-classical
configuration [291]

⟨σ⟩ = diag(σ, 0, . . . , 0,−σ). (1.48)

This direction is parametrized by the low-energy monopole

Y =

N−1∏
i=1

Yi = exp

(
2π

g
(σ1 − σN ) + i(a1 − aN )

)
. (1.49)

1.3.3 One-loop CS terms

Up to now, the discussion has been done in absence of CS interactions. But, we know
that the low-energy behavior of 3d N = 2 theories depends on these terms, so let us
explain how they can be dynamically generated and how they change our treatment.
We know that in the 3d, in the IR two-point functions between conserved current arise
conformally invariant contact terms. The UV description of these contact terms is given
by CS interactions for the background gauge fields coupling to the conserved current
[150, 151, 314]. The Lagrangian description of these terms has the following form

LCS ∼ kTr(A ∧ dA) = kTr(A ∧ F ). (1.50)

This additional interaction modifies the Gauss’ law11, introducing a ”magnetic” contri-
bution to the electric charge when k ̸= 0

− 1

e2
∂iF0i = ρmatter −

k

2π
F12, (1.51)

11This is nothing but the A0 equation of motion
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where ρmatter = δLmatter/δA0 is the contribution from matter fields. In fact, by impos-
ing Coulomb gauge to preserve canonical quantization, we make A0 become a non-
dynamical field. As a consequence we have to impose Gauss’ law as a constraint and
this implies that any charged field under a U(1)J symmetry acquires an electric charge

qCS
elec = −kqJ . (1.52)

The story does not end here, even if a theory as a vanishing tree-level CS term, i.e. k =

0, one can be generated perturbately when UV divergences are regulated in a gauge-
invariant way [64, 285]. Let us see how this works. As we saw earlier a non-vanishing
vev for the σ’s generate a real mass for the matter fields mi(σ) = ni⟨σ⟩, where ni is the
U(1) charge of the fields. So, if all real masses are set to zero, when we explore directions
of the CB when σ ̸= 0, we have to integrate out the heavy fields in order to get an
effective action for the light degrees of freedom. Considering the vacuum polarization
diagram which generates one-loop Chern-Simons terms for the gauge field Ai, where in
the loop circulate the heavy fermion, we have this effective action

Seff[A] =
1

2
n2i

∫
d3q

(2π)3
d3p

(2π)3
Al(−p)Am(−q)[−iΠlm(p)], (1.53)

where (we suppress the index i in mi(σ))

Πlm(p) = −ie2
∫

d3k

(2π)3
Tr
[
γl

−i
(p+ k)−m(σ)

γm
−i

k −m(σ)

]
. (1.54)

For large m,
Πlm → −iϵlmkpksign[m(σ)] + ... (1.55)

Where the dots represent divergent term which need to be regularized. Substituting
(1.55) in (1.53), we can see that each charged heavy fermion, with charge ni, generates a
one-loop CS term with coefficient keff,i = n2i sign(niσ). By integrating out all the massive
fermions along the CB we obtain

keff(σ) = k +
1

2

∑
i

n2i sign(niσ). (1.56)

Note that for non-abelian symmetries the following holds

keff = k +
1

2

∑
i

T2(Rψi
)sign(niσ), (1.57)

where T2(Rψi
) is the quadratic index of the representation Rψi

of ther fermion ψi. Re-
membering (1.52), from (1.56) we read the induced one-loop electric charge for the U(1)J
charged field

qCS
elec = −keffqJ =

(
k +

1

2

∑
i

n2i sign(niσ)

)
qJ . (1.58)
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This formula can be generalized to the case with non-vanishing real massesmR,i, it reads

qCS
elec =

(
k +

1

2

∑
i

n2i sign(mi(σ))

)
qJ =

(
k +

1

2

∑
i

n2i sign(mR,i + niσ)

)
qJ . (1.59)

The same reasoning is true for the generation of effective abelian charges. One-loop U(1)

charges are generated by mixed Chern-Simons term. Let us see this by weakly gauging
a U(1) symmetry. The weakly gauged U(1) vector bosons ai interact with the heavy
fermions charged under the same U(1), with charge ñi. Integrating out these massive
fermionic fields we encounter the vacuum polarization diagram which generates one-
loop mixed Chern-Simons term involving both ai and Aj . These diagrams induce one-
loop mixed CS terms of the form

Lmixed
CS ∼ kmix

eff (σ)Tr(ϵijkaiFjk), (1.60)

with
kmix

eff (σ) =
1

2

∑
i

niñisign(niσ). (1.61)

Analogously with the previous case, the non-vanishing mixed CS term will modify
Gauss’ law for the weakly gauged U(1) (i.e. the a0 equation of motion), which in turns
will induce a U(1) charge for fields which have a non-vanishing qJ . This reads

q̃ =
1

2

(∑
i

niñisign(niσ)

)
qJ . (1.62)

In this way the Abelian charges mix in a non trivial way, as a result, the Y ’s operators,
despite the fact that they are not charged classically, acquire Abelian charges quantum
mechanically. In this way, as we will review in the next paragraph, they acquire also
charge under the gauge group. But, in order to parametrize the CB we need gauge-
invariant operator. We construct them by “dressing” the bare monopole operators with
massless matter fields.
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Quantum Field Theory (QFT) provides the mathematical framework for understanding
the subatomic world. Alongside it, the theory of the Standard Model (SM), whose basis
is QFT, gave us deep insights into the behavior and interactions of the basic building
blocks of our world: particles. Together with the SM, which precisely describes elec-
tromagnetic, weak, and strong interactions, the theory of General Relativity (GR) pro-
vided an accurate description of the fourth fundamental force: gravity. Both these theo-
ries, while incredibly precise within their respective energy ranges, break down in other
regimes. GR does not account for the quantum nature of gravity [1], and the predictive
power of the SM fails when attempting to describe gravitational interactions. Among
various fundamental problems, whether a consistent theory of quantum gravity exists
has fascinated physicists for decades.
In this context, String Theory (ST) emerges as an intriguing answer. Initially developed
to understand the non-perturbative nature of quantum chromodynamics [186, 298, 305],
it soon became evident that there was more to String Theory than met the eye. Particu-
larly, ST naturally incorporates gravity, presenting a unified framework that potentially
bridges the gap between quantum mechanics and general relativity [205].
The main idea of ST is that the fundamental constituents are one-dimensional objects
called strings, rather than point particles. These strings can vibrate with different modes,
each corresponding to a different particle. Remarkably, one of these modes corresponds
to the graviton, the hypothetical quantum particle that mediates gravitational interac-
tions. As was later found, ST is not really a single theory but comes in different versions
labeled as type-I, type-IIA, type-IIB, and two heterotic string theories. It was later shown
that these different versions are actually connected by dualities, leading to the develope-
ment to M-theory. M-theory provides a more comprehensive framework that unifies the
five distinct string theories [222, 315].
One of the most remarkable developments in String Theory is the AdS/CFT correspon-
dence, proposed by Maldacena in his seminal paper [264], which relates a low-energy
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description of string theory in anti-de Sitter spacetime in d+1 dimensions (AdSd+1),
to a supersymmetric and conformal theory (SCFT), living on the d-dimensional con-
formal boundary of AdS. Specifically, it suggests that a gravitational theory in (d+1)-
dimensional AdS space is equivalent to a d-dimensional CFT without gravity. The best
understood realization of this correspondence is the one between type-IIB string theory
on an AdS5×S5 background with fluxes and the maximally supersymmetric Yang-Mills
theory in four dimensions (SYM) with gauge group SU(N).
In the large-N limit, string theory admits a classical description in terms of supergrav-
ity, a supersymmetric version of Einstein’s gravity, on AdS5. In turn, this theory admits
a large family of solutions representing rotating, electrically charged, supersymmetric
black holes with an S3 event horizon of finite area Ahor, and therefore a finite number
nmicro of microstates1. The enumeration of the microstates is related to the counting of
states in the Hilbert space of the dual SCFT on S3 × S1. A fundamental work in which
the entropy of a black hole was obtained from a microstate counting was the one by Stro-
minger and Vafa [292], in which they managed to reproduce the Bekenstein–Hawking
area law for a class of five-dimensional asymptotically flat extremal black holes in string
theory.
We begin this Chapter with Section 2.1, where we review the first example of string
theory: the bosonic string. Although illustrative, this theory is incomplete for various
reasons. The primary issue is that its critical dimension is 26, significantly higher than
the familiar four dimensions of spacetime. Additionally, the spectrum lacks fermions,
necessitating the inclusion of supersymmetry on the string worldsheet. Nonetheless,
the main features of string theory can be encapsulated in this relatively simple, though
incomplete, model.
In Subsection 2.1.2, we discuss how fermions can be added to the worldsheet and how
this inclusion influences the bulk spectrum, resulting in a supersymmetric theory when
tachyons are projected out through a process known as the GSO projection. The quanti-
zation of the superstring and the GSO projection will be the focus of Subsection 2.1.3.
Moving forward, in Section 2.2, we will explore how the boundary conditions for the
open string reveal themselves to be dynamical extended objects, known as branes, which
are fundamentally important for a consistent treatment of string theory, especially in
the context of the AdS/CFT correspondence. This correspondence will be examined in
Section 2.4. Finally, in Section 2.3, we will introduce M-theory, discussing how and why
it emerges, and its significance in the broader framework of theoretical physics.
The discussions in this Chapter are in view of the contents of Chapters 4 and 5.

2.1 The Bosonic String and the Superstring

2.1.1 Classical Bosonic String

The classical action for bosonic string theory was first introduced by Nambu and Goto
as the simplest lagrangian governing the evolution of an extended 1d object, a string,
in a d-dimensional space-time. This is given in terms of the pull-back of the space-time

1Since the semi-classical black hole entropy can be obtained via the Bekenstein-Hawking formula SBH =
Ahor/4GNewton [77, 216], and this should be equal to lognmicro.
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matric onto the string worldsheet, i.e. the proper area of the string worldsheet. That is
to say that, given two coordinates on the string worldsheet σα = (σ, τ) ≡ (ξ1, ξ2), the
action reads

SNG = − 1

2πα′

∫
d2σ

√
− det γ, γαβ = ηµν

∂Xµ

∂ηα

∂Xν

∂ηβ
, (2.1)

where T = 1/(2πα′) is the string tension and α′ is known as universal Regge slope. The
fields Xµ(σ, τ) are the coordinate embeddings of the 2d worldsheet in spacetime. Al-
though the NG action is perfectly valid, a better formulation of it is given in terms of the
Polyakov action

SP = − 1

2πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν . (2.2)

Varying (2.2) with respect to hαβ gives back (2.1). One might question if there are any
other possible terms which could be added to (2.2). Indeed, if we restrict ourselves
to closed strings moving in empty Minkowski space, there are two possible additional
renormalizable terms we could add

S1 = λ1

∫
Σ

d2σ
√
−h, S2 =

λ2
4π

∫
Σ

d2σ
√
−hR = λ2χ(Σ), (2.3)

where Σ is the string worldsheet andR is the scalar curvature of hαβ . The second term is
a topological term, being proportional to the Euler characteristic of the string worldsheet,
and therefore does not change the classical equations of motion2. The action S1 is instead
set to zero by the equations of motion for hαβ . We will therefore only consider the action
(2.2) for what follows.
The Polyakov action is manifestly invariant under the following classical symmetries

• Global symmetries:

– Poincarè invariance: In generic dimensions, this is the usual space-time invari-
ance ISO(1, d− 1) = SO(1, d− 1)⋉R. On the fields Xµ it acs as expected

δXµ = aµνX
ν + bµ, δhαβ = 0, (2.4)

where aµν describes Lorentz transformation and bµ space-time translations.

• Local symmetries:

– Diffeomorphism invariance: This is a gauge symmetry of the worldsheet acting
as follows

δXµ = −ξα∂αXµ, (2.5)

δhαβ = −(ξγ∂γhαβ + ∂αξ
γhγβ + ∂βξ

γhαγ) = −∇(αξβ), (2.6)

δ
√
−h = −∂α(ξα

√
−h), (2.7)

2As we will see later, in the spectrum of the closed string one excitation is the dilaton field Φ. λ2 turns out
to be a constant background value for Φ.
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where ξα is an arbitrary function parametrizing the infinitesimal transforma-
tion on the worldsheet σα → σα − ξα(σ).

– Weyl invariance: This is another gauge symmetry of the worldsheet acting as

δXµ = 0, δhαβ = 2Λhαβ (2.8)

which is the infinitesimal version of the scaling transformation hαβ(σ) →
Ω(σ)2hαβ .

Poincaré invariance and worldsheet diffeomorphism, as well as Weyl invariance, allow
one to gauge-fix three independent components of the worldsheet metric and set, in
the conformal gauge, hαβ = ηαβ , the flat metric. With this choice, the action is greatly
simplified

S = − 1

4πα′

∫
d2σ

(
Ẋ2 − (X ′)2

)
, (2.9)

where the dot denotes differentiation with respect to the worldsheet time τ , while the
prime denotes differentiation with respect to the worldsheet space σ. There is still an
additional constraint coming from the equations of motion for hαβ in (2.2)

Tαβ := − 2

T

1√
−h

δS

δhαβ
= 0, (2.10)

which implies that the worldsheet energy-momentum tensor must vanish. Altogether,
one must solve the following equations of motion:

(∂2τ − ∂2σ)Xµ = 0, (X ′ ± Ẋ)2 = 0, (2.11)

in addition to imposing the vanishing of the boundary term from the variation of the
action, which amounts to

δS ⊃ −T
∫ τ1

τ0

dτ X ′
µδX

µ
∣∣∣σ=π
σ=0

. (2.12)

The possible solutions to (2.12) define open and closed strings. For closed strings, the
most general solution is

Xµ(τ, σ) =Mµ
νX

ν(τ, σ + π), Mµ
ν ∈ O(1, d− 1). (2.13)

Whenever M is a non-trivial element of O(1, d − 1), these are called twisted boundary
conditions. Hereafter, we will only consider the case where Mµ

ν = δµν . Open strings,
instead, can satisfy either Neumann or Dirichlet boundary conditions. In detail

∂σX
µ
∣∣
σ=0,π

= 0 Neumann (N) boundary conditions, (2.14)

δXµ
∣∣
σ=0,π

= 0 Dirichlet (D) boundary conditions. (2.15)

Neumann boundary conditions (2.14) require that the momentum normal to the bound-
ary of the worldsheet vanishes. Thus, when these are chosen for all coordinates µ =
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σ

τ

τ

σ

Figure 2.1: Depction of a string worldsheet fixed between two D-branes. This worldsheet can
be interpreted as either the one of an open string with its ends on the two branes (right figure),
moving in a circle, or as a closed string being created on one brane and absorbed by the other (left
figure). The worldsheet coordinates (τ, σ) for the two configurations are also shown.

0, . . . ,d − 1, Poincaré invariance is conserved. On the other hand, Dirichlet boundary
conditions (2.15) break Poincaré invariance. This is due to the fact that when imposing
Dirichlet conditions in some directions µ = 0, . . . ,d − p − 1, the endpoints of the open
string must move along a (p + 1)-dimensional hypersurface. Although one might gen-
erally believe that breaking Poincaré invariance is undesirable, it will turn out that in
certain situations Dirichlet conditions are unavoidable. The (p + 1)-dimensional hyper-
surface will be interpreted as the world-volume of dynamical objects called Dp-branes.
An example of an open string stretching between two branes is given in equation 2.1.
These will be essential in the construction of QFTs from string theory setups and will be
the topic of discussion in Section 2.2.

From here one proceeds to construct solutions to the equations of motion consistent with
given boundary conditions by mode expansion. One further step is to choose a conve-
nient coordinate system on the worldsheet, the light-cone coordinates σ± = τ±σ, where
the general solution splits into left- and right-moving

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L (τ + σ), (2.16)

as well as requiring that Xµ be a real function. The solution consistent with the closed
string boundary conditions is

Xµ
L (σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n̸=0

1

n
α̃µne

−inσ+

, (2.17)

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n ̸=0

1

n
αµne

−inσ−
, (2.18)

where xµ and pµ are position and momentum of the center of mass of the string respec-
tively. The open string is a bit more cumbersome since we have to choose a Neumann
or Dirichlet boundary conditions on both ends of the strings. These leaves us with four
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possible choices: either choose the same boundary condition on both ends or different
ones. Here we leave the results without going into the details if not by underlying that,
contrary to the closed string, the open string solutions depend only on one set of os-
cillators αµn. Again we choose the boundaries of the open string to be at σ = 0, π so
that

Xµ(τ, σ) = xµ + 2α′pµτ + i
√
2α′

∑
n ̸=0

1

n
αµne

−inτ cos(nσ) (NN), (2.19)

Xµ(τ, σ) = xµ0 + (xµ1 − x
µ
0 )
σ

π
+
√
2α′

∑
n ̸=0

1

n
αµne

−inτ sin(nσ) (DD), (2.20)

Xµ(τ, σ) = xµ + i
√
2α′

∑
r∈Z+ 1

2

1

r
αµr e

−irτ cos(rσ) (ND), (2.21)

Xµ(τ, σ) = xµ + i
√
2α′

∑
r∈Z+ 1

2

1

r
αµr e

−irτ sin(rσ) (DN). (2.22)

In equation (2.20) we labelled the position of the two boundary hypersurfaces as xµ0 , x
µ
1 .

As a last comment, jumping a bit, when quantizing the bosonic strings we will encounter
the problem of ghosts. This is going to be solved by the fact that the Polyakov action (2.2)
has an additional infinite-dimensional symmetry algebra, the Virasoro algebra, which
can be used to eliminate such ghosts in the critical dimension d=26.

2.1.2 Adding Fermions: the Superstring

As stated at the start of the Section , the bosonic string comes with many drawbacks.
Here we are going to see how one can add fermions to the bosonic string, which turns
out to be possible in two equivalent ways3

• The Ramond-Neveu-Schwarz (RNS) formalism, where one introduces fermions by
adding supersymmetry at the level of the worldsheet.

• The Green-Schwarz (GS) formalism, where supersymmetry is introduced at the
level of the target space.

Here we will focus on the RNS formalism, and thus consider a supersymmetric com-
pletion of the Polyakov action (2.2) by introducing a d-plet of worldsheet fermions Ψµ

transforming in the vector representation of the Lorentz group SO(1, d− 1)

S = − 1

4πα′

∫
d2σ

(
∂αX

µ∂αXµ + iΨ̄µρα∂αΨµ
)
, (2.23)

where ρα are two-dimensional gamma matrices satisfying the usual Clifford algebra{
ρα, ρβ

}
= −2ηαβ , and the conjugate spinor is defined as Ψ̄ := iΨ†ρ0.

It might seem counterintuitive to introduce an anticommuting field Ψµ which trans-
forms in a bosonic representation of the space-time Lorentz group. However, this is

3At least in 10d Minkowski space.
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not in contradiction with the spin-statistics theorem since these are spinors in the two-
dimensional field theory defined by (2.23), not in a d-dimensional field theory. From the
point of view of the worldsheet, Lorentz symmetry is merely a global symmetry and
therefore does not clash with the spin-statistics theorem. A more urgent problem is that
of ghosts. For (2.23), the Virasoro constraint is not enough to eliminate both the ghosts
coming from worldsheet bosons and fermions. What saves the day is an additional sym-
metry: supersymmetry, or more precisely superconformal symmetry. This shows that
supersymmetry is a fundamental requirement of the theory rather than a mere addition.
The action (2.23) is in fact invariant under the transformation

δXµ = ϵ̄Ψµ, δΨµ = −iρα∂αXµϵ, (2.24)

where ϵ is a constant, anti-commuting, Majorana spinor. These are supersymmetric
transformations. One expected property of a supersymmetry transformation is that com-
posing two of them leads to a translation, and in fact

[δ1, δ2]X
µ = δ1(ϵ̄2Ψ

µ)− δ2(ϵ̄1Ψµ)
= −iϵ̄2ρα∂αϵ1Xµ + iϵ̄1ρ

α∂αϵ2X
µ

= 2iϵ̄1ρ
αϵ2∂αX

µ = aα∂αX
µ, (2.25)

where aα = 2iϵ̄1ρ
αϵ2 and we used the condition on 2d Majorana fermions ϵ̄1ραϵ2 =

−ϵ̄2ραϵ1. The same goes for Ψµ.
Decomposing the worldsheet fermion into Weyl spinors Ψµ = (ψµ−, ψ

µ
+), its equations of

motion in light-cone coordinates read

∂−ψ
µ
+ = ∂+ψ

µ
− = 0. (2.26)

As in the bosonic case, we have left- and right-moving fermions. In these coordinates,
supersymmetry becomes apparent from the equations of motion for both ψµ± and Xµ

0 = ∂+ψ
µ
− = ∂+(∂−X

µ), (2.27)

0 = ∂−ψ
µ
+ = ∂−(∂+X

µ). (2.28)

Thus, ∂−Xµ and ψµ− are both functions of only σ+ while the others are both functions of
only σ−. Supersymmetry is the symmetry between ∂±Xµ and ψµ± which obey the same
equations.
Concerning the fermionic fields, the open string boundary condition imposes

ψµ+ = ±ψµ−, (2.29)

at each end of the string. On one side, the choice is a matter of convention, and one
usually chooses the plus sign. On the other side, we have two possible choices

ψ+(τ, π) = +ψ−(τ, π) Ramond (R) boundary condition, (2.30)

ψ+(τ, π) = −ψ−(τ, π) Neveu-Schwarz (NS) boundary condition. (2.31)
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The Ramond boundary condition gives rise to spacetime fermions and the mode expan-
sion in this sector is

ψµ−(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ), ψµ+(τ, σ) =

1√
2

∑
n∈Z

dµne
−in(τ+σ). (2.32)

The Neveu-Schwarz boundary condition, instead, gives rise to spacetime bosons and the
mode expansion in this sector is

ψµ−(τ, σ) =
1√
2

∑
r∈Z+ 1

2

dµr e
−ir(τ−σ), ψµ+(τ, σ) =

1√
2

∑
r∈Z+ 1

2

dµr e
−ir(τ+σ). (2.33)

For open string the discussion is much the same, with the addition that we have to
impose (anti-)periodic boundary conditions to both components of Φµ separately, i.e,

ψ±(τ, σ) = ±ψ±(τ, σ + π), (2.34)

giving rise to left- and right-moving modes. Again we can impose either Ramond or
Neveu-Schwarz to both left- and right-movers. Therefore we have four distinct closed-
string sectors: the states in the R-R and NS-NS sector are spacetime bosons, while the
states in R-NS and NS-R sectors are spacetime fermions.

2.1.3 The Quantum String

We are now ready to tackle the problem of quantizing the string. In this Section , we
will outline the main steps for quantizing the bosonic string and demonstrate that the
addition of fermions gives rise to five possible superstring theories.
There are three main equivalent methods to quantize the bosonic string

• Covariant quantization: This method is analogous to first quantization in quan-
tum field theory, where one imposes equal-time commutation relations for the co-
ordinates Xµ [

Ẋµ(τ, σ), Xν(τ, σ′)
]
= −iπδ(σ − σ′)ηµν . (2.35)

The restrictions on the physical states arise from the constraints of the Virasoro
algebra. When adding fermions, this quantization results in two separate spectra,
which are truncated and related by means of the GSO projection.

• Light-cone gauge quantization: After setting hαβ = ηαβ in the action (2.2), there
remains a residual gauge symmetry. One can make a specific non-covariant choice
that explicitly solves the Virasoro constraint and describes the theory in a Fock
space consisting only of physical states. This formalism is not manifestly covariant
but is manifestly ghost-free.

• BRST quantization: In this approach, the path integral formulation is employed,
and gauge-fixing leads to the introduction of Faddeev-Popov ghosts. This method
provides an explicitly covariant way of quantizing the theory.
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Table 2.1: Open and closed string spectrum for the lowest levels. The first closed string excited
state comes from the decomposition of the 24⊗ 24 in SO(24).

Mass Open String Closed String

Ground state M2 < 0 Tachyon Tachyon
First excited state M = 0 Aµ gµν , Bµν ,Φ

For the purposes of this discussion, we will focus on covariant quantization. The pro-
cedure involves promoting the fields to operators and imposing the equal-time commu-
tation relations (2.35). The Fourier modes αµn and α̃µn are then promoted to creation and
annihilation operators, which act on a Hilbert space and define a vacuum state |0⟩. By
acting on the vacuum state with creation operators, the full spectrum of the theory is
obtained. Since each mode is labeled by an integer, an infinite set of ladder operators is
found, suitably normalized as aµn = αµn/

√
n.

The first significant challenge arises when considering the first mass levels for the open
string spectrum, which are found to be tachyonic, i.e., possessing negative mass squared.
This state cannot remain in the spectrum and is projected out in the full superstring the-
ory via the GSO projection, which will be discussed in detail later. The first excited state
gives rise to a vector boson transforming in the symmetric traceless rank-two representa-
tion of SO(24). Concerning the closed string spectrum, their modes can be constructed as
tensor products of the open string modes. We summarize the first two level spectrum of
both the open and closed string in table 2.1. Note that the first excited state of the closed
string spectrum transforms in the 24 ⊗ 24 representation of SO(24) which decomposes
into the irreducible representations as

24⊗ 24 = 299⊕ 276⊕ 1

Traceless symmetric
(0, 2)-tensor gµν

Totally anti-symmetric
two-form Bµν

Singlet Φ

(2.36)

where gµν is the massless graviton, Bµν is the massless Kalb-Ramond field and Φ is a
real massless scalar, the dilaton. The Kalb-Ramond field is especially interesting since
it souced by strings, in the same fashion as electrically charged particles are sources for
the potential Aµ. Following quantization, we observe that not only does a tachyonic
state appear in the spectrum, but there are also states in the Hilbert space of the theory
with negative norm. These ghosts can be removed from the bosonic string spectrum, as
we hinted before, using the Virasoro constraint by setting the dimension of the ambient
spacetime to 26. Tachyons, however, are different beasts, and even after setting d= 26,
they still remain in the spectrum. To eliminate them, we necessarily need to add fermions
and consider the superstring.
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Table 2.2: The spectrum of the first few right-moving open string states. The decomposition of
the states is done following Wigner’s classification, with respect to the stabilizer subgroup of the
momentum in the rest frame. For massive representations, the stabilizer subgroup is SO(9), and
for massless representations, it is SO(8).

Mass States and their SO(8)
representation

Representation with
respect to little group

NS-sector (Bosons)

− 1
2

|0⟩
1

1

0
bµ− 1

2

|0⟩
8v

8v

1
2

αµ−1 |0⟩
8v

bµ− 1
2

bν− 1
2

|0⟩
28

36

1

bµ− 1
2

bν− 1
2

bρ− 1
2

|0⟩
56v

αµ−1b
ν
− 1

2

|0⟩
1⊕ 28⊕ 35v

bµ− 3
2

|0⟩
8v

84⊕ 44

R-sector (Fermions)

0

|a⟩
8s

|ā⟩
8c

8s

8c

1

αµ−1 |a⟩
8c ⊕ 56c

dµ−1 |ā⟩
8c ⊕ 56s

αµ−1 |ā⟩
8c ⊕ 56s

dµ−1 |a⟩
8c ⊕ 56c

128

128

The canonical quantization of the superstring proceeds in an analogue way to the one
just discussed, with the only difference that now the Virasoro constraint requires the
space-time dimension to be 10 in order to project out ghosts. A summary of the first few
excited states in both NS and R sectors is given in table 2.2.

Nevertheless, the RNS model, as described in Section 2.1.2, is an inconsistent quantum
theory and a truncation of the spectrum is required [198]. The argument is two-fold.
On one hand, we want to project the tachyonic state out of the theory while retaining
the massless particles of interest. On the other hand, we seek to make sense of the anti-
commuting vector operators Ψµ, introduced in (2.23), which, perhaps unnervingly, map
bosonic states to bosonic states. Consider a bosonic state |ϕ⟩. When we act on |ϕ⟩with an
anti-commuting operator Ψµ, the resulting state Ψµ |ϕ⟩ is still bosonic. More generally, a
state

Ψµ1(σ1)Ψ
µ2(σ2) · · ·Ψµn(σn) |ϕ⟩ (2.37)
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is bosonic for all n. For even n, this state does not seem strange since the product of
an even number of anti-commuting operators is commuting. However, for odd n, the
situation is different, and we might be inclined to keep only those states generated by
acting with an even number of Ψµ and discard those generated by acting with an odd
number. This can be done formally by introducing an operator G = (−1)F , known as
the fermion number4, under which the bosonic fields Xµ are even and the fermionic ones
Ψµ are odd. For a general state in (2.37), we then have

(−1)F
(
Ψµ1(σ1)Ψ

µ2(σ2) · · ·Ψµn(σn) |ϕ⟩
)
= (−1)n

(
Ψµ1(σ1)Ψ

µ2(σ2) · · ·Ψµn(σn) |ϕ⟩
)
.

(2.38)
The GSO projection states that we must keep only states for which (−1)F = +1. In the
fermionic (R) sector one can define a similar projection operation Γ̄ = Γ11(−1)F . Follow-
ing this procedure, the R and NS spectra split into R± and NS±, where NS−, being the
sector that contains the tachyon, is projected out. The GSO projection does more than
meets the eye. It also yields a supersymmetric theory in the ambient spacetime. Let us
rewind to appreciate the beauty of this fact: we added fermions to our bosonic world-
sheet theory, which turned out to be superconformal under the requirement that the
spacetime spectrum does not contain states of negative norm. To eliminate the tachy-
onic state from the spectrum, we employ the GSO procedure, which also results in a
supersymmetric theory in the ambient spacetime! Everything fits very nicely and one
may wonder that this procedure, rather than a formal requirement, must naturally arise
from the theory. After the projection, the ground state of the R sector is a massless spinor
and the ground state of the NS sector is a massless vector boson, both belonging to the
right representation of SO(8)5. Therefore, the ground state of the open superstring spec-
trum is a 16-dimensional multiplet in the 8v ⊕ 8s of SO(8), where the subscript labels
the vector and spinor representations. This spectrum preserves N = 1 in 10d. On the
other hand, the closed superstring spectrum is constructed from two copies of the open-
string one by combining a left-moving sector (either NS or R±) with a right-moving one
(either NS or R±). The spectrum appearing at the massless level of the closed string is
summarized in Table 2.3, together with the eigenvalues of the projection operators.
All in all, we arrive at five possible superstring theories, which we summarize here:

• Type-II superstring theories: These are maximally supersymmetric theories in ten
dimensions, preserving 32 supercharges, which is N = 2 in 10d. They only con-
tain closed string sectors, and one obtains two different theories depending on the
chosen chirality in the R-sector

– Type-IIA theory: where Γ̄L = −Γ̄R = 1.

– Type-IIB theory: where Γ̄L = Γ̄R = 1.

4Often called G-parity for historical reasons.
5In 10d, massless states are classified by their behavior under the SO(8) rotation that leave the momentum

invariant. In fact, a vector Aµ in 10d has 8 propagating degrees of freedom. A spinor has 25 = 32 components,
however after imposing Majorana-Weyl condition these get halved and further halved again when requiring
that they satisfy the Dirac equation.
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Table 2.3: The closed string spectrum up to the massless level before GSO projection. The oper-
ators GL,R and Γ̄L,R are the projection operators in the NS and R sectors respectively. The red
colored rows are sectors of type-IIA, while the blue colored ones are for type-IIB. The yellow ones
are sectors of both type-II theories. The white rows are going to be projected out by the GSO pro-
cedure.

States and their SO(8)
representation

GL (NS)
Γ̄L (R)

GR (NS)
Γ̄R (R) Decomposition Tensors

(NS,NS)-sector (Bosons)

|0⟩L ⊗ |0⟩R
1⊗ 1

−1 −1 1 [1]

b̃i− 1
2

|0⟩L ⊗ b
j

− 1
2

|0⟩R
8v ⊗ 8v

+1 +1 1⊕ 28v ⊕ 35v [0] + [2] + (2)

(R,R)-sector (Bosons)

|a⟩L ⊗ |b⟩R
8s ⊗ 8s

+1 +1 1⊕ 28v ⊕ 35v [0] + [2] + [4]s

|ā⟩L ⊗
∣∣b̄〉

R
8c ⊗ 8c

−1 −1 1⊕ 28v ⊕ 35v [0] + [2] + [4]c

|ā⟩L ⊗ |b⟩R
8c ⊗ 8s

−1 +1 8v ⊕ 56v [1] + [3]

|a⟩L ⊗
∣∣b̄〉

R
8s ⊗ 8c

+1 −1 8v ⊕ 56v [1] + [3]

(R,NS)-sector (Fermions)

|a⟩L ⊗ bi− 1
2

|0⟩R
8s ⊗ 8v

+1 +1 8c ⊕ 56s [1] + [3]

|ā⟩L ⊗ bi− 1
2

|0⟩R
8c ⊗ 8v

−1 +1 8s ⊕ 56c [1] + [3]

(NS,R)-sector (Fermions)

b̃i− 1
2

|0⟩L ⊗ |a⟩R
8v ⊗ 8s

+1 +1 8c ⊕ 56s [1] + [3]

b̃i− 1
2

|0⟩L ⊗ |ā⟩R
8v ⊗ 8c

+1 −1 8s ⊕ 56c [1] + [3]
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In Table 2.3, the full spectrum of the two theories is given. Let us expand on the
matter content of the various sectors

– NS-NS sector: This belongs to both type-IIA and IIB theories. The matter con-
tent is given by

8V ⊗ 8v = 1⊕ 28⊕ 35 = Φ⊕Bµν ⊕ gµν , (2.39)

corresponding to the dilaton Φ, the Kalb-Ramond field Bµν , and the graviton
gµν .

– NS-R and R-NS sectors: The matter content for this sector is

8v ⊗ 8s = 8c ⊕ 56s, 8v ⊗ 8c = 8s ⊕ 56c, (2.40)

corresponding to the spin-1/2 dilatino λ and the spin-3/2 gravitino Ψµ. In
type-IIA, where the two sectors are NS-R± and R∓-NS, the two gravitinos
have opposite chiralities, while in type-IIB, coming from the sectors NS-R±
and R±-NS, they have the same chirality.

– R-R sector: These differ between the two type-II theories. Indeed, one has

Type-IIA 8s ⊗ 8c = 8v ⊕ 56v, (2.41)

Type-IIB 8s ⊗ 8s = 1⊕ 28v ⊕ 35v. (2.42)

The particle content in type-IIA (R±-R∓) comprises a one-form C
(1)
µ and a

three-form C
(3)
µνρ, while in type-IIB (R±-R±), it consists of a zero-form C(0),

known as the axion, a two-form C
(2)
µν , and a four-form C

(4)
µνρσ with a self-dual

field strength.

• Type-I superstring theory: This is the theory arising from open strings. It can be
shown that to be consistent, it must also contain closed strings. The ground state
of the spectrum consists of a vector multiplet in 10d N = 16. This vector multiplet
contains the graviton, the dilaton, the R-R two-form, together with a gravitino and
dilatino.

• Heterotic string theories: This is obtained by combining the left-movers of the
closed bosonic string with the right-movers of the closed superstring. Since the
ambient spacetime of the bosonic string must be 26 from the Virasoro constraint,
the 16 additional dimensions must be compactified, giving rise to internal gauge
symmetries. These are either SO(32) or E8 × E8. These are N = 1 theories whose
massless sector contains the graviton, the dilaton, the Kalb–Ramond two-form,
together with a gravitino and a dilatino. Additionally, there are vector fields with
their related spin-1/2 fermionic partners (called gaugini) that gauge the internal
symmetry group.

6The name Type-I comes from the amount of space-time supersymmetry the theory preserves. Same goes
for Type-II.
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Type-IIB string theory has a low-energy space-time description in terms of a supersym-
metric theory with gravity (a supergravity theory). Due to the presence of the R-R four-
form with dual field strength F5 = dC4, one cannot write a complete action. Nonethe-
less, one may write an action containing both dualities for C4 and then impose the self-
duality condition ⋆F5 = F5. With this in mind, the bosonic part of the action reads

SType-IIB =
1

4κ2

∫
d10x

√
−ge−2Φ(2R+ 8∂µΦ∂µΦ− |H3|2)

− 1

4κ2

∫
d10x

[√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+ C4 ∧H3 ∧ F3

]
, (2.43)

where κ is a coupling constant, and the fields are defined by

F1 = dC0 , F3 = dC2 , F5 = dC4 , H3 = dB , (2.44)

F̃3 = F3 − CH3, F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B ∧ F3. (2.45)

As stated before, the action must be supplemented with the self-duality condition ⋆F̃5 =

F̃5. This action manifests a very interesting symmetry under the non-compact group
SU(1, 1) ∼ SL(2,R). By the following change of frame (known as the Einstein frame)

gEµν = e−
Φ
2 gµν , τ = C + ie−Φ, G3 =

F3 − τH3

Im τ
, (2.46)

the action may be rewritten as

SEinstein
Type-IIB =

1

4κ2

∫
d10x

√
−gE

(
2RE −

∂µτ∂
µτ̄

(Im τ)2
− 1

2
|F1|2 + |G3|2 −

1

2
|F̃5|2

)
− 1

4iκ2

∫
d10xC4 ∧ Ḡ3 ∧G3. (2.47)

This action is still invariant under SL(2,R), which acts on the axion-dilaton field as

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ R, (2.48)

while simultaneously mixing the C2 and B fields under the linear transformation asso-
ciated with this Möbius transformation. The latter may be recast as an action on the field
G3 as follows

G3 →
cτ̄ + d

|cτ + d|
G3. (2.49)

In the quantum theory, the quantization condition on the axion-dilaton field τ ∼ τ + 1

breaks the SL(2,R) to its subgroup SL(2,Z), which will be fundamental for the discus-
sion in Chapter 4.
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2.2 Extended Objects: The Branes

As briefly stated in the previous Section, D-branes are non-perturbative extended objects
defined as the loci where open strings end with Dirichlet boundary conditions [282].
However, from this interpretation, it is not evident that these objects are actually dy-
namical. To understand this, we need another interpretation, which is going to be of
fundamental importance when discussing the AdS/CFT correspondence.
From usual Maxwell theory, one knows that given a theory of some (p + 1)-form field,
one should be able to find objects that are charged under these fields. Indeed, such a
field naturally couples to a (p+ 1)-dimensional surface Σ(p+1) by the following action

Sp+1 = Tp+1

∫
Σ(p+1)

Ap+1 =
Tp+1

(p+ 1)!

∫
Σ(p+1)

Aµ1,...,µp+1
dxµ1 ∧ · · · ∧ dxµp+1 . (2.50)

Solutions to supergravity which carry a non-trivial charge under Ap+1 are known as p-
branes. The possible brane solutions in a given supergravity theory are thus limited by
the p-forms present in the field content. Moreover, by Hodge duality, for each gauge
field Ap+1, there is an associated magnetic field Ãd−p−3 whose field strength is related to
that of Ap+1 by Poincaré duality

dÃd−p−3 = ⋆ dAp+1 . (2.51)

Therefore, each p-brane comes with a dual (d − p − 4)-brane carrying charge under
Ãd−p−3.
Consider now the case of type-II theories. The R-R spectrum includes higher-form gauge
fields whose dimensions depend on the type of theory. Each Dp-brane is electrically
charged under a Cp+1 R-R potential and magnetically charged under a C7−p potential.
We can derive the brane content for each type-II theory from (2.41) and (2.42).

• Type-IIA: In type-IIA theory, only Dp-branes with p even are present:

D0, D2, D4, D6, D8. (2.52)

D0-branes, also known as D-particles, are magnetic duals to D6-branes, while D2-
branes are magnetic duals to D4-branes. The D8-brane couples to the R-R potential
whose field strength is F10, which has no propagating degrees of freedom.

• Type-IIB: In type-IIB theory, only Dp-branes with p odd are present:

D(−1), D1, D3, D5, D7, D9. (2.53)

The peculiar case of the D(−1)-brane describes a particle localized in time, known
as a D-instanton, whose magnetic dual is the D7-brane. The D1-brane is a D-string,
and its magnetic dual is the D5-brane. D9-branes are space-filling branes with
no coupling to any R-R field and lead to Neumann boundary conditions in every
direction. The D3-brane is a self-dual brane, which will be fundamental in the
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forthcoming discussion.

We summarize the various branes, the fields they are charged under, and their magnetic
duals in Table 2.4. The object dual to the fundamental string is called an NS5-brane,
named because it couples to the degrees of freedom arising from quantizing the NS-NS
sector of the type II strings [130].

Table 2.4: Branes in type-II theories

Brane Type-IIA Type-IIB Magnetic dual

D(−1) Instanton – τ = C + ie−Φ D7

D0 particle C
(1)
µ – D6

F1 string Bµν Bµν NS5

D1 string – C
(2)
µν D5

D2 brane C
(3)
µνσ – D4

D3 brane – C
(4)
µνρσ D3

In the remaining part of this Section , we aim to understand the worldvolume action for
D-branes. A complete treatment of this subject is beyond the scope of this thesis, as it
requires K-theory as a framework to properly discuss it [61, 269, 312].
The first requirement for the worldvolume theory is the presence of a U(1) gauge field on
the brane, since the boundaries of open strings lie on the D-brane and should couple to
such a field. Starting from the Nambu-Goto action, one can infer that a possible D-brane
action is

SD-brane = −Tp
∫

dp+1σ e−Φ
√

det gab, (2.54)

where gab is the pull-back of the metric on the brane worldvolume.
Next, considering the brane in a background generated by the massless NS-NS modes
of the closed string sector, namely Bµν , additional terms arise. The only gauge-invariant
combination that can appear in the D-brane action is

F = B + 2πα′F, (2.55)

where F is the field strength of the U(1) gauge field A.
This leads to the well-known Dirac-Born-Infeld (DBI) action for the D-brane

SDp = −Tp
∫

dp+1σ
√
det(gab + Fab), (2.56)

where Bab is the pull-back of Bµν to the worldvolume.
However, this is not the complete picture. The coupling to the higher-dimensional R-R
fields must also be included. Since D-branes act as sources for both gravitational and
p-form fields, one must require the cancellation of mixed anomalies coming from the
zero modes of open strings ending on the intersection of two branes. This leads to the
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following action [204, 269]

SR-R = µp

∫
C ∧ ch(F) ∧

√
Â(TW )√
Â(NW )

, (2.57)

where C =
∑
p Cp+1 and Â is the Dirac Â-genus7 of the tangent and normal bundle to

the worldvolume. Interestingly, a p-brane acts not only as a source for Cp+1 but also for
all lower-dimensional forms.
Finally, the tension of a D-brane, Tp, is related to the string coupling gs and the Regge
slope α′ as follows:

Tp =
1

gs(2π)p(α′)(p−1)/2
, (2.58)

from which we can deduce that in the strongly-coupled string regime (gs → ∞ or α′ →
∞), the branes are very light. Conversely, in the weak-coupling regime, they are very
heavy and decouple.
Both the DBI action and the Chern-Simons term can be generalized from a single brane
to a stack of N coincident branes [272, 303]. The result is more complex since the U(1)

field A and the transverse coordinates Xi to the brane are now N × N matrices, and it
is not immediately clear how to pull back the bulk fields in this geometry. Nonetheless,
this can be accomplished, and we provide here the leading α′ term to the DBI action for
this system

−Tp
∫

dp+1σ e−Φ Tr
(
FabF

ab + 2DaX
iDaXi +

[
Xi, Xj

]2)
. (2.59)

From this, we conclude that the dynamics now corresponds to a U(N) worldvolume
gauge theory, rather than U(1)N , with gauge coupling

g2YM ∼ gsT−1
p α′−2. (2.60)

This theory turns out to be 4-dimensional maximally supersymmetric N = 4 Yang-Mills.
We will briefly discuss how this result forms the basis of the AdS/CFT correspondence,
though we will delve into more details in the proceeding sections. The basic idea of the
correspondence is that there are two equivalent descriptions of the same physics: one
in terms of supergravity in a space of the form AdSD+1 ×M9−D and the other as a D-
dimensional field theory living on the boundary of AdS. The AdS space is the maximally
symmetric solution to Einstein’s equations with a negative cosmological constant, while
M9−D is a (9−D)-dimensional compact manifold that encodes the global symmetries in
the dual field theory.
The first example of this correspondence was presented in [264], which established a re-
lationship between type-IIB supergravity in AdS5 × S5 and 4-dimensional N = 4 super
Yang-Mills theory with gauge group SU(N). Notably, as we showed before, this is the
gauge theory living on the worldvolume of a stack of N D3-branes. On the supergrav-

7This is a generalization of the index of the Dirac operator on general spin manifolds.
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E8 × E8

SO(32)Type-I

Type-IIB

Type-IIA 11d Sugra

M-theory

T

S

Ω

T

S1

S1/Z2

Figure 2.2: Map of various string dualities. From 11d supergravity one can go to either Type-IIA
or E8 × E8 Heterotic by compactifying on a circle and on an interval respectively. The action of Ω
is by orientifolding.

ity side, in the near-horizon limit, this brane configuration gives rise to the AdS5 × S5

geometry.
Numerous non-trivial checks of this correspondence have been found, both for the cited
example and for various generalizations.
The result for N = 4 SYM is going to be the basis to understand the ideas of [38], which
we are going to be discussing in Chapter 4.

2.3 M-Theory

Despite many improvements in the understanding of string theory, several open prob-
lems persisted by the end of the 1980s. In the last section, we discovered that, quite
surprisingly, there exist five different consistent superstring theories: type-I, type-II A
and B and the two heterotic string theories with gauge groups E8×E8 and SO(32). This
issue of having multiple self-consistent string theories found a solution with the discov-
ery of fundamental dualities between them, a picture of which can be found in figure 2.2,
culminating in the mid-nineties with the work of Witten [315]. Here, Witten conjectured
the existence of M-theory, a joint strong coupling limit for all five superstring theories.
The low energy effective field theory description of M-theory is 11-dimensional super-
gravity, which reduces to the various string theories by Kaluza-Klein compactification,
followed by various string dualities.

Concretely, consider performing a circle reduction of a (d + 1)-dimensional theory. Here
the Kaluza-Klein modes arising from the modes around this S1 have a mass related to
the radius of the circle R and goes like

mKK =
n

R
, n ∈ Z, (2.61)
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where n labels the n-th excited state. Thus, by considering the small circle limit R → 0,
only the zero modes n = 0, which are massless, survive, while the other modes are
integrated out in the effective d-dimensional IR theory.
If we now consider D0-branes in type-IIA, we know that their mass is given by

MD0 = TD0 = gsℓs. (2.62)

The mass of a stack of D0-branes in nMD0. By comparison with (2.61), we can interprate
this configuration as the n-th excited state of a KK-tower coming from circle reduction
of an 11-dimensional theory with radius R11 = gsℓs. The aformentioned 11-dimensional
theory is indeed M-theory. From this simple formulation we can also see that the weak
coupling limit of type-IIA string theory arises from the circle reduction since gs → 0 im-
plies R11 → 0. On the contrary, in the strong coupling limit gs → ∞, the circle direction
is not compactified and M-theory arises.
M-theory comes with two known BPS branes, called the M2-brane and the M5-brane.
These are related to non-perturbative objects in type-IIA by circle compactification. M5-
branes are of interest to us for the discussion of [35], where we are going to consider com-
pactification of M-theory coming from M5-branes wrapping certain geometries. These
branes host on their worldvolume a non-lagrangian supersymmetric 6d theory with su-
persymmetries N = (2, 0). These theories, altough being non-lagrangian, are labelled by
simply laced Lie algebras g because both their compactification on a circle and 5d N = 2

SYM on its Coulomb branch, are described by 5d abelian vector multiplets in the Cartan
of g.
Using the tools provided by geometric engineering, people have been able to construct a
vast landscape of both lagrangian, and non-lagrangian, theories in various dimensions.
The ones we are going to be interested in are theories of class-S type [188] arising from
wrapping a stack of M5-branes on a Riemann surface without punctures [67]. In Chapter
5 we are going to delve into the details of such theories.

2.4 The AdS/CFT Correspondence

The foundational argument directly motivating the AdS/CFT correspondence was first
stated by Maldacena [264] and is known as the decoupling argument. Although this ar-
gument does not constitute a proof, it provides a compelling rationale that can be ex-
amined through various checks. As we will observe, the argument is fundamentally
based on the dual interpretation of D-branes discussed in the previous sections: on one
hand as solutions to the supergravity field equations, and the other as boundary con-
dition of open strings. By considering the branes from each perspective, we find that,
under certain conditions, two decoupled theories emerge from each viewpoint, leading
to a correspondence between, in the simplest and original example, 4d N = 4 SYM in
Minkowski space and type-IIB string theory in the space AdS5 × S5. This is the result
that we alluded at the end of section 2.2. This conjecture represents a fundamental ad-
vancement in theoretical physics, providing a profound link between quantum gravity
and gauge theories. The Maldacena limit is a particular low-energy limit that isolates
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R1,9

r = 0

AdS5 × S5

Figure 2.3: A graphical representation of how a stack of D3-branes backreacts on the target space-
time, resulting in a “deep throat” geometry. Inside the throat, the horizon radius is kept constant
by the finite size of the S5 (represented here by an S1), leading to the AdS5 × S5 geometry. Away
from the throat at asymptotic infinity the space is flat, and so we have a Minkowski R1,9 geometry.

the gauge theory dynamics from the bulk gravity effects. This limit involves keeping the
string coupling gs and the number of D3-branes N fixed while taking the string length
scale α′ to zero. In this limit, the effective ’t Hooft coupling λ = g2YMN remains constant.
The decoupling argument, altough abstract, is similar to the situation where an electron
is interacting with a proton. Here we also have two distrinct descriptions: one by sum-
ming all perturbative contributions coming from the interaction between the two parti-
cles, and the other where the heavy proton is decoupled and contributes as a correction
to the Coulomb potential in which the electron is moving.

As solution to the supergravity equations of motion, a stack of coincident N D3-branes
is described by the following metric

ds2 = H(r)−
1
2 ηµν dx

µ dxν +H(r)
(
dr2 + r2 dΩ2

5

)
, (2.63)

where

H(r) = 1 +
L4

r4
, L4 = 4πgsN(α′)2. (2.64)

The coordinate r is the distance from the stack of branes and, far from them r ≫ L,
one can see that the geometry is the one of Minkowski space in ten dimensions. The
other relevant limit, referred to as near-horizon, r ≪ L, the geometry is described by the
following metric

ds2 =
r2

L2
ηµν dx

µ dxν +
L2

r2
dr2 + L2 dΩ2

5 , (2.65)
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which corresponds the metric of a five-dimensional Anti-de Sitter space times a five
sphere. This geometry is depicted in figure 2.3.
The AdS/CFT correspondence strongly depends on the geometric properties of AdS
spaces. In the Minkowskian signature, AdSd+1 is represented as a hyperboloid in R2,d

−X2
0 −X2

d+1 +

d∑
i=1

X2
i = −L2, (2.66)

with the metric

ds2 = L2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

)
, (2.67)

where τ is the time coordinate and ρ the radial coordinate. This geometry corresponds
to the maximally symmetric solution of Einstein’s field equations with negative cosmo-
logical constant.
In the Euclidean signature, the AdS space, also known as hyperbolic space Hd+1, is
described by the equation

−X2
0 +

d+1∑
i=1

X2
i = −L2, (2.68)

with the metric in Poincaré coordinates

ds2 = L2

(
dz2 + dx⃗2

z2

)
. (2.69)

Here, z is the radial coordinate and dx⃗2 represents the Euclidean Rd. The isometry group
of Euclidean AdS is SO(1,d+1), which is the conformal group in d-dimensions, provid-
ing a useful framework for defining boundary CFTs.
As we stated before, the core idea of the AdS/CFT correspondence lies in the duality
between

• Type IIB Superstring Theory on AdS5 × S5: Including background 5-form flux

N =
1

2π

∫
S5

F+
5 . (2.70)

• N = 4 Super-Yang-Mills Theory: A four-dimensional SCFT with gauge group
SU(N), where N is the same as the units of flux in (2.70).

The parameters in these theories are related by

2πgs = g2YM , L4 = 4πgsN(α′)2. (2.71)

This duality suggests that the gravitational theory in the bulk AdS5 × S5 space can be
mapped to a conformal field theory on its boundary, with precise correspondences be-
tween bulk fields and boundary operators. The AdS/CFT correspondence extends be-
yond the original AdS5/CFT4 framework to other dimensionalities and less symmetric
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setups. These generalizations broaden the correspondence’s applicability, providing in-
sights into various physical systems.
A key aspect of the AdS/CFT correspondence is the computation of correlation func-
tions. The generating functional of CFT correlators is equivalent to the partition function
of some quantum gravity theory with specified boundary conditions. Schematically, in
string theory 〈

exp

(∫
d4x O(x)ϕ0(x)

)〉
CFT

= Zstring[ϕ(x)→ ϕ0(x)], (2.72)

whereO(x) is an operator in the CFT, and ϕ0(x) is the boundary value of the bulk field ϕ.
This equivalence allows the calculation of gauge theory observables via classical grav-
ity computations. This is an instance of the holographic principle where bulk gravita-
tional dynamics encode boundary quantum field theory information. Some observable
quantities can be extracted from the dual supergravity by compactification of 10- or 11-
dimensional supergravity. This is achieved geometrically by considering our D = 10, 11

dimensional supergravity on a product manifold of the formM(D) = M(d) × X(D−d),
where X(D−d) is a compact space. In the limit where the compact space is very small,
this procedure defines a lower-dimensional supergravity. By doing so, it may happen
that some degrees of freedom associated to the compact direction decouple. In this case,
the dimensional reduction defines a consistent truncation, meaning that the physics of
the higher-dimensional supergravity theory is described by a finite set of fields in the
lower-dimensional supergravity. In Chapter 5 we are going to use one such consistent
truncation of 11-dimensional supergravity to study the dual solutions to models com-
pactified on a manifold of the form Σ

(2)
1 × Σ

(2)
2 .

Another profound application of the AdS/CFT correspondence is in understanding the
thermodynamics of Black Holes. The correspondence allows for the study of Hawking
radiation and black hole entropy in a controlled manner. In particular, the Bekenstein-
Hawking entropy of a BH, given by

SBH =
Area
4GN

, (2.73)

corresponds to the entropy of the dual gauge theory at finite temperature. The counting
of the microsciopical degrees of freedom of the Black Hole, contributing to the entropy, is
achieved in the dual field theory by enumerating the states in the Hilbert space of the the-
ory on S3×S1. As we will discuss in Chapter 6, this counting in achieved by considering
RG-protected quantities known as indices, where the Black Hole behaviour can be ex-
tracted by considering certain high temperature limits. Additionally, the AdS/CFT cor-
respondence has been instrumental in understanding the phase transitions of strongly
coupled gauge theories. The dual description in terms of BH thermodynamics offers a
geometric perspective on such phenomena, given in terms of the Hawking-Page phase
transition from thermal AdS to a large BH.
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Supersymmetric Dualities with Four Supercharges
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The low energy dynamics of UV free strongly coupled supersymmetric gauge theories
can be often be simplified by the existence of infrared dualities. The dual descriptions
are in general associated to (more) weakly coupled QFTs, described by a different set of
fields and interactions that share in the IR the same correlation functions for the phys-
ically observable conserved currents of the original description. The prototypical ex-
ample of such dualities is the electromagnetic duality and for this reason the two dual
models are usually referred to as the electric and the magnetic phase.
Restricting to cases with four supercharges the basic example of these dualities was dis-
covered by Seiberg in [289] for SU(Nc) 4d SQCD withNf > Nc+1 flavors and vanishing
superpotential, which was discussed in details in section 1.2.1. This duality has also a
limiting case, where the magnetic description does not correspond to any gauge theory
but to a WZ model consisting in a collection of mesons and baryons of the electric de-
scription, in addition to a (classical) constraint among them. In this case, corresponding
to the choice Nf = Nc + 1, the electric gauge theory confines without breaking the chi-
ral symmetry (i.e. s-confines [168]), and the magnetic theory describes the dynamics of
the confined degrees of freedom, with a superpotential imposing the classical constraint
on the moduli space. There is also another confining case, corresponding to SU(Nc) 4d
SQCD with Nf = Nc flavors, where the low energy dynamics described by the mesons
and the baryons requires a quantum constraint on the moduli space. Such constraint
breaks the chiral symmetry and for this reason this case is referred to as confinement
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with chiral symmetry breaking. In [36, 37] we conjectured new type of dualities in 3d
N = 2 theories, and in this Chapter the results of these works are given.
In [37] we generalized these constructions to the case of SQCD with two adjoints inter-
acting through a Dn+2-type superpotential. The 4d duality was found in [118], and the
3d analogous constructions have been discussed in [275] for the case with non-vanishing
CS and more recently in [230] for the case with vanishing CS level. This last case, ob-
tained by dimensional reduction of the 4d duality of [118], through the reduction scheme
of [15], reveals a novelty in the structure of the Coulomb branch of the 3d model, because
of the presence of charge-two monopole operators in the superpotential of the magnetic
phase.

The Chapter is organized as follows. We begin with a brief review of the main materials
needed to understand the results of the papers, in particular we give an explanation
of deconfinement as a limiting case of Seiber-like confining duality and then proceed
with the review of known non-chiral dualities with two adjoint matter fields. Then, we
proceed by giving the results of [37] and of [36].
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3.1 Relevant Background

3.1.1 A Primer on Tensor Deconfinement

This idea of confinement as a limiting case of a supersymmetric duality was then ex-
tended to various generalizations of Seiberg duality. Furthermore a full classification of
s-confining gauge theories with vanishing superpotential was worked out in [169] for
theories with a single gauge group. In this classification there are many models that do
not correspond to any limiting case of any known duality. Such models are character-
ized usually by the presence of matter fields in a rank-two tensor representation of the
gauge group. Despite the fact that gauge theories of this type do not have in general a
Seiberg-like dual description, it has been shown in [72] that the s-confining dualities can
be derived using only Seiberg-(like) dualities thanks to the rank-2 tensor deconfining
technique originally proposed in [93] and subsequently generalized in [262].
The technique consists of substituting a rank-2 tensor matter field with a bifundamental
field charged also under another (auxiliary) confining gauge group, such to recover the
original description once this new gauge group confines. After deconfining the rank-2
tensors it has been possible to apply sequences of Seiberg dualities (see [116] for a general
construction) and than to recover the confined phase proposed in [169], using only the
s-confining dualities of SU(Nc) with Nc + 1 flavors of [289] and USp(2Nc) SQCD with
2Nc + 4 fundamentals of [237]. This construction may require further refinements for
models with a superpotential deformation, due to the possible presence of an Higgsing
that breaks partially or completely the gauge group (see [158] for a general discussion).
Recently new confining gauge theories have been obtained for 4d models with rank-2
tensors and non-vanishing superpotential [73]. Furthermore the deconfinement tech-
niques have been applied to 3d N = 2 gauge theories [91, 279], where the zoo of confin-
ing gauge theories is richer, because of the presence of a dual photon and of a Coulomb
branch. New confining dualities in this direction have been obtained in [43, 92].

3.1.2 The 3d Partition Functions

In this section we give some basic results on the three-sphere partition function useful for
our analysis. The partition function of a 3d N = 2 SQFT, computed through localization
techniques on the squashed three-sphere S3

b [212], corresponds to a matrix integral over
a variable associated to the real scalar of the vector multiplet in the Cartan of the gauge
group.
The general structure of the partition function consists of classical contributions from the
Fayet-Iliopulos (FI) and the CS terms in the action, and contributions coming from the
one-loop determinants for the chiral and vector multiplets. If we consider a 3d N = 2

supersymmetric gauge theory with gauge groupG at CS level k, the S3
b partition function
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takes the following form

ZGk
(µa;λ) =

1

|W |

∫ rankG∏
i=1

dσi√
−ω1ω2

exp
(
−iπkσ2

i − iπλσi
)

×
∏
I

Γh(ω∆I + ρI(σ) + ρ̃I(µ)) ·
∏
α∈G+

Γ−1
h (±α(σ))

(3.1)

where µa are real parameters associated to the flavour symmetry, while ρ̃(µ) and ρ(σ)

are the weights of the flavour and gauge symmetry respectively. The α are the positive
roots of the gauge symmetry and they parametrize the contributions from the one-loop
determinant of the vector multiplet. The contribution of the FI, corresponding to the real
mass for the topological symmetry U(1)J , is parameterized by λ. The R-charges of the
chiral fields are parameterized by ∆I . The gaussian factor corresponds to the CS level k.
The normalization |W | is the order of the Weyl group of G.
In our notation, the one-loop dererminants are given in terms of hyperbolic Gamma
functions which can be written as the following infinite product

Γh(x) = e
iπ

2ω1ω2

(
(x−ω)2−ω2

1+ω2
2

12

)
∞∏
j=0

1− e
2πi
ω1

(ω2−x)e
2πiω2j

ω1

1− e−
2πi
ω2 e−

2πiω2j
ω2

(3.2)

where ω1 = ib, ω2 = i/b and b is the squashing parameter of the three-sphere S3
b which

is defined by b2(x21 + x22) + b−2(x23 + x24) = 1; the ω parameter is defined as 2ω = ω1 +ω2.
We will often use the compound notation where

Γh(x; y) ≡ Γh(x)Γh(y), Γh(±x) = Γh(x)Γh(−x). (3.3)

The hyperbolic Gamma function obeys useful identities that are going to play an essen-
tial role in our analysis. The first is the inversion formula

Γh(2ω − x)Γh(x) = 1 (3.4)

which in field theory corresponds to integrating out fields appearing in the superpoten-
tial through holomorphic mass terms. The second one gives the asymptotic behavior of
the hyperbolic Gamma function

lim
|x|→∞

Γh(x) = e−
iπ
2 sign(x)(x−ω)2 (3.5)

and it corresponds in field theory to integrating out a massive field with a large real mass
term.
Focusing on the chiral models of our interest, the partition function of a U(Nc)k theory
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with Nf fundamentals, Na anti-fundamentals and two adjoints X,Y , at CS level k is

Z(Nf ,Na)

U(Nc)k
(µ⃗; ν⃗; τX ; τY ;λ) =

Γh(τX)NcΓh(τY )
Nc

Nc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi exp
(
−iπλσi − iπkσ2

i

)
×

∏
1≤i<j≤Nc

∏
β=X,Y

Γh
(
τβ ± (σi − σj)

)
Γh
(
± (σi − σj)

)
×

Nc∏
i=1

( Nf∏
a=1

Γh(µa + σi) ·
Na∏
b=1

Γh(νb − σi)
)
.

(3.6)

The parameters µa, νa refer to the real masses of the fundamentals and anti-fundamentals
while the τX,Y are the real masses of the adjoints.
The chiral SU(Nc)k case can be recovered by the U(Nc)k one by gauging the topological
U(1)J symmetry which at the level of the partition function amounts to adding a factor
1
2e

iπλNcmB and integrating over λ, imposing the tracelessness condition on the adjoint
fields [24, 91]

Z(Nf ,Na)

SU(Nc)k
(µ⃗; ν⃗; τX ; τY ) =

Γh(τX)Nc−1Γh(τY )
Nc−1

Nc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi δ

(
Nc∑
i=1

σi

)
exp

(
−iπkσ2

i

)
×

∏
1≤i<j≤Nc

∏
β=X,Y

Γh
(
τβ ± (σi − σj)

)
Γh
(
± (σi − σj)

)
×

Nc∏
i=1

( Nf∏
a=1

Γh(µa +mB + σi) ·
Na∏
b=1

Γh(νb −mB − σi)
)
.

(3.7)

3.1.3 Non-chiral 3d Dualities with Adjoint Matter

We start our analysis from the 3d N = 2 duality for U(Nc)0 SQCD with Nf pairs of
fundamentals and anti–fundamentals and two adjoints interacting through a Dn+2-type
superpotential. The duality has been obtained in [230], from the circle reduction of the
4d duality of [118], by following the prescription of [15]. In the 3d limit the duality is
characterized by the unusual presence of superpotential interactions involving (dressed)
monopole operators of charge two. The duality relates

• 3d N = 2 U(Nc)0 SQCD with Nf flavours Q, Q̃ with two adjoints fields X,Y and
superpotential

Wele = TrXn+1 +TrXY 2 (3.8)

with n odd.

• 3d N = 2 U(Ñc)0 SQCD with Ñc = 3nNf − Nc, Nf dual flavours q, q̃ and two
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Table 3.1: Matter content of electric (upper) and magnetic (lower) U(Nc)0 theories.

Gauge Global
Field U(Nc) U(Ñc) SU(Nf )L SU(Nf )R U(1)A U(1)J U(1)R

Q 2 1 2 1 1 0 rQ

Q̃ 2 1 1 2 1 0 rQ

X Adj 1 1 1 0 0 2
n+1

Y Adj 1 1 1 0 0 n
n+1

V ±
jℓ 1 1 1 1 −Nf ±1 (1− rQ)Nf + 2j+nℓ−(Nc−1)

n+1

W±
q 1 1 1 1 −2Nf ±2 2(1− rQ)Nf + 2+4q−2(Nc−1)

n+1

q 1 2 1 2 −1 0 2−n
n+1 − rQ

q̃ 1 2 2 1 −1 0 2−n
n+1 − rQ

x 1 Adj 1 1 0 0 2
n+1

y 1 Adj 1 1 0 0 n
n+1

Mjℓ 1 1 2 2 2 0 2rQ + 2j+nℓ
n+1

Ṽ ±
jℓ 1 1 1 1 Nf ∓1 (rQ − 1)Nf +

2j+nℓ+(Nc+1)
n+1

W̃±
q 1 1 1 1 2Nf ∓2 2(rQ − 1)Nf +

2+4q+2(Nc+1)
n+1

adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)

+
∑

j=0,...,n−1
ℓ=0,1,2
jℓ=0

V ±
j,ℓṼ

±
n−j,2−ℓ +

n−3
2∑

q=0

W±
q W̃

±
n−3
2 −q ,

(3.9)

where singlets Mj,ℓ are dual to the dressed mesons of the electric theory QXjY ℓQ̃,
the V ±

j,ℓ and W±
q are the monopole operators of the electric theory with topological

charges ±1 and ±2 respectively, acting as singlets in the magnetic phase. Notice that
the monopole operators V ±

j,ℓ enter in the superpotential with the condition jℓ = 0. This
is going to be the case also for some of our dualities, where the condition is going to be
understood and explicitly given only in the superpotential.
Observe that such monopole operators, defined through radial quantization from states
on S2 that carry a non–trivial magnetic flux background, are mapped to the states TrXjY ℓ|±
1, 0 . . . , 0⟩ and TrX2q| ± 1,±1 . . . , 0⟩ respectively.
The global symmetry is SU(Nf )L × SU(Nf )R × U(1)A × U(1)J × U(1)R, where U(1)A
is the axial symmetry, U(1)J is the topological symmetry and U(1)R is the R-symmetry.
The various fields transform as in table 3.1. The mapping of the chiral ring between the
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two phases is

TrXjY ℓ

QXjY ℓQ̃

V ±
j,ℓ

W±
q

⇐⇒

Trxjyℓ

Mj,ℓ

V ±
j,ℓ

W±
q

j = 0, . . . , Nc − 1, ℓ = 0, 1, 2

j = 0, . . . , Nc − 1, ℓ = 0, 1, 2

j = 0, . . . , Nc − 1, ℓ = 0, 1, 2, j · ℓ = 0

q = 0, . . . , Nc−3
2

(3.10)

where, with a slight abuse of notation, V ±
j,ℓ and W±

q are monopole operators in the ele-
crtic theory and singlets in the magnetic theory. On the other hand, the monopoles of
the magnetic theory are set to zero on the chiral ring by the electric monopoles acting as
singlets in this phase.
The 4d/3d reduction of the duality of [118] has been recently studied also in [44] by
circle reduction of the conjectured identity between the 4d superconformal indices. The
final result, once the divergent contributions between the electric and the magnetic side
of the identity have been matched and canceled, corresponds to the identity that repro-
duces the 3d N = 2 duality of [230] on the squashed three sphere partition function. The
identity is

ZNf

U(Nc)
(µa; νa; τX ; τY ;λ) = Z

Nf

U(Ñc)
(τX − τY − νa; τX − τY − µa; τX ; τY ;−λ)

×
n−1∏
j=0

2∏
ℓ=0

Nf∏
a,b=1

Γh(jτX + ℓτY + µa + νb)

×
∏

j=0,...,n−1
ℓ=0,1,2
jℓ=0

Γh

±λ
2
+Nfω −

Nc − 1

2
τX −

1

2

Nf∑
a=1

(µa + νa) + jτX + ℓτY



×

n−3
2∏

q=0

Γh

±λ+ 2Nfω + (Nc − 1)τX−
Nf∑
a=1

(µa + νa) + (2q + 1)τX

.
(3.11)

The parameters associated to the Nf fundamentals and anti-fundamentals satisfy the
constraint

∑Nf

a=1 µa =
∑Nf

a=1 νa = NfmA. The parameters associated to the adjoint are
fixed as

τX =
2ω

n+ 1
, τY =

nω

n+ 1
(3.12)

reflecting the constraints imposed by the superpotential (3.8).

3.1.4 Classification of Chiral Dualities

We conclude our review by surveying the case of chiral dualities for ordinary 3d N = 2

SQCD worked out in [85]. These dualities are characterized by a different number of
fundamentals Nf and anti-fundamentals Na, and by a CS level k. By comparing ∆F ≡
|Nf −Na| and 2k three different cases have been identified.



56 3.1 Relevant Background

For historical reasons the classification proposed in [85] for such dualities reflects the one
worked out in the mathematical literature for the hyperbolic integral identities, corre-
sponding to the matching of the three sphere partition functions (see for example [123]).
In this case the chiral SQCD models are labelled by two non-negative integers [p,q].
These integral identities are related to the physics of CS theories with chiral matter.
The relation between the integers [p,q] and the physical quantities can be made explicit
by defining these integers in terms of the effective CS level of a U(Nc)k theory

k± = k ± 1

2
(Nf −Na). (3.13)

According to the signs of k±, there are four possible definitions

[p,q]a ≡ [−k+,−k−]a, [p,q]
∗
a ≡[−k+, k−]

∗
a,

[p,q]b ≡ [k+, k−]b, [p,q]
∗
b ≡[k+,−k−]

∗
b (3.14)

where the theory type a, b is chosen such that p,q > 0.
This means that for any choice of k, Nf and Na one has to compute k± using (3.13) and
then one has to select in (3.14) the one with both p and q positive. The flip of the sign
of the CS term under duality imposes also that the dual of an a-theory is a b-theory and
viceversa [85].
We survey the classification the dualities of [85] following this notation and based on the
difference between ∆F and 2k (with k > 0, the case of k < 0 can be studied analogously).
In each case the electric theories are U(Nc)k SQCD with Nf fundamentals and Na anti-
fundamentals and vanishing superpotential. Depending on the value of [p,q] one has

[p,0] ∆F = 2k Na < Nf ,

[p,q] ∆F < 2k Na ̸= Nf ,

[p,q]
∗

∆F > 2k Na ̸= Nf .

(3.15)

The gauge group of the dual magnetic chiral SQCD is

[p,0] U(Nf −Nc)−k ,

[p,q] U
(1
2
(Nf +Na) + |k| −Nc

)
−k

,

[p,q]
∗ U

(
max(Na, Nf )−Nc

)
−k

(3.16)

with Na fundamentals and Nf anti-fundamentals. In the last two cases the dual super-
potential is given by

Wmag =Mqq̃ (3.17)

while in the [p,0] case only there is an additional singlet T+ in the magnetic phase and
the superpotential is given by

Wmag =Mqq̃ + T+t− (3.18)
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where T+ is dual to the electric monopole.
An analogous description holds for the SU(Nc) cases (see [11, 24]). Furthermore the
discussion has been extended to the case of adjoint SQCD with An-type superpotential
and unitary gauge group [24, 232]. In the following we will discuss the generalization to
the case of two adjoint SQCD with Dn+2-type superpotential and unitary gauge group.

3.2 Chiral Dualities for SQCD3 with D-type Superpotential

The classification program of 3d N = 2 dualities is a fruitful field of research that boosted
once localization techniques made powerful tools available [281]. Indeed after the dis-
covery of mirror symmetry [110, 111, 238] and of Aharony duality [6] (see also [248]), it
took the community a decade to have another class of examples of 3d N = 2 dualities
[197, 275]. These examples were derived from the type-IIB Hanany Witten (HW) setup
[214], and they were motivated by the ABJ(M) results [8, 9].
The matrix integral for the 3d N = 2 three sphere partition function, derived in full
generality [211, 212, 240, 247], allowed to check the validity of these dualities and to
define new ones, thanks to the possibility to engineer real mass and Higgs flows. Such
flows are ubiquitous in the analysis of 3d SUSY gauge theories, and they usually give
rise to a chiral like field content, for the case of SQCD with unitary gauge group, i.e. there
is a different number of fundamentals Nf and on anti-fundamentals Na. This difference
requires a non zero Chern-Simons (CS) coupling for the invariance under large gauge
transformations. Surprisingly the integral identities relating the three sphere partition
functions of the new dualities [85] were already known to the mathematical community
for U(Nc) SQCD. The classification of chiral dualities for 3d N = 2 SQCD was then
extended to the SU(Nc) case in [11].
A further goal has been to formulate new 3d N = 2 dualities analogous to the the various
generalization of 4d N = 1 Seiberg-like dualities. The simplest extension, due to [258],
regarded the case of adjoint SQCD withAn type superpotential. Two dualities have been
proposed, with [275] or without [253] CS action and withNf = Na

1. The chiral case was
then partially studied in [232, 276] for the U(Nc) case, while a uniform treatment was
then provided in [24] for both the U(Nc) and SU(Nc) case, generalizing the case without
adjoints (corresponding to the case of A1 type superpotential.)
Through a series of real mass and Higgs flows we generalize the web found in [85] and
in [24] for the cases of SQCD and An adjoint SQCD respectively.
Furthermore we gauge the topological symmetry generalizing the construction to the
SU(Nc) case as well. We corroborate the various steps of our derivation by reproducing
the flow on the three sphere partition function, showing the cancellation of the diver-
gent contributions, matching of the CS contact terms and proposing the new integral
identities for the chiral dualities. We conclude our analysis by studying the case of two
antisymmetric USp(2Nc)2k SQCD withDn+2-type superpotential, previously uncovered
in the literature.

1Actually more dualities have been obtained by adding monopole superpotentials [22], but here we will
not discuss such possibility.
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3.2.1 Dualities for U(Nc) Chiral SQCD with Two Adjoints

In this section, we study the chiral limit of the U(Nc)0 duality studied in [230]. We will
use the above-mentioned notation to differentiate the various theories with the addition
of the subscript [p,q]X,Y to underline the presence of two adjoints, similar to the notation
of [24].
We introduce real mass flows on the electric side by turning on background fields for the
flavour symmetry and giving large vacuum expectation values to the scalars in the vec-
tor multiplet of the flavour symmetry. This flow will lead in the IR to [p,q]X,Y theories.
Then we turn on background fields for the gauge symmetry on the magnetic side and
consider large vacuum expectation values to the scalars.
This procedure is rephrased on the partition function (3.11) by considering consistent
assignments of shifts on the parameters associated to the flavour and to the gauge sym-
metry. For large shifts the asymptotic of the integral identities gives new finite identities
for the partition functions after factoring and canceling out the divergent contributions
between the electric and magnetic phases.

3.2.1.1 The [p,p]X,Y Case

The [p,p]X,Y duality (corresponding to the one studied in [275]) is obtained from the
[0,0]X,Y duality with Nf + k flavours by assigning a positive large real mass to k of
them. In the magnetic phase k dual quarks and anti-quarks are shifted with opposite
signs while 2n(k2 + 2Nfk) components of the (dressed) mesons acquire a large mass
accordingly. In the IR, this will lead to the following duality:

• U(Nc)k SQCD with Nf fundamentals and anti-fundamentals Q, Q̃ and two ad-
joints X,Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.19)

• U(Ñc)−k SQCD, with Ñc = 3n(Nf+|k|)−Nc,Nf fundamentals and anti-fundamentals
q, q̃ and two adjoints x, y, interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−ℓy2−lq̃

)
. (3.20)

The two theories acquire a CS level k and−k respectively. The CS term lifts the Coulomb
branch of the U(Nc) model. It reflects in the dual side to integrate out the singlets corre-
sponding to the monopole of the electric phase.
To reproduce the duality on the partition function, we start from the equality (3.11) and
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consider the following shifts of the real masses

mA → mA + k
Nf+k

s

ma → ma − k
Nf+k

s a = 1, . . . , Nf

ma → ma +
Nf

Nf+k
s a = 1, . . . , k

na → na − k
Nf+k

s a = 1, . . . , Nf

na → na +
Nf

Nf+k
s a = 1, . . . , k

(3.21)

where we split the abelian axial part, mA, of the real masses for the flavour symmetry
from its non-abelian part ma, na.
At this level, when the shift is finite, the equality (3.11) still holds. To reproduce the
flow, we need study the large s limit on the partition functions by making use of the
asymptotic behavior of the hyperbolic Gamma function (3.5). One needs to be careful
when taking this limit since an infinite shift in the variables makes the integrals diver-
gent. Therefore we need check that in the limit the leading saddle point contributions
cancel between the electric and magnetic partition functions [32]. We are left then with
the equality between

Zele =Z
(Nf ,Nf )

U(Nc)k
(µa; νa; τX ; τY ;λ) (3.22)

and

Zmag = eiπϕe−
3iπ
4 nλ2

Z(Nf ,Nf )

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ;−λ)

×
n−1∏
j=0

2∏
ℓ=0

Nf∏
a,b=1

Γh(jτX + ℓτY + µa + νb),
(3.23)

where µa = ma +mA and νb = nb +mA, satisfying the constraint
∑Nf

a=1 µa =
∑Nf

b=1 νb =

NfmA.
There is a non-trivial complex exponential phase in the identity between Zele and Zmag.
This phase is essential for matching the partition functions of the two dual theories. It
was shown [150, 151] that the exponents are related to CS contact terms in two-point
functions of global symmetry currents. The complex phase ϕ in this case has the follow-
ing form

ϕ = 2NfmAτY (Ñc − 2Nc + 3Nf + 3k(n− 1))− τ2X
8

− 1

4
τXτY

(
(1 + n+ n2) + 6N2

f + k2 + 6N2
c − 4Nf (k + 3Nc) + 4(Nc + Ñc)(Nf + k)

− (12k2 + 12NfNc + 18kNc)n+ 6(N2
f + 4Nfk + 4k2)n2

)
+ 3nNfm

2
A(k −Nf )

+
3

2
kn

Nf∑
a=1

(m2
a + n2a).

(3.24)
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This phase can be reproduced from the computation of the contact terms by a linear
combination of ∆kij ≡ kele

ij − k
mag
ij , where the indices run over the abelian symmetries.

Explicitly, for this flow, the non-zero contact terms from the field theory [33, 85] are given
by

kele
AA = 2× 1

2
NcNf ,

k
mag
AA = −2× 1

2
ÑcNf + 6nN2

f ≡ kele
AA − 3nNf (k −Nf ),

kele
rA = 2× 1

2
NcNf (∆− 1),

k
mag
rA = −2× 1

2
ÑcNf

(
2− n
n+ 1

−∆− 1

)
+

1

2
N2
f

∑
j=0,...,n−1
ℓ=0,1,2

(
2∆ +

2j + nℓ

n+ 1
− 1

)

kele
rr = 2× 1

2
NcNf (∆− 1)2 +

1

2
N2
c

(
2

n+ 1
− 1

)2

+
1

2
N2
c

(
n

n+ 1
− 1

)2

− 1

2
N2
c

kmag
rr = −2× 1

2
ÑcNf

(
2− n
n+ 1

−∆− 1

)2

− 1

2
N2
c

(
2

n+ 1
− 1

)2

− 1

2
N2
c

(
n

n+ 1
− 1

)2

+
1

2
N2
f

∑
j=0,...n−1
ℓ=0,1,2

(
2∆ +

2j + nℓ

n+ 1
− 1

)2

+
1

2
N2
c

from which we find

∆kAA = 3nNf (k −Nf )m2
A

∆krA =
6nNf
1 + n

(Nf − k −Nc + nNf + 2nk)mAω

∆krr = −
1

2(n+ 1)2

(
(4n− 1)

(
9k2n2 − 6knNc + 2N2

c

)
− 6nNf

(
−k
(
8n2 + n− 1

)
+ 3nNc +Nc

)
+ n(3n(6n+ 1) + 5)N2

f

)
(3.25)

where ∆ is the R-charge. To reproduce (3.24) from (3.25) we can set ∆ = 0 and make
explicit the real masses for the symmetries. This is done since in the partition function,
the mass parameter is a combination of the various abelian and non-abelian charges.
For the other dualities, the calculation is similar and we won’t carry it out explicitly.
Observe that in this case we have only a discrepancy in ∆krr with respect to the result
red from the exponent (3.24) in the partition function. This is nevertheless unphysical
because it only acts as a pure phase in the identity between Zele and Zmag.

3.2.1.2 The [p,q]X,Y Case

The flow to the [p,q]X,Y duality is obtained starting from the [0,0]X,Y U(Nc)0 duality
with Nf flavours by assigning a positive large real mass to Nf −Nf1 fundamentals and
Nf −Nf2 anti-fundamentals. In the IR, this will lead the following duality:

• U(Nc)k SQCD with Nf1 fundamentals and Nf2 anti-fundamentals Q, Q̃, two ad-
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joints X and Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.26)

• U(Ñc)−k SQCD, with Ñc = 3nNf−Nc,Nf2 fundamentals q,Nf1 anti-fundamentals
q̃ and two adjoint fields x, y, interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)
. (3.27)

The CS levels of the two phases are given by k = Nf − 1
2 (Nf1 +Nf2) and−k respectively.

The Coulomb branch of the electric phase is lifted and in the dual phase the dressed
electric monopoles acting as singlets are now massive and we integrated them out.
To reproduce the duality on the partition function, we start from the equality (3.11) and
consider the following shifts in the real masses

mA → mA +
2Nf−Nf1

−Nf2

2Nf
s

ma → ma −
Nf−Nf1

Nf
s a = 1, . . . , Nf1

ma → ma +
Nf1

Nf
s a = 1, . . . , Nf −Nf1

na → na −
Nf−Nf2

Nf
s a = 1, . . . , Nf2

na → na +
Nf2

Nf
s a = 1, . . . , Nf −Nf2

σi → σi −
Nf1

−Nf2

2Nf
s i = 1, . . . , Nc

σ̃i → σ̃i −
Nf1

−Nf2

2Nf
s i = 1, . . . , 3nNf −Nc

λ→ λ+ (Nf2 −Nf1)s

(3.28)

We study the limit of large s as stated before, checking that the divergent contributions
cancel between the electric and magnetic phases. We are left with the equality between

Zele =Z
(Nf1

,Nf2
)

U(Nc)k

(
µa; νb; τX ; τY ; λ̂

)
(3.29)

where
λ̂ = λ+ (Nf1 −Nf2)(mA − ω), (3.30)

and

Zmag = eiπϕe−
3iπ
4 nλ2

Z(Nf2
,Nf1

)

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; λ̃)

×
n−1∏
j=0

2∏
ℓ=0

Nf1∏
a=1

Nf2∏
b=1

Γh(jτX + ℓτY + µa + νb)
(3.31)

where
λ̃ = −λ− (Nf1 −Nf2)(mA − τX + τY + ω). (3.32)
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We set µa = ma +mA and νb = nb +mA, satisfying the constraint
∑Nf

a=1 µa =
∑Nf

b=1 νb =

NfmA.
The complex exponent ϕ, necessary for the equality between the partition functions, has
the following form

ϕ = −3

2
mAτY

(
(1 + n)(Nf1 +Nf2)(2k +Nf1 +Nf2)− 2Ñc(Nf1 +Nf2) + 4Nf1Nf2(n− 2)

)
− τ2X

8
− τXτY

4

(
(1 + n+ n2) + 11Nf1Nf2 + 6n(n− 2)Nf1Nf2 − 6NcÑc

+
1

4
(1 + 24n2)(2k +Nf1 +Nf2)

2 − 3(Nc − Ñc(1− n))(Nf1 +Nf2)

− 3

2
(2k +Nf1 +Nf2)(Nf1 +Nf2)(1− n+ n2)

)
+

3

4
nm2

A

(
(Nf1 +Nf2)(2k +Nf1 +Nf2)− 8Nf1Nf2

)
+

3

4
n

(2k +Nf1 −Nf2)
Nf1∑
a=1

m2
a + (2k −Nf1 +Nf2)

Nf2∑
a=1

n2a

. (3.33)

Again the phase in (3.33) can be reproduced from the difference between the contact
terms for the global abelian symmetries of the electric and the magnetic theories. We
observe here the same unphysical mismatch in ∆krr discussed in the [p,p]X,Y case.

3.2.1.3 The [p,0]X,Y Case

The flow to the [p,0]X,Y theory, we start from the [0,0]X,Y U(Nc)0 duality with Nf
flavours, and give a positive large real mass to Nf − Nf1 fundamentals. In the IR, this
will lead the following duality:

• U(Nc)k theory withNf1 fundamentals andNf anti-fundamentalsQ, Q̃, two adjoint
X and Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.34)

• U(Ñc)−k, where Ñc = 3nNf−Nc, withNf fundamentals andNf1 anti-fundamentals
q, q̃, two adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)

+
∑

j=0,...,n−1
ℓ=0,1,2
jℓ=0

V +
j,ℓṼ

+
n−j,2−ℓ +

n−3
2∑

q=0

W+
q W̃

+
n−3
2 −q .

(3.35)

The CS levels of the two phases are given by k = 1
2 (Nf −Nf1) and −k respectively. Half

of the Coulomb branch is left in this case and it reflects in the presence of the singlets V +
j,ℓ
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and W+
q in the spectrum of the dual model.

To reproduce this duality on the partition function, we start from the equality (3.11) and
consider the following shifts for the real masses

mA → mA +
Nf−Nf1

2Nf
s

ma → ma −
Nf−Nf1

Nf
s a = 1, . . . , Nf1

ma → ma +
Nf1

Nf
s a = 1, . . . , Nf −Nf1

σi → σi +
Nf−Nf1

2Nf
s i = 1, . . . , Nc

σ̃i → σ̃i +
Nf−Nf1

2Nf
s i = 1, . . . , 3nNf −Nc

λ→ λ+ (Nf −Nf1)s

(3.36)

where we split the axial abelian part, mA, for the flavour symmetry from its non-abelian
part ma, na.
We study the large s limit as stated before, checking that the leading saddle point con-
tributions cancel between the electric and magnetic partition functions, and we are left
with the equality between

Zele =Z
(Nf1

,Nf )

U(Nc)k
(µa; νa; τX ; τY ; λ̂) (3.37)

where
λ̂ = λ+ (Nf −Nf1)(mA − ω) (3.38)

and

Zmag = eiπϕe−
1
4λ(

3
2nλ−η)Z(Nf ,Nf1

)

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; λ̃)

×
n−1∏
j=0

2∏
ℓ=0

Nf1∏
a=1

Nf∏
b=1

Γh(jτX + ℓτY + µa + νb)

×
∏

j=0,...n−1
ℓ=0,1,2
jℓ=0

Γh

λ
2
+Nfω −

Nc − 1

2
τX −

1

2

Nf∑
a=1

(ma + na) + jτX + ℓτY



×

n−3
2∏

q=0

Γh

λ+ 2Nfω − (Nc − 1)τX −
Nf∑
a=1

(ma + na) + (2q + 1)τA



(3.39)

where µa = ma+mA and νb = nb+mA, which solve the constrain
∑Nf

a=1 µa =
∑Nf

b=1 νb =

NfmA, and

λ̃ = −λ+ (Nf −Nf1)(mA − τX + τY + ω), (3.40)

η = τX + 6τY − 2ω + n
(
6(2k +Nf1)(ω −mA) + τX(2n− 3Nc)− 4ω

)
. (3.41)

The complex exponent ϕ necessary for the equality between the partition functions to
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hold has the following form

ϕ = 3mAτY ((2k +Nf1)
2(n− 2) + 3Nf1(2k +Nf1)−NcNf1)

− τ2X
16
− τXτY

8

(
(1 + n+ n2) + 6N2

c + 2(Ñc +Nc)
2 − 20k(2k +Nf1)

+ 6NcNf1(n− 2) + 6Nf1(2k +Nf1)(1− 2n2) + 6n(2k +Nf1)(4k + 2Nf1 − 3Nc)
)

+
3

2
m2
An(8k

2 + 2kNf1 −N2
f1) + 3kn

Nf∑
a=1

nsa .

(3.42)

Again the phase in (3.33) can be reproduced from the difference between the contact
terms for the global abelian symmetries of the electric and the magnetic theories. We
observe here the same unphysical mismatch in ∆krr discussed in the [p,p]X,Y and in
the [p,q]X,Y case.

3.2.1.4 The [p,q]
∗
X,Y Case

The flow to the [p,q]
∗
X,Y theory, we start from the [0,0]X,Y U(Nc)0 duality with Nf

flavours and give a positive large real mass to Nf1 anti-fundamentals and a negative
large real mass to Nf2 anti-fundamentals. In the IR, this will lead the following duality:

• U(Nc)k theory withNf fundamentals andNa = Nf −Nf1−Nf2 anti-fundamentals
Q, Q̃, two adjoint X and Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.43)

• U(Ñc)−k, where Ñc = 3nNf−Nc, withNa fundamentals andNf anti-fundamentals
q, q̃, two adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)
. (3.44)

The CS levels of the two phases are given by k = 1
2 (Nf1 −Nf2) and −k respectively. The

CB is lifted and the monopoles acting as singlets in the magnetic theory are integrated
out.
To reproduce the duality on the partition function, we start from equality (3.11) and
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consider the following shifts in the real masses

mA → mA +
Nf1

−Nf1

2Nf
s

na → na −
Nf1

−Nf2

Nf
s a = 1, . . . , Nf −Nf1 −Nf2

na → na +
Nf−Nf1

+Nf2

Nf
s a = 1, . . . , Nf1

na → na −
Nf+Nf1

−Nf2

Nf
s a = 1, . . . , Nf2

σi → σi +
Nf2

−Nf1

2Nf
s i = 1, . . . , Nc

σ̃i → σ̃i +
Nf2

−Nf1

2Nf
s i = 1, . . . , 3nNf −Nc

λ→ λ− (Nf1 +Nf2)s

(3.45)

where we split the abelian axial part mA of the real masses for the flavour symmetry
from its non abelian part ma, na.
We study the large s limit by making use of the asymptotic behavior of the hyperbolic
Gamma function (3.5). We check that the leading saddle point contributions cancel be-
tween the electric and magnetic partition functions, and we are left with the equality
between

Zele =Z
(Nf ,Na)

U(Nc)k
(µa; νa; τX ; τY ; λ̂) (3.46)

where
λ̂ = λ+ (Nf1 −Nf2)(mA − ω), (3.47)

and

Zmag = eiπϕeiπλ(mA(Nc+Ñc)−3τY (Nf (n+1)−Nc))Z(Nf ,Nf1
)

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; λ̃)

×
n−1∏
j=0

2∏
ℓ=0

Nf∏
a=1

Na∏
b=1

Γh(jτX + ℓτY + µa + νb)

(3.48)

where
λ̃ = −λ− (Nf1 −Nf2)(mA − τX + τY + ω), (3.49)

with µa = ma+mA and νb = nb+mA solving the constrain
∑Nf

a=1 µa =
∑Nf

b=1 νb = NfmA.
The complex exponent ϕ necessary for the equality between the partition functions to
hold has the following form

ϕ = (Nf1 −Nf2)
(
3mAτY (Nc − 3Nf ) +

τXτY
4

(3Nc(n− 2) +Nf (8− 6n2))

+
9

2
m2
AnNf +

3

2
n

Nf∑
a=1

m2
a

)
.

(3.50)

In this case the CS contact terms can be computed using the reduction of the [p,q]
∗
X,Y

duality to the [0,0]X,Y one. This requires a Higgsing in the magnetic phase and we
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obtain the same results discussed above. We match all the contributions except the one
of the ∆krr, but this mismatch is unphysical because it involves a pure phase.

3.2.2 Dualities for SU(Nc) Chiral SQCD with Two Adjoints

As discussed in section 3.1.2, one can start from the [0,0] U(Nc)0 duality and obtain a
duality for SU(Nc)0 by gauging the topological U(1)J symmetry [15]. This is achieved
by introducing a dynamical background multiplet for the topological symmetry. This
procedure introduces a mixed CS term in the action

L ⊃ AU(1) ∧ dTrAU(Nc) (3.51)

at level −1 between the new U(1) symmetry coming from the topological U(1)J and the
abelian subgroup of the gauge symmetry U(1) ⊂ U(Nc). In addition a new topological
U(1)J′ is generated from the hodge dual of the gauged U(1)J field strength which is con-
served by virtue of the Bianchi identity. In the absence of monopoles, which are charged
under the gauged topological symmetry, the mixed CS term makes the two U(1) pho-
tons massive and can be integrated out in the IR. In this case, the gauge group becomes
SU(Nc)0 and the topological U(1)J′ can be considered as the baryonic symmetry U(1)B
under which the flavour has canonically normalized charge 1/Nc.
In presence of fields charged under U(1)J the analysis has to be modified. It is the case
for example of many of the dual phases, where the electric monopoles are singlets in
the dual description. It follows that we cannot decouple the dynamics of the gauged
U(1)J and of the U(1) ⊂ U(Ñc) symmetries. In this case, the magnetic side will be a
U(Ñc)0 ×U(1) gauge theory with a level −1 mixed CS term. In some case some further
local duality simplifies such sectors. For example when considering Aharony duality
one can use the SQED/XYZ duality.
Another common feature of the gauging of the topological symmetry leading from U(Nc)

to SU(Nc) in presence of adjoint matter, consists of imposing the tracelessness condition
[24, 91] on the adjoints. This can be achieved in two ways: one can either add a flipping
term in the superpotential on the magnetic side

Wflip = α0 Trx+ β0 Tr y, (3.52)

which imposes then the tracelessness of the adjoints by the F-term equations for the
singlets α0 and β0, or consider the traceless adjoint representation of U(Ñc).
The procedure just described gives the following duality

• 3d N = 2 SU(Nc)0 SQCD with Nf flavours Q, Q̃ and two adjoint fields X,Y , with
superpotential

Wele = TrXn+1 +TrXY 2. (3.53)

• 3d N = 2 U(Ñc)0 ×U(1) SQCD with Ñc = 3nNf −Nc, Nf dual flavours q, q̃ in the
non-abelian sector and two adjointsX,Y , n+2 pairs of fields V ±

j,ℓ and 1
2 (n−1) pairs

of fields W±
q in the abelian gauge sector with opposite gauge charge. These fields

interact with the dressed monopoles and anti-monopoles of the U(Ñc) sector, that
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Table 3.2: Matter content of the electric (upper) and magnetic (lower) theories after gauging the
topological symmetry. The subscript shows the charge of the fields under the gauged U(1)J .

Gauge Global
Field SU(Nc)0 SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R

Q 1 1 1 rQ

Q̃ 1 1 −1 rQ

X Adj 1 1 0 0 2
n+1

Y Adj 1 1 0 0 n
n+1

Field U(Ñc)0×U(1) SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R

q 0 1 −1 0 2−n
n+1 − rQ

q̃ 0 1 −1 0 2−n
n+1 − rQ

x Adj 0 1 1 0 0 2
n+1

y Adj 0 1 1 0 0 n
n+1

Mjℓ 10 2 2 2 0 2rQ + 2j+nℓ
n+1

V ±
jℓ 1±1 1 1 −Nf ±Nc (1− rQ)Nf + 2j+nℓ−(Nc−1)

n+1

W±
q 1±2 1 1 −2Nf ±Nc 2(1− rQ)Nf + 2+4q−2(Nc−1)

n+1

in this case carry ±1 charge under the new U(1) gauged factor as well. There is
also a level −1 CS level between the abelian U(1) subgroup in the U(Ñc) and the
other U(1) gauge factor. The superpotential is given by

Wmag = Trxn+1 +Trxy2 + α0 Trx+ β0 Tr y +Tr

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)

+
∑

j=0,...,n−1
ℓ=0,1,2
jℓ=0

V ±
j,ℓṼ

±
n−j,2−ℓ +

n−3
2∑

q=0

W±
q W̃

±
n−3
2 −q . (3.54)

The non-anomalous global symmetry of the theories is SU(Nf )L × SU(Nf )R ×U(1)A ×
U(1)B ×U(1)R under which the fields are charged as in table 3.2.

At the level of the partition function, the gauging procedure, is implemented by adding
a factor 1

2e
iπλNcmB to both side of the identity (3.11) and then integrating over λ. The

integral over the FI corresponds to the gauging of the U(1)J while the added exponential
factor carries the additional baryonic symmetry, whose real mass we label as mB . The
numerical factor 1/2 is added to ensure the proper normalization of the V ±

j,ℓ and W±
q

under the gauged U(1)J . On the electric side, the only dependence on the FI is in the
exponential term that can be integrated upon shifting the Cartan variables by mB . This
will lead to flavour matter fields carrying baryonic charge. On the magnetic side, the
fields V ±

j,ℓ andW±
q are charged under the topological U(1)J and therefore the integration

is not straightforward, i.e. a local mirror duality should be necessary to get rid of this
sector. For our purpose we will leave the integration on λ explicit on both sides whilst
shifting the Cartan on the electric side, making explicit the baryonic symmetry of the
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matter. This will lead us to the identity between the electric partition function

Zele =
Γh(τX)Nc−1Γh(τY )

Nc−1

Nc!
√
−ω1ω2

Nc

∫
dξ

∫ Nc∏
i=1

dσi exp(−2iπξσi)

×
Nc∏
i=1

Nf∏
a=1

Γh(µa +mB + σi; νa −mB − σi)
∏

1≤i<j≤Nc

∏
β=X,Y

Γh(τβ ± (σi − σj))
Γh(±(σi − σj))

(3.55)

and the magnetic partition function

Zmag =
Γh(τX)Ñc−1Γh(τY )

Ñc−1

Ñc!
√
−ω1ω2

Ñc

n−1∏
j=0

2∏
ℓ=0

Nf∏
a,b=1

Γh(jτX + ℓτY + µa + νb)

×
∫

dξ

∫ Ñc∏
i=1

dσi exp

(
2iπξ

(
σi +

Nc

Ñc
mB

))

×
Nf∏
a=1

Γh(τX − τY − νa + σi; τX − τY − µa − σi)
∏

1≤i<j≤Ñc

∏
β=X,Y

Γh(τβ ± (σi − σj))
Γh(±(σi − σj))

×
∏

j=0,...,n−1
ℓ=0,1,2
jℓ=0

Γh

±ξ +Nfω −
Nc − 1

2
τX −

1

2

Nf∑
a=1

(µa + νa) + jτX + ℓτY



×

n−3
2∏

q=0

Γh

±2ξ + 2Nfω + (Nc − 1)τX −
Nf∑
a=1

(µa + νa) + (2q + 1)τX


(3.56)

where we rescaled the FI as λ = 2ξ 2. The addition of the flipping terms in the magnetic
superpotential is reflected on the partition function by an additional Γh(2ω−τX ; 2ω−τY )
factor. Using the inversion formula (3.4), these factors cancel out with a factor of Γh(τX)

and Γh(τY ).

3.2.2.1 The [p,p]X,Y Case

To flow to the [p,p]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf + k

fundamentals and anti-fundamentals and give a positive large, but finite, real mass to k
flavours. In the IR, this will lead to the following duality

• SU(Nc)k SQCD with Nf fundamentals and anti-fundamentals Q, Q̃, two adjoints
X,Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.57)
2With this normalization, the exponential term for the FI has an added factor 2 which will be implicit.
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• U(Ñc)−k × U(1)3n SQCD with Ñc = 3n(Nf + |k|) − Nc, a level −1 mixed CS,
Nf dual fundamentals and anti-fundamentals q, q̃, two traceless adjoint fields x, y
interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)
. (3.58)

The fields V ±
j,ℓ and W±

q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k and −k respectively. From here
on we omit in the magnetic phase the singlets needed to make the adjoint traceless since
we can integrate them out in the IR.
At this stage, one could also decouple the dynamics of the massive photons in the two
gauge U(1) in the magnetic side, because we do not have matter charged under U(1)J .
On the partition function, the real mass flow that produces the above-mentioned dual-
ity, is given by the assignment of real masses of (3.21). The real mass associated to the
baryonic U(1)B symmetry does not get shifted.
We study the limit of large s on both the electric (3.55) and magnetic (3.56) partition
functions by making use of the asymptotic behavior of the hyperbolic Gamma function
(3.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z
(Nf ,Nf )

SU(Nc)k
(µa; νa; τX ; τY ) (3.59)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =

n−1∏
j=0

2∏
ℓ=0

Nf∏
a,b=1

Γh(jτX + ℓτY + µa + νb)

× eiπϕ
∫

dξ eiπ(2mBNcξ−3nξ2)Z(Nf ,Nf )

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ;−ξ).

(3.60)

From (3.60) we can see the level 3n CS of the U(1) gauge factor and the −1 mixed CS, in
the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain

∑Nf

a=1 µa =
∑Nf

a=1 νa = NfmA where
µa = ma +mA and νa = na +mA.
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The complex exponent ϕ needed for the matching is given by

ϕ = 3m2
AnNf (k −Nf )− km2

BNc +
τX
2
ωmA

(
3n(n+ 1)(2N2

f + k2 − (2n2 + 1)(Nf + k)

− 3Ncn(Nf − k) + kNf (6n(n− 1) + 2Nc)
)
− τ2X

8

(
1 +Nc(2k + 1)− 2(Nf + k)

)
− τXτY

8

(
(2n2 + 8n− 1)− 4(Nf + k)(1 + 2n+ 2n2) + 12(1 + 2n+ n2)N2

f

+ (54n2 + 33n− 1)k2 + 2(30n2 + 33n− 1)Nfk − 12(n+ 1)NfNc − 4(6n+ 1)kNc

+Nc(3Nc + 4n)
)
+

3

2
kn

Nf∑
a=1

(
m2
a + n2a

)
.

(3.61)

3.2.2.2 The [p,q]X,Y Case

To flow to the [p,q]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf fun-
damentals and anti-fundamentals and give a positive large real mass to Nf − Nf1 fun-
damentals and Nf −Nf2 anti-fundamentals. This will lead to the following duality

• SU(Nc)k SQCD with Nf1 fundamentals and Nf2 anti-fundamentals Q, Q̃, two ad-
joints X,Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.62)

• U(Ñc)−k × U(1)3n SQCD with Ñc = 3nNf − Nc, a level −1 mixed CS between
the two U(1)s, Nf2 dual fundamentals and Nf1 dual anti-fundamentals q, q̃, two
traceless adjoint fields x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)
. (3.63)

The fields V ±
j,ℓ and W±

q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = Nf − 1

2 (Nf1 +Nf2) and −k
respectively.
To reproduce this duality at the level of the partition function, we start from the equality
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between (3.55) and (3.56) and consider the following shifts in the real masses

mA → mA +
2Nf−Nf1

−Nf2

2Nf
s

mB → mB −
Nf1

−Nf2

2Nf
s

ma → ma −
Nf−Nf1

Nf
s a = 1, . . . , Nf1

ma → ma +
Nf1

Nf
s a = 1, . . . , Nf −Nf1

na → na −
Nf−Nf2

Nf
s a = 1, . . . , Nf2

na → na +
Nf2

Nf
s a = 1, . . . , Nf −Nf2

σ̃i → σ̃i −
Nf1

−Nf2

2Nf
s i = 1, . . . , 3nNf −Nc

ξ → ξ − Nf1
−Nf2

2 s

(3.64)

We study the limit of large s on both the electric (3.55) and magnetic (3.56) partition
functions by making use of the asymptotic behavior of the hyperbolic Gamma function
(3.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z
(Nf1

,Nf2
)

SU(Nc)k
(µa; νa; τX ; τY ) (3.65)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =

n−1∏
j=0

2∏
ℓ=0

Nf1∏
a=1

Nf2∏
b=1

Γh(jτX + ℓτY + µa + νb)

× eiπϕ
∫

dξ eiπ(2mBNcξ−3nξ2)Z(Nf1
,Nf2

)

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; ξ̂)

(3.66)

where
ξ̂ = ξ − Nf1 −Nf2

2
(mA − τX + τY + ω). (3.67)

From (3.66) we can see the level 3n CS of the U(1) gauge factor and the −1 mixed CS, in
the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain

∑Nf

a=1 µa =
∑Nf

a=1 νa = NfmA where
µa = ma +mA and νa = na +mA.
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The complex exponent ϕ needed for the matching is given by

ϕ = 3m2
An
(
N2
f −Nf (4Nf2 + k) + 2Nf2(Nf2 + 2k))

)
−m2

BkNc

+
τX
2
mA

(
2nN2

f2(n− 3) + 3nN2
f (3n− 1) + 2k(Nc(1 + 3n) + 3nNf (n− 3))

+Nf (2 + 2n2 + 12kn2 + 3nNc + 6nNf2(n− 3))
)
+ 2mBωNc(Nf2 −Nf + k)

− τ2X
8

(
1 + 2Nf +Nc(1 + 2k)

)
− τXτY

8

(
− 1 + 8n+ 2n2 +N2

f (−1 + 33n+ 6n2)

+ 2Nf2k(−13 + 9n− 6n2) +Nf2(−13 + 9n− 6n2) + 2Nf
(
(−2 + 13Nf2 − 6Nc)

− n(4 + 9Nf2 + 6Nc) + n2(−4 + 6Nf2 + 24k)
)
+Nc(4n+ k(8− 12n))

+ 3N2
c

)
+

3

2
n

(Nf −Nf2)
Nf1∑
a=1

µ2
a + (Nf −Nf1)

Nf2∑
a=1

ν2a

.
(3.68)

3.2.2.3 The [p,0]X,Y Case

To flow to the [p,0]X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf
flavours and give a positive large real mass to Nf −Nf1 fundamentals. This will lead to
the following duality

• SU(Nc)k SQCD with Nf1 fundamentals and Nf anti-fundamentals Q, Q̃, two ad-
joints X and Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.69)

• U(Ñc)−k × U(1) 3
2n

SQCD with Ñc = 3nNf − Nc, a level −1 mixed CS between
the two U(1)s, Nf dual fundamentals and Nf1 dual anti-fundamentals q, q̃, two
traceless adjoints x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)

+
∑

j=0,...,n−1
ℓ=0,1,2
jℓ=0

V +
j,ℓṼ

+
n−j,2−ℓ +

n−3
2∑

q=0

W+
q W̃

+
n−3
2 −q . (3.70)

The fields V ±
j,ℓ and W±

q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = 1

2 (Nf−Nf1) and−k respectively.
To reproduce this duality on the partition function, we start from the equality between
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(3.55) and (3.56) and consider the following shifts of the real masses

mA → mA +
Nf−Nf1

2Nf
s

mB → mB +
Nf−Nf1

2Nf
s

ma → ma −
Nf−Nf1

Nf
s a = 1, . . . , Nf1

ma → ma +
Nf1

Nf
s a = 1, . . . , Nf −Nf1

σ̃i → σ̃i +
Nf−Nf1

2Nf
s i = 1, . . . , 3nNf −Nc

ξ → ξ +
Nf−Nf1

2 s

(3.71)

We study the limit of large s on both the electric (3.55) and magnetic (3.56) partition
functions by making use of the asymptotic behavior of the hyperbolic Gamma function
(3.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z
(Nf1

,Nf )

SU(Nc)k
(µa; νa; τX ; τY ) (3.72)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =

n−1∏
j=0

2∏
ℓ=0

Nf1∏
a=1

Nf∏
b=1

Γh(jτX + ℓτY + µa + νb)

× eiπϕ
∫

dξ ei
π
2 ξ(η−3nξ)Z(Nf ,Nf1

)

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ; ξ̂)

×

n−3
2∏

q=0

Γh

2ξ + 2Nfω − (Nc − 1)τX −
Nf∑
a=1

(ma + na) + (2q + 1)τA

 (3.73)

×
∏

j=0,...n−1
ℓ=0,1,2
jℓ=0

Γh

ξ +Nfω −
Nc − 1

2
τX −

1

2

Nf∑
a=1

(ma + na) + jτX + ℓτY



where

ξ̂ = −ξ + Nf −Nf1
2

(mA − τX + τY + ω),

η = 4mBNc − 6nmANf + (1− 3nNc + 2n2)τX + 6τY − 2ω(1 + 2n− 3nNf ).
(3.74)

From (3.73) we can see the level 3
2n CS of the U(1) gauge factor and the −1 mixed CS, in

the term mBξ, between the abelian subgroup of the U(Ñc) and the abelian U(1) gauge
group. Again the real masses satisfy the constrain

∑Nf

a=1 µa =
∑Nf

a=1 νa = NfmA where
µa = ma +mA and νa = na +mA.
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The complex exponent ϕ needed for the matching is given by

ϕ = −3

2
m2
AnNf (Nf − 6k)− kNcm2

B +
τX
4
mA

(
6nN2

f (n+ 1) + 4kNc(1 + 3n)

+Nf
(
1 + 2n2 + 3nNc + 12kn(3 + n)

))
+ 2kNcmBω −

τ2X
16

(
1− 2Nf +Nc(1 + 4k)

)
− τXτY

16

(
(−1 + 8n+ 2n2) + 3N2

c + 12N2
f (1 + n)2 + 4Nf

(
− (1 + 2n+ 2n2)

− 3Nc(1 + n) + (−13 + 9n+ 18n2)k
)
+Nc

(
4n+ k(16− 24n)

))
+ 3kn

Nf∑
a=1

n2a .

(3.75)

3.2.2.4 The [p,q]
∗
X,Y Case

To flow to the [p,q]
∗
X,Y theory, we start from the [0,0]X,Y SU(Nc)0 duality with Nf

flavours and give a positive large real mass to Nf1 anti-fundamentals and a negative
large real mass to Nf2 anti-fundamentals. This will lead to the following duality

• SU(Nc)k SQCD withNf fundamentals andNa = Nf−Nf1−Nf2 anti-fundamentals
Q, Q̃, two adjoints X and Y interacting through the superpotential

Wele = TrXn+1 +TrXY 2. (3.76)

• U(Ñc)−k×U(1) SQCD with Ñc = 3nNf−Nc, a level−1 mixed CS between the two
U(1)s, Na dual fundamentals and Nf dual anti-fundamentals q, q̃, two traceless
adjoints x, y interacting through the superpotential

Wmag = Trxn+1 +Trxy2 +

n−1∑
j=0

2∑
ℓ=0

Tr
(
Mj,ℓqxn−1−jy2−ℓq̃

)
. (3.77)

The fields V ±
j,ℓ and W±

q in the dual phase are massive and they are integrated out. The
electric and the magnetic theories acquire a CS level k = 1

2 (Nf1 − Nf2) and −k respec-
tively.
To reproduce this duality on the partition function we start from the equality between
(3.55) and (3.56) and consider the following shifts of the real masses

mA → mA +
Nf1

−Nf2

2Nf
s

mB → mB −
Nf1

−Nf2

2Nf
s

na → na −
Nf1

−Nf2

Nf
s a = 1, . . . , Nf −Nf1 −Nf2

na → na +
Nf−Nf1

+Nf2

Nf
s a = 1, . . . , Nf1

na → na −
Nf−Nf1

+Nf2

Nf
s a = 1, . . . , Nf2

σ̃i → σ̃i +
Nf1

−Nf2

2Nf
s i = 1, . . . , 3nNf −Nc

ξ → ξ − Nf1
+Nf2

2 s

(3.78)
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We study the limit of large s on both the electric (3.55) and magnetic (3.56) partition
functions by making use of the asymptotic behavior of the hyperbolic Gamma function
(3.5). We check that the leading saddle point contributions cancel between the electric
and magnetic phases, and we are left with the equality between

Zele = Z
(Nf ,Na)

SU(Nc)k
(µa; νa; τX ; τY ) (3.79)

in which we have no FI since after the flow we integrate on ξ, and

Zmag =

n−1∏
j=0

2∏
ℓ=0

Nf∏
a=1

Na∏
b=1

Γh(jτX + ℓτY + µa + νb)

× eiπϕ
∫

dξ eiπηξZ(Na,Nf )

U(Ñc)−k
(τX − τY − νa; τX − τY − µa; τX ; τY ;−ξ̂)

(3.80)

where

ξ̂ = ξ +
Nf1 −Nf2

2
(mA − τX + τY + ω),

η = 2mBNc + 6nmANf − (1− 3nNc + 2n2)τX − 6τY + 2ω(1 + 2n− 3nNf ).
(3.81)

From (3.73) we can see the level −1 mixed CS, in the term mBξ, between the abelian
subgroup of the U(Ñc) and the abelian U(1) gauge group. Observe that in this case,
differently from the [p,q] cases studied above, the CS level associated to the gauged
topological symmetry is vanishing. This is because the competition between the shift
that gives rise to the non-trivial vacuum of the U(1)J sector and the shift associated to
the axial symmetry give opposite signs to the divergent masses of the charged fields,
i.e. the fields V ±

j,ℓ and W±
q . This implies that in this case the duality is preserved with

a flat direction in the Coulomb branch of the gauged U(1)J symmetry. Again the real
masses satisfy the constrain

∑Nf

a=1 µa =
∑Nf

a=1 νa = NfmA where µa = ma + mA and
νa = na +mA.
The complex exponent ϕ needed for the matching is given by

ϕ = 9nNfkm
2
A − kNcm2

B +
τX
2
(Nf1 −Nf2)

(
Nc(1 + 3n)− 3nNf (n+ 3)

)
mA

+Nc(Nf2 −Nf1)mBω +
τ2X
2

(
nNf (13− 9n− 18n2) +Nc(−1− 4n+ 6n2)

)
+

3

2
n(Nf1 −Nf2)

Nf∑
a=1

m2
a.

(3.82)

3.2.3 Dualities for USp(2Nc) Chiral SQCD with Two Anti-Symmetric

In this section we start by setting up the notation for USp(2Nc) theories and their dual-
ities. The partition function of a CS-theory with USp(2Nc)k gauge group can be found
starting from (3.1). In particular, for the case of our interest, with 2Nf fundamentals and
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two anti-symmetric rank two tensors A,B, the partition function is given by

Z2Nf

USp(2Nc)2k
(µ⃗; τA; τB) =

Γh(τA)
NcΓh(τB)

Nc

2NcNc!
√
−ω1ω2

Nc

∫ Nc∏
i=1

dσi exp
(
−iπkσ2

i

)∏2Nf

a=1 Γh(µa ± σi)
Γh(±2σi)

×
∏

1≤i<j≤Nc

∏
α=A,B

Γh(τα ± σi ± σj)
Γh(±σi ± σj)

.

(3.83)

The 3d duality for the USp(2Nc)0 case was worked out in [44] and relates

• 3d N = 2 USp(2Nc)0 SCQD with 2Nf flavoursQ and two anti-symmetric rank-two
tensors A,B interacting through the superpotential

Wele = TrAn+1 +TrAB2. (3.84)

• 3d N = 2 USp(2Ñc)0 SQCD where Ñc = 3nNf−Nc−2n−1, with 2Nf dual flavours
q, two anti-symmetric rank-two tensors a, b interacting through the superpotential

Wmag = Tr an+1 +Tr ab2 +

n−1∑
j=0

2∑
ℓ=0

Mj,ℓqa
jbℓq

+
∑

j=0,...,n−1
ℓ=0,1,2
jℓ=0

Yj,ℓỸn−j,2−ℓ +

n−3
2∑

q=0

ZqZ̃n−3
2 −q .

(3.85)

The non-anomalous global symmetry of the teories is SU(2Nf ) × U(1)A × U(1)R under
which the fields transform as in table 3.3.
At the level of the partition function, this duality corresponds to the identity

Z2Nf

USp(2Nc)
(µa; τA; τB) = Z

2Nf

USp(2Ñc)
(τA − τB − µa; τA; τB)

×
n−1∏
j=0

2∏
ℓ=0

∏
1≤a<b≤2Nf

Γh(jτA + ℓτB + µa + µb)

×

n−3
2∏

q=0

2Nf∏
a=1

Γh((2q + 1)τA + τB + 2µa)

×
∏

j=0,...,n−1
ℓ=0,1,2
jℓ=0

Γh

jτA + ℓτB + 2Nfω − (Nc + n)τA −
2Nf∑
a=1

µa



×

n−3
2∏

q=0

Γh

(2q + 1)τA + 4Nfω − 2(Nc + n)τA − 2

2Nf∑
a=1

µa


(3.86)



Supersymmetric Dualities with Four Supercharges 77

Table 3.3: Matter content of USp(2Nc)0 and USp(2Ñc)0 dual theories.

Gauge Global
Field USp(2Nc) USp(2Ñc) SU(2Nf ) U(1)A U(1)R

Q 2 1 2 1 rQ

A 1 1 0 2
n+1

B 1 1 0 n
n+1

Y ±
jℓ 1 1 1 −2Nf 2(1− rQ)Nf + 2j+nℓ−2(Nc+n)

n+1

Z±
q 1 1 1 −4Nf 4(1− rQ)Nf + 2+4q−4(Nc+n)

n+1

q 1 2 2 −1 2−n
n+1 − rQ

a 1 1 0 2
n+1

b 1 1 0 n
n+1

Mj=0,...,n−1
j,0 1 1 2 2rQ + 2j

n+1

Mj=0,...,n−1
2

2j,1 1 1 2 2rQ + 4j+n
n+1

Mj=0,...,n−3
2

2j+1,1 1 1 2 2rQ + 4j+n+2
n+1

Mj=0,...,n−1
j,2 1 1 2 2rQ + 2j+2n

n+1

Ỹ ±
jℓ 1 1 1 2Nf 2(rQ − 1)Nf +

nℓ+2(j+Nc+n+1)
n+1

Z̃±
q 1 1 1 4Nf 4(rQ − 1)Nf +

4(q+Nc+n)+6
n+1

The superpotential (3.84) fixes the values of the real masses for the adjoint fields

τA =
2ω

n+ 1
, τB =

nω

n+ 1
. (3.87)

This duality is going to be our starting point.
In the following we want to construct the duality for non-vanishing CS level. We con-
sider the duality without CS terms and with 2(Nf + k) fundamental flavours and assign
a positive real mass to 2k. By integrating out the massive fields we arrive at the duality
between

• USp(2Nc)2k SQCD with 2Nf fundamentals Q and two anti-symmetric rank-two
tensors A,B interacting through the superpotential

Wele = TrAn+1 +TrAB2. (3.88)

• USp(2Ñc) SQCD with Ñc = 3n(Nf + |k|) −Nc − 2n − 1, 2Nf fundamentals q and
two anti-symmetric rank-two tensors a, b interacting through the superpotential

Wmag = Tr an+1 +Tr ab2 +

n−1∑
j=0

2∑
ℓ=0

Mj,ℓqa
jbℓq. (3.89)

The electric and the magnetic theories acquire a CS level 2k and −2k respectively

The dressed monopole operators of the electric theory acting as singlets in the dual phase
become massive and are integrated out.



78 3.2 Chiral Dualities for SQCD3 with D-type Superpotential

To reproduce this flow at the level of the partition function, we start from the equality
(3.86) and consider the following shifts in the real masses

mA → mA + k
Nf+k

s

ma → ma − k
Nf+k

s a = 1, . . . , 2Nf

ma → ma +
Nf

Nf+k
s a = 1, . . . , 2k

(3.90)

We study the limit of large s on both sides of the identity (3.86) by making use of the
asymptotic behavior of the hyperbolic Gamma function (3.5). We check that the leading
saddle point contributions cancel between the electric and magnetic phases, and we are
left with the equality between

Zele = Z
2Nf

USp(2Nc)2k
(µa; τA; τB), (3.91)

and

Zmag = eiπϕZ2Nf

USp(2Ñc)−2k
(τA − τB − µa; τA; τB)

×
n−1∏
j=0

2∏
ℓ=0

∏
1≤a<b≤2Nf

Γh(jτA + ℓτB + µa + µb).
(3.92)

To evaluate the asymptotic behavior of the factor coming from the singlets, or the electric
mesons under the duality map, in the magnetic theory, we make use of the following
decomposition formula

∑
a,b=1,...,2k

a<b

(jτA + ℓτB + µa + µb − ω) = 2(k − 1)

2k∑
a=1

µ2
a +

(
2k∑
a=1

µa

)2

+ (4k − 2)(jτA + ℓτB − ω)
2k∑
a=1

µa + k(2k − 1)(jτA + ℓτB − ω)2.

(3.93)

The complex exponent ϕ necessary for the equality between the partition functions to
hold has the following form

ϕ = 12nNf (k −Nf )m2
A + 6τA

(
− 1− 2n− 2Nc + 2Nf (1 + n) + 2k(−1 + 2n)

)
mA

+
τ2A
24

(6k − 3) +
τAτB
12

(
4k − 12k2(1 + 24n2) + 3

(
− 7− 25n(1 + n)− 24N2

f (1 + n)2

− 24Nc(1 + 2n)− 24N2
c + 24Nf (1 + n)(1 + 2n+ 2Nc)

+ 4k(12Nf − 72nNf (1 + n) + n(39 + 77n+ 54Nc))
))
− 3n


2Nf∑
a=1

ma

2

− 2k

2Nf∑
a=1

m2
a

.
(3.94)
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3.2.4 Discussion and Conclusions

In this section we studied 3d N = 2 dualities for two adjoint U(Nc) and SU(Nc) SQCD
with Dn+2-type superpotential and odd n. This generalizes the constructions of [11, 85]
for SQCD and of [24, 232, 276] for adjoint SQCD. The dualities are obtained starting from
the one obtained in [230] from the 4d/3d reduction. The classification is constructed
through real mass flows, Higgs flows and the gauging of the topological symmetry. We
corroborated these construction by checking the various steps with the help of the three
sphere partition function. Furthermore we matched the CS contact terms across the dual
phases with the complex phases that can be read in the integral identities on the three
sphere. We concluded by proposing a duality for USp(2N)2k SQCD with two antisym-
metric and Dn+2 type superpotential that was overlooked in the literature.
There are interesting aspects of such dualities and possible generalizations that we did
not investigate and that we leave for future projects. For example we did not match the
superconformal index across the new dual phases. This should provide a stronger check
of the dualities obtained here. Another aspect that we did not investigate corresponds to
find mirror dualities for the U(1) sectors in the duals of the SU(Nc) dualities in presence
of charged matter fields. Such mirrors could simplify the structure of the dual models,
that so far are given in terms of product groups. A further generalization of the con-
struction is related to chiral models with monopole superpotentials. In the SQCD case
such possibility has been discussed in [81] for the case of linear monopole superpotential
and in [30] for SQCD with quadratic monopole superpotential. In the An case a similar
extension (with quadratic monopoles) has been proposed in [23]. The analysis could be
extended also to the dualities with monopole superpotential for the Dn+2 case studied
in [231]. We conclude observing that a full list of 4d dualities for SU(Nc) SQCD with two
tensors has been provided in [119]. It should be possible to reduce such dualities to 3d
and that to study the chiral limit of these cases as well. This is an interesting possibility
because some of the models in the classification have also an interpretation in terms of
the HW setup [121]. This may allow to study the 4d/3d reduction from a T-duality in
the HW setup along the lines of [27, 41] and the chiral dualities as discussed in [24]
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3.3 Sporadic Dualities from Tensor Deconfinement

In this section we study a 3d confining duality recently obtained in [278], corresponding
to USp(4) with two rank-2 anti-symmetric tensors and two fundamentals. The existence
of such a duality has been claimed by extending to the 3d bulk a boundary duality con-
structed from N = (0, 2) half-BPS boundary conditions in 3d N = 2. Again we deconfine
the two rank-2 anti-symmetric tensors and then provide the sequential dualities leading
to the final description in terms of the gauge singlets of the original model.

3.3.1 The Okazaki-Smith 3d duality

In this section we study a 3d N = 2 confining duality recently proposed in [278]. The
electric model is USp(4) SQCD with two fundamentals and two rank-2 anti-symmetric
tensors. The model has an U(2)2 × U(1)R global symmetry and the charges of the fields
under these symmetries are summarized in (3.95).

USp(4) SU(2)A SU(2)a U(1)A U(1)a U(1)R
A 6 2 1 1 0 0

Q 4 1 2 0 1 0

(3.95)

The model has vanishing superpotential and its low energy dynamics is described by
the gauge invariant combinations M = Q1Q2, ϕI = TrAI , ϕIJ = Tr(AIAJ), Bαβ =

QαA1A2Qβ and BI = Q1AIQ2. These fields interact through a superpotential with a
singlet T4 that corresponds to the minimal monopole of USp(4). The charges of the fields
with respect to the global U(2)2 ×U(1)R symmetry are:

SU(2)A SU(2)a U(1)A U(1)a U(1)R
M 1 1 0 2 0

Bαβ 1 3 2 2 0

ϕIJ 3 1 2 0 0

ϕI 2 1 1 0 0

BI 2 1 1 2 0

T4 1 1 −4 −4 2

(3.96)

In the following we will derive this confining duality by deconfining the anti-symmetric
tensors and then by sequentially dualizing the gauge groups. We found that in order to
proceed it is very useful to make the rank-2 tensors traceless by adding the flippers β1,2
interacting through the superpotential

W =
∑
I=1,2

βI TrAI (3.97)

where the USp-invariant trace is defined as TrAI = AijI Jij with Jij the totally anti-
symmetric USp tensor.
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3.3.1.1 Field theory analysis

In the following we will derive the duality using the field theory approach. We proceed
by representing the model in terms of a quiver gauge theory, using the same conventions
of the previous section: the blue circles refer to symplectic gauge groups while the red
squares identify the special unitary flavor groups.
We start by considering the model with the flip in formula (3.97)

4

2

Q

A1 A2

W = β1 TrA1 + β2 TrA2 . (3.98)

We then deconfine the two fields AI with two auxiliary USp(2) nodes with the assign-
ment

Aij1 = qα1i
1 qβ1j

1 ϵα1β1 , Aij2 = qα2 i
2 qβ2 j

2 ϵα2β2 , (3.99)

where the i-index refers to the USp(4) node and (α1,2, β1,2) are indices of the two USp(2)1,2
gauge groups. Therefore the deconfined theory is

4

2

2 2

Q

q1 q2
W =

∑
I=1,2

(
βI Tr q

2
I + σIY

(I)
2

)
, (3.100)

where Y (I)
2 are monopoles for the two USp(2) nodes. The central USp(4) node in this the-

ory has 6 fundamentals and therefore it confines [6]. The IR description has two USp(2)1
and USp(2)2 gauge groups connected by a bifundamental field. There is still a manifest
SU(2) flavor symmetry associated to a node in the quiver and there are further funda-
mental fields for both the USp(2)1,2 gauge factors. There is also a singlet Y4 identified
with the monopole of the USp(4) gauge group for the model in (3.100), that interacts
through a superpotential with the generalized meson of USp(4) itself. The quiver and
the superpotential for this dual theory are

2

2 2

X13 X23

X12
X11 X22

X33

α1 α2

α

W = Y4 PfX + β1X11 + β2X22

+ σ1Y
(1)
2 X2

23 + σ2Y
(2)
2 X2

13 ,
(3.101)
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where the explicit superpotential is given by

W = Y4ϵα1β1
ϵα2β2

ϵαβ

(
−Xα1α2

12 Xβ2α
23 Xβ1β

13 +
1

8
Xα1β1

11 Xα2β2

22 Xαβ
33 −

1

4
Xα1α

13 Xβ1β
13 Xα2β2

22

−1

4
Xα1α2

12 Xβ1β2

12 Xαβ
33 −

1

4
Xα2α

23 Xβ2β
23 Xα1β1

11

)
+ σ1Y

(1)
2 ϵα2αϵβ2βX

α2α
23 Xβ2β

23 + σ2Y
(2)
2 ϵα1αϵβ1βX

α1α
13 Xβ1β

13 + β1X11 + β2X22.

(3.102)

The fields X11, X22, β1 and β2 are massive and can be integrated out. The final superpo-
tential in the IR is therefore

W = −Y4
4
ϵα1β1

ϵα2β2
ϵαβ

(
4Xα1α2

12 Xβ2α
23 Xβ1β

13 +Xα1α2
12 Xβ1β2

12 Xαβ
33

)
+ σ1Y

(1)
2 ϵα2β2

ϵαβX
α2α
23 Xβ2β

23 + σ2Y
(2)
2 ϵα1β1

ϵαβX
α1α
13 Xβ1β

13 .

(3.103)

The two USp(2) nodes have each 4 fundamentals and are therefore confining [6]. Here
we choose to confine the USp(2)1 group. The other choice is completely equivalent be-
cause of the SU(2)A global symmetry that rotates the two anti-symmetric in the original
description of the model. After confining the USp(2)1 gauge group we are left with a
USp(2)2 SQCD with four fundamentals and a non-trivial superpotential. The quiver
and the operator mapping are reported below

2 2

X23

X̃23

2X̃22

X33

X̃33

X̃α2α
23 = ϵα1β1

Xα1α2
12 Xβ1α

13

X̃α2β2

22 = ϵα1β1
Xα1α2

12 Xβ1β2

12

X̃αβ
33 = ϵα1β1

Xα1α
13 Xβ1β

13

(3.104)

while the superpotential is

W = −1

4
ϵα2β2

ϵαβ

[
Y4

(
4X̃α2β

23 Xβ2α
23 + X̃α2β2

22 Xαβ
33

)
− Y (1)

2 (X̃α2β2

22 X̃αβ
33 − 2X̃α1α

23 X̃β1β
23 )

]
+ σ1Y

(1)
2 ϵαβϵα2β2

Xα2α
23 Xβ2β

23 + σ2Y
(2)
2 ϵαα′ϵββ′X̃αβ

33 X̃
α′β′

33 .

(3.105)

The second block in the first line comes from the confining superpotential Y (1)
2 Pf X̃ ,

where the field Y
(1)
2 is the monopole of the USp(2)1 gauge group acting as a singlet in

the confined phase.
We conclude the sequence by confining the USp(2)2 gauge group, that has indeed four
fundamentals. This leads to the final, confined, theory where the new mesons are mapped
to the fundamentals of USp(2)2 as

V αβ = ϵα2β2
X̃α2β

23 Xβ2α
23 , Uαβ = ϵα2β2

Xα2α
23 Xβ2β

23 , Tαβ = ϵα2β2
X̃α2α

23 X̃β2β
23 . (3.106)
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Furthermore there is a singlet of USp(2)2 that we redefine as R = ϵα2β2
X̃α2β2

22 . The
superpotential of this final WZ model is

W = −ϵαβ
4

[
Y4

(
4V αβ +RXαβ

33

)
− Y (1)

2 (RX̃αβ
33 − 2Tαβ + 4σ1U

αβ)

−Y (2)
2 ϵℓm(UαℓT βm − V αℓV βm)

]
+ σ2Y

(2)
2 ϵαα′ϵββ′X̃αβ

33 X̃
α′β′

33 .
(3.107)

The expression (3.107) needs some massage in order to simplify its interpretation. For ex-
ample some fields appear quadratically in the superpotential and they can be integrated
out. By writing

Vαβ = σµαβvµ, σµ = (1, σi) (3.108)

we see that the v3 field is massive. The singlet field ϵαβTαβ also acquires a mass and it can
be integrated out in the IR. By considering the various F-term conditions and rescaling
the fields appropriately, we get the final superpotential

W = Y
(2)
2

[
RUX̃33 + σ1U

2 + σ2X̃
2
33 +R2X2

33 − detVαβ

]
, (3.109)

where the squares are understood with the right contractions. We can then identify the
fields here with the ones in formula (3.96). Looking at the global symmetry structure the
explicit mapping is then

Y
(2)
2 ↔ T4
X33 ↔ M

(R, σ1, σ2) ↔ (ϕ12, ϕ11, ϕ22) (3.110)

Vαβ ↔ Bαβ

(X̃33, U) ↔ (B1, B2).

Substituting this mapping into the superpotential (3.109) we obtain

W = T4
(
BIϕIJBJ +M2ϕ212 + detBαβ

)
, (3.111)

which is the same superpotential of [277], where this confining duality was anticipated.
The remaining fields ϕI map to free decoupled fields in the original theory associated to
the traces of the two anti-symmetric tensors TrAI .

3.3.1.2 3d partition function

We complete our analysis by reproducing the derivation of the duality from supersym-
metric localization on the squashed three sphere. Such procedure gives rise to the iden-
tity between the partition function of USp(4) with with two anti-symmetric and two
fundamentals and the partition function of the WZ model for the gauge singlets. The
global symmetry enters these identities in terms of real masses, that from the field the-
ory side are associated to vevs of the reals scalars in the vector multiplets of the weakly
gauged background flavor symmetries.
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Before studying the deconfinement of two rank-2 anti-symmetric tensors from the three
sphere partition function we briefly review the necessary definitions. The partition func-
tion on the squashed three sphere S3

b , obtained from localization in [212] (see also [211,
240, 247] for the round case) is a matrix integral over the reals scalar in the vector multi-
plet in the Cartan of the gauge group. There is a classical term corresponding to the CS
action (global and local) and the matter and the gauge multiplet contribute with their
one loop determinant. These last can be associated to hyperbolic Gamma functions, for-
mally defined as

Γh(z;ω1, ω2) =

∞∏
n1,n2≥0

(n1 + 1)ω1 + (n2 + 1)ω2 − z
n1ω1 + n2ω2 + z

(3.112)

The argument of such Gamma functions is physically interpreted as a holomorphic com-
bination between the real masses for the gauge and the global symmetries and the R-
charges (or mass dimensions). The purely imaginary parameters ω1 = ib and ω2 = i/b

are related to the squashing parameter of the three sphere S3
b .

Here we will only focus on the case of symplectic gauge group. Let us consider the
partition function of an USp(2Nc) gauge theory with 2Nf fundamentals. It is given by

ZUSp(2Nc),Nf
(µ) =

1

2nn!
√
(−ω1ω2)n

∫ Nc∏
i=1

dzi

∏2Nf

a=1 Γh(±zi + µa)

Γh(±2zi)
∏
i<j

1

Γh(±zi ± zj)

(3.113)

In our analysis we will use an identity involving this partition function and its dual
Aharony phase [6]. The identity is (see Theorem 5.5.9 of [123])

ZUSp(2Nc),Nf
(µ) = Γh

2ω(Nf −Nc)−
2Nf∑
a=1

µa


×

∏
a<b

Γh(µa + µb)ZUSp(2(Nf−Nc−1)),Nf
(ω − µ) (3.114)

with 2ω ≡ ω1 + ω2. Observe that the identity (3.114) remains valid for Nf = Nc + 1, that
corresponds to the confining case of Aharony duality [6], where only the meson M and
the minimal USp(2Nc) monopole Y survive in the WZ model and they interact through
the superpotential W = Y PfM .
We start considering the original model, adding also the flippers βI arising from the
superpotential (3.97). The partition function is

Z =

∏
A=1,2 Γh(2ω − nA)

8
√
−ω1ω2

2

×
∫ ∏

i=1,2

dzi

∏
a=1,2 Γh(±zi +ma)

Γh(±2zi)

∏
A=1,2 Γh(±z1 ± z2 + nA)

Γh(±z1 ± z2)

(3.115)
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In this formula m1,2 are the real masses of the two fundamental fields and n1,2 are the
real masses of the two anti-symmetric fields. We can also use a different basis

m1 = ρ+ σ, m2 = ρ− σ, n1 = µ+ ν, n2 = µ− ν (3.116)

giving an explicit parameterization it terms of the Cartan of the U(2)2 flavor symmetry.
Indeed in this way σ and ν parameterize the Cartan of SU(2)a and SU(2)A respectively.
We then proceed by deconfining the two totally anti-symmetric tensors. This step pro-
duces two USp(2) gauge nodes, two bifundamentals, each connecting one of these USp(2)

gauge groups to the original USp(4). The partition function of the model becomes

Z =

∏
A=1,2

∏
j=1,2 Γh(2ω − jnA)

32
√
(−ω1ω2)4

∫
dz1 dz2 dw1 dw2

Γh(±2z1)Γh(±2z2)Γh(±2w1)Γh(±2w2)

×
∏
i=1,2

 ∏
a=1,2

Γh(±zi +ma) ·
∏
A=1,2

Γh(±zi ± wA + nA/2)

 (3.117)

As a check we can see that (3.115) is obtained by applying (3.114) to the two USp(2)

gauge groups in (3.117). The partition function (3.117) corresponds to the one for the
model in represented in (3.100).
The next step consists of Aharony duality on USp(4). At the level of the partition func-
tion it corresponds to use the identity (3.114) on the gauge theory identified by the vari-
ables z1,2. The partition function becomes

Z =

∏
A=1,2 Γh(2ω − 2nA)

4
√
(−ω1ω2)2

Γh(2ω −m1 −m2 − n1 − n2)Γh(m1 +m2)

×
∫

dw1 dw2

∏
A=1,2

∏
a=1,2 Γh(ma ± wA + nA/2) · Γh(±w1 ± w2 + (n1 + n2)/2)

Γh(±2w1)Γh(±2w2)

(3.118)

The partition function (3.118) corresponds to the one for the model in represented in
(3.101).
The next step consists of a confining limit of Aharony duality on one of the USp(2) factor.
Choosing one of the two USp(2) nodes has the effect of making the SU(2)A × SU(2)a
global symmetry not manifest in the integrand of the partition function. Following the
discussion on the field theory side here we choose to dualize the USp(2)1 gauge group,
such that the partition function becomes

Z =
1

2
Γh(2ω −m1 −m2 − n1 − n2)Γh(m1 +m2)

∏
A=1,2

Γh(2ω − 2nA)

× Γh(m1 +m2 + n1)Γh(n1 + n2)Γh(2ω − 2n1 − n2 −m1 −m2)

×
∫

dw2

∏
a=1,2 Γh(ma ± w2 + n2/2 + n1) · Γh(ma ± w2 + n2/2)

Γh(±2w2)
(3.119)
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The partition function (3.119) corresponds to the one for the model in represented in
(3.104).
The last step of the procedure requires a confining limit of Aharony duality on the left-
over USp(2)2 gauge group. This gives the final partition function

Z = Γh(2ω −m1 −m2 − n1 − n2)Γh(m1 +m2)
∏
A=1,2

Γh(2ω − 2nA)

× Γh(m1 +m2 + n1)Γh(n1 + n2)Γh(2ω − 2n1 − n2 −m1 −m2)

× Γh(m1 +m2 + 2n1 + n2)Γh(m1 +m2 + n1)

× Γh(2ω − 2m1 − 2m2 − 2n1 − 2n2)
∏

a,b=1,2

Γh(ma +mb + n1 + n2) (3.120)

This expression still needs some massage. First we can integrate out the massive fields,
as done on the field theory approach. Here this integration corresponds to take advan-
tage of the formula Γh(2ω − x)Γh(x) = 1. After this step we can also write down (3.120)
in a manifestly SU(2)A × SU(2)a invariant form. We arrive to the expression

Z = Γh(m1 +m2)Γh(n1 + n2)
∏
A=1,2

Γh(m1 +m2 + nA)Γh(2ω − 2nA)

× Γh(2ω − 2m1 − 2m2 − 2n1 − 2n2)
∏
a≤b

Γh(ma +mb + n1 + n2) (3.121)

or using (3.116)

Z = Γh(2ρ)Γh(2µ)Γh(2µ± 2ν)Γh(2ρ+ µ± ν)
× Γh(2ω − 4µ− 4ρ)Γh(2ρ± 2σ + 2µ, 2ρ+ 2µ) (3.122)

This is the final expression that matches with (3.115). We can see that all the fields BI ,
ϕIJ , Bαβ , M and the monopole T4 appear in the partition function with the expected
real masses. Explicitly we can associate these Gamma functions to the singlets of the
confined phase using the mapping

Bαβ ↔ Γh(2ρ± 2σ + 2µ, 2ρ+ 2µ) ϕIJ ↔ Γh(2µ± 2ν, 2µ)

BI ↔ Γh(2ρ+ µ± ν) M ↔ Γh(2ρ) (3.123)

T4 ↔ Γh(2ω − 4µ− 4ρ)

Indeed the arguments of hyperbolic Gamma functions correspond to the real masses that
can be read from the charges in formula (3.96).
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3.4 Discussion and Conclusions

In this Section we have derived, using field theory arguments, a confining dualities that
has been proposed in the literature from supersymmetric localization. Here the duality
has been derived by combining the technique of rank-2 tensor deconfinement of [93]
together with the sequential application of ordinary dualities and/or confining dualities.
There are many interesting directions that would be worth to explore. As discussed in
[278] the field content in this case corresponds to the one of the dualities studied in [37,
44] with D-type superpotential. Nevertheless, as observed in [278] there are differences
in the operator mapping and in the charge spectrum. Furthermore, the USp(4) dual-
ity discussed here appears sporadic and its generalization to USp(2Nc) does not seem
straightforward. For example, we did not find any confining duality by increasing the
rank of the gauge group and keeping fixed the field content (i.e. keeping two rank-2
antisymmetric tensors and possibly increasing the number of fundamentals). It is nev-
ertheless possible that further fields and interactions should be considered in order to
have an USp(2Nc) confining theory with two rank-2 anti-symmetric tensors.
A last, related, question regards the existence of 4d confining dualities with two rank-2
tensors. Beyond the case of USp(2Nc) with two rank-2 anti-symmetric tensors, one can
imagine also cases with unitary or orthogonal gauge groups or cases with more general
rank-2 tensor matter fields.
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The relevance of dualities is undeniable, as hopefully evidenced by the preceding Chap-
ters. Typically, dualities grant access to the non-perturbative, strongly coupled sectors
of field theories by offering alternative descriptions in terms of another theory with per-
turbative dynamics. In the following sections, we will delve into the role played by and
generalizations of electromagnetic duality in N = 4 SYM (supersymmetric Yang-Mills)
and in more exotic non-Lagrangian theories with N = 3 in 4 dimensions. The latter the-
ories are inherently non-Lagrangian due to the representation theory of N = 3, which
can be shown to always enhance to N = 4. They can emerge from brane setups in string
theory and from certain compactifications of M-theory.
Electromagnetic duality, in conjunction with the gauging of finite higher-form sym-
metries [189], furnishes these theories with a suite of new symmetries known as non-
invertible symmetries. These symmetries, in the broader sense of [189], are not described
by groups due to the absence of inverses for any given element. Rather, they are given by
categories, where the concept of a symmetry category arises as a generalization of a sym-
metry group. Particularly, we are interested in duality symmetries, i.e., symmetries that
are partially implemented by an electromagnetic duality transformation and partially by
the gauging of some finite symmetry. Such symmetries are expected since electromag-
netic duality relates two theories with the same local theories but with distinct global
structures, and gauging essentially does the same, thereby a suitable combination of the
two will transform one theory into itself, thus constituting a symmetry of said theory.
In this Chapter, we will start in section 4.1 by revisiting N = 4 SYM in 4 dimensions,
a model in which these concepts naturally arise, and where electromagnetic duality be-
haves well. Subsequently, in section 4.1.1, employing electromagnetic duality, we will
illustrate how the different global structures of this theory organize into closed orbits

89
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based on the topological properties of N = 4. Building upon the example of N = 4, in
section 4.2 we will present the findings of [38], where the one-form symmetries of N = 3

S-fold field theories were established, and the existence of non-invertible symmetries
was conjectured, hypothesizing their existence in analogy to N = 4.

4.1 A Useful Detour: 4d N = 4 SYM

In this section we are going to give a simple review of the maximally supersymmet-
ric Yang-Mills theory in four dimensions, which is going to be the basic toy model to
understand the forthcoming discussion.
As introduced in section 1.1 the N = 4 algebra in four dimensions has only one repre-
sentation containing, in N = 1 language, a vector multiplet and three complex chiral
multiplets in the adjoint representation of the gauge group. This theory has an SU(4)R
R-symmetry under which the six real scalars transform in the rank-2 anti-symmetric rep-
resentation, which is nothing but the fundamental representation of SO(6). The N = 1

lagrangian for this theory is

L =
1

32π
Im τ

∫
d2θTrWαWα +

∫
d2θ d2θ̄Tr

∑
A

Φ̄Ae
2gV ΦA

−
∫

d2θ
√
2gTrΦ1[Φ2,Φ3] + h.c.

(4.1)

where τ = θI
2π + 4πi

g2 is the holomorphic coupling and θI is a topological term called
instanton angle. More explicitly the lagrangian (4.1) takes the form

L = Tr
(
− 1

2g2YM
FµνF

µν +
θI
8π2

Fµν F̃
µν − i

∑
a

λ̄aσ̄µDµλa −
∑
i

Dµϕ
iDµϕi

+ gYM

∑
a,b,i

Cabi λa[Φ, λb] + gYM

∑
a,b,i

C̄iabλ̄
a
[
ϕi, λ̄b

]
+
g2YM

2

∑
i,j

[
ϕi, ϕj

]2) (4.2)

where now ϕ are the real counterpart of the scalar components of the three complex Φ

and Cabi are related to the Clifford matrices of SO(6)R ∼ SU(4)R.
This theory is classically conformal invariant since the coupling constant gYM has mass
dimension zero. Thus, being also supersymmetric, the theory is actually superconformal
and enjoys an SU(2, 2|4) symmetry. Remarkably, the theory is also believed to be UV
finite, since upon perturbative renormalization no ultraviolet divergences arise. Also,
instanton contributions are finite. Consequently, the β-function of this theory vanishes
at all orders of perturbation theory and therefore the theory is conformal invariant also
at the quantum level. It turns out that it is the only maximally superconformal theory in
four dimensions1.
This theory enjoys another symmetry acting on the holomorphic coupling τ . Indeed, the
quantum theory is invariant under the shift θI → θI + 2π, or equivalently τ → τ + 1.

1In general, it is believed that in any dimension there is only one maximally supersymmetric conformal
field theory.
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Montonen and Olive [270] conjectured that the quantum theory is also invariant under
τ → −1/τ . Combining these two symmetry transformations yields to the group SL(2,Z),
known as S-duality group, acting projectively on the parameter τ

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (4.3)

This result is quite interesting when looked through the eye of String Theory and M-
theory. Indeed as breafily mentioned in section 2.2, N = 4 SYM is the worldvolume
theory of a stack of D3-branes and it should be evident that this SL(2,Z) transformation
is inherited by the SU(1, 1) ∼ SL(2,R) symmetry of type-IIB supergravity. In superstring
theory the range of θI = 2πC is quantized so that one can identify θI ∼ θI+2π and there-
fore the only allowed elements of SL(2,R) are the ones in the SL(2,Z) subgroup.
From the point of view of M-theory, N = 4 SYM can be constructed as the dimensional
reduction on a T 2 of 6d N = (2, 0) SCFT which is the worldvolume theory of an M5-
branes. Many of the properties of N = 4 SYM can be understood from the geometry of
M-theory on a 2-torus. In particular, S-duality is realized as the invariance of the holo-
morphic coupling τ under the action of SL(2,Z) which is the moduli space of complex
structure of T 2. Not only that, but the holomorphic coupling τ is exactly related to the
complex moduli of the torus.

4.1.1 Global Forms and S-duality Orbits

The discussion in the previous section does not reveal the full story. While we’ve estab-
lished that SL(2,Z) acts as a symmetry of N = 4 SYM, we’ve overlooked a crucial aspect:
our discussion has been confined to the local dynamics of the theory. Although correla-
tion functions remain invariant under modular transformations, focusing solely on local
correlation functions overlooks the global structure of the gauge group. Delving into
topological features, we find that S-duality takes on a more intricate form. The action of
S-duality can map theories with distinct global structures but identical local dynamics,
forming closed orbits known as S-duality orbits [16].
To understand global structures, we must explore extended operators, those supported
on higher co-dimension manifolds, which act as probes for non-local dynamics. This
section delves into the realm of line operators, namely Wilson, ’t Hooft, and dyonic lines,
that in modern language are to be considered as the operators carrying charge of some
one-form symmetry.
For a gauge theory with a simply connected gauge group G, the classification of line
operators relies on the structure of the universal cover of G, denoted G̃. This arises from
the quotient G = G̃/H , where H ⊆ Z(G̃), the center of G̃. While local operators are
governed solely by the gauge algebra g and are thus invariant under H , Wilson line op-
erators, tied to representations of G, are in one-to-one correspondence with the highest
weight vectors of the algebra, which in turn are in bijection with elements of the Weyl
chamber ΛGw/Weyl(G). Magnetic operators, known as ’t Hooft lines, are more subtle.
They are generally defined as singularities in the gauge field and are implemented, at
the level of the partition function, by constraining the sum over gauge configurations
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to those exhibiting such specific singular behavior. These can be understood in parallel
to Wilson lines when transitioning to the dual ”magnetic” frame, where they are de-
scribed by functionals of the dual gauge field and are labeled by representations of the
Langlands dual of the gauge group ∨G [199]. Consequently, ’t Hooft lines are in one-to-
one correspondence with elements of the Weyl chamber of the Langland dual algebra
Λcw/Weyl(G)2. Dyonic lines, carrying both electric and magnetic charges, arise from
combinations of Wilson and ’t Hooft lines. Their representations are labeled by [245]

(λe, λm) ∈ L = (Λw × Λcw)/Weyl(G). (4.4)

However, not all dyonic lines manifest in a theory with a given gauge group G, as they
are subject to various constraints

• The set of genuine lines has to form a commutative algebra [246], so that if (λe, λm)

and (λ′e, λ
′
m) are allowed operators, then so is (λe + λ′e, λm + λ′m). Additionally, if

(λe, λm) is present, so is its orientation reversal (−λe,−λm). This can be under-
stood as the decomposition of representations into irreducible blocks, which con-
tains the highest weight representation labeled by the sum.

• Gauge fields, defined by the adjoint representation of G̃, ensure that electric line
operators corresponding to them are always present, being their parallel transport.
These are labeled by (re, 0) where re is a root (the weight of the adjoint representa-
tion). Similarly, purely magnetic lines (0, rm) with rm a root of ∨g must also exist.
Hence, inequivalent lines are labeled by elements of the weight lattice modulo the
root lattice. This quotient defines the center of G̃, allowing genuine lines to be or-
ganized into pairs (ze, em) ∈ Z(G̃) × Z(G̃), given that G̃ and ∨G̃ share the same
center.

• Mutual locality, thought of as to the non-abelian analogue of the Dirac quantization
condition [190, 245], imposes further constraints. Correlation functions of two lines
should only depend on their support and charges; hence, since moving one line
around the other results in an overall phase, it has to be set equal to one. This
yields the condition

⟨(ze, zm), (z′e, z
′
m)⟩ := ⟨ze, z′m⟩ − ⟨z′e, zm⟩ ≡ 0 mod Z(G̃), (4.5)

where
⟨ · , · ⟩ : Z(G̃)× Z(G̃)→ Z (4.6)

is the Dirac pairing. Here, 0 mod Z(G̃) signifies zero as an element of the center,
i.e., when Z(G̃) = ZN , it becomes

⟨(ze, zm), (z′e, z
′
m)⟩ = zez

′
m − zmz′e ≡ 0 mod N. (4.7)

In the language of [189], a pure gauge theory with gauge group G has a one-form sym-
metry labelled by its center Z(G) acting on the Wilson lines of the theory. Also, it enjoys

2The Langlands dual algebra ∨g is generated by the co-roots α
(α,α)

.
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a magnetic (d − 3)-form symmetry, which in 4d is still a one-form, labelled by π1(G),
acting on ’t Hooft lines. In the presence of matter, the symmetry groups may be partially
of totally broken due to screening phenomena.
We are now ready to consider the possible global structures of these theories. In partic-
ular, we will focus on N = 4 SYM with gauge algebra su(N), but similar considerations
can be made for cases with all other simply connected groups. The group SU(N) has
center Z(SU(N)) = ZN whose non-trivial subgroups are Zk with k|N .

• SU(N): When the gauge group is SU(N), the maximal lattice is L ⊂ Z2
N and com-

prises of purely electric lines (n, 0) and dyonic lines with charge constrained by
mutual locality

⟨(n, 0), (n′,m)⟩ = nm ≡ 0 mod N, ∀n ∈ ZN , (4.8)

implying that the only possible ’t Hooft lines are the ones with charge m ≡ 0 mod

N , or kN with k ∈ Z. These are the magnetic lines associated to the adjoint repre-
sentation.

• PSU(N) ≃ SU(N)/ZN : In this case the center of the group is trivial and therefore
the only purely electric line is the trivial dyon (0, 0). By mutual locality we can
also see that the lines (n, 1) with n = 0, . . . , N − 1 are allowed and therefore all
the dyonic lines of the form (nm,m) with m = 0, . . . , N − 1 are in the spectrum.
For a fixed n ̸= 0 the only possible lines are the ones (nm,m), therefore we have
N different possible theories labelled by n and they are all related by a shift of the
θ-angle by the Witten effect

(nm,m)→ (nm+m,m) = ((n+ 1)m,m). (4.9)

This means that the shift θ → θ + 2π changes the underlying line bundle

PSU(N)θ+2π
n = PSU(N)θ(n+1) mod N , (4.10)

and is therefore not a symmetry of the theory anymore. This enlarges the peri-
odicity to 2πN , which can be distinguished by the presence of a non-trivial class
wb ∈ H2(M(4),ZN ) that arises as a topological action in the partition function of
the theory. The easiest example of this is the case of SO(3) ≃ SU(2)/Z2. Here
we can distinguish two different theories, depicted in figure 4.1, usually denoted
as SO(3)±. At the level of the bundle, this is a consequence of the presence of a
non-trivial Stieffel-Witney class w2 ∈ H2(M(4),Z2) of SO(3)-bundles. In partition
function one has, schematically

ZSO(3)± [M
(4), τ ] =

∑
E→M

∫
DADΦ e−S

N=4[A,Φ;τ ](±1)
∫ P(w2)

2 , (4.11)

where P(w2) is the Pontryagin square.

• SU(N)/Zk : Since k|N , consider k′ an integer such that kk′ = N . Then the al-
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λe

λm

SU(2)
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Figure 4.1: Possible line lattices for the different global structures in theories with gauge algebra
su(2). The shaded region highlights the Z2 charges.

lowed purely electric lines are (nek mod N, 0) for every integer ne. Mutual locality
constraints dyons to be (

ne(k, 0) + nm (n, k′)
)
mod N, (4.12)

with nm ∈ Z and n = 0, · · · , k − 1 fixed. As before, we have a family of bundles
(SU(N)/Zk)n related by the Witten effect in a non-trivial way

(SU(N)/Zk)θ+2π
n = (SU(N)/Zk)θ(n+k′) mod k . (4.13)

Yet, this is qualitatively different from the previous case. In fact, starting from
a given n and shifting the θ angle we can only reach theories with n′ = n mod

(gcd (k, k′)). This means that if gcd (k, k′) = 1, one can simply extend the θ an-
gle periodicity. But when N is not square-free, i.e. some of its prime factors appear
more than once in its prime decomposition, then we might have gcd (k, k′) ̸= 1 and
we have distinct orbits under shifts of θ. In this case, enlarging the periodicity of θ
is not enough to cover all the configurations and the theory has discrete θ-angles.
As an example of this is SU(4)/Z2 = SO(6). We can verify the theory has 4 bun-
dles, yet neither (SU(4)/Z2)0 and (SU(4)/Z2)1 nor (SU(4)/Z2)2 and (SU(4)/Z2)3
are connected through a θ periodicity, while 0 ↔ 2 and 1 ↔ 3 are. Therefore, the
theory has 2 distinct theta angles θ1 and θ2 both with 4π periodicity. Again, at the
bundle level this is the result of a non trivial wb ∈ H2 (M,Z4)

As concrete examples, in figures 4.1 and 4.2, we give the line lattices for theories with
gauge algebra su(2) and su(4) respectively.

With this discussion in mind, we are now ready to understand how the elements of
SL(2,Z) act on different global structures of N = 4 SYM. For ease of discussion we will
still focus on theories with gauge algebra g = su(N). Here the Langland’s dual algebra
is su(N) itself. The S generator of SL(2,Z) acts on the conjugacy classes of charges as

S : (ze, zm)→ (zm,−ze) (4.14)

so that a given a lattice Ln,k of the theory (SU(N)/Zk)n, gets mapped to the lattice Lk′,n′
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Figure 4.2: Possible line lattices for the different global structures in theories with gauge algebra
su(4). The shaded region highlights the Z4 charges.

where the two factor are determined as the minimal charges of the form

(0, k′), (−N/k′, n′) ∈ Lk,n. (4.15)

The T generator, as it acts as a 2π shift in the θ-angle, maps theories as in (4.13). The two
generators describe orbits in the space of theories, connecting different global structures.
To illustrate the discussion we give the orbits of theories with g = su(3) and g = su(4) in
figure 4.3.

Therefore, if one considers the global structure of these theories, the SL(2,Z) action is
not a symmetry anymore since it changes the line lattice. But here comes the catch: one
could generate a symmetry operation by going around these duality orbits at specific
values of the gauge coupling. This is achieved by supplementing the action of either
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Figure 4.3: S-duality orbits for N = 4 SYM with gauge algebra g = su(3) and g = su(4) and
different global structures.

S, T with a suitable gauging of a Zk subgroups of the center [244]. In modern language
what we want to do is to gauge subgroups of the one-form symmetry of the theory. By
gauging we mean making the symmetry dynamical by turning on an associated back-
ground field, minimally couple it to the bulk theory and then sum over configurations
of the background. Consider for example SYM with SU(2) gauge, and gauge the Z2

electric one-form symmetry of the theory. On the partition function this is implemented,
schematically, as adding a background gauge field B(e) to it and then summing over
bundles ∑

[B(e)]

ZSU(2)[τ ;B
(e)] =

∑
[B(e)]

∑
w2(E)=B(e)

∫
DADΦ e−S[A,Φ,B

(e)]

=
∑
E

∫
DADΦ e−S[A,Φ] = ZSO(3)+ [τ ; 0].

(4.16)

Now one can imagine that the joint action of gauging the one-form symmetry, named σ
in [244], followed by an S transformation will act as

SU(2)[τ ]
σS−−→ SU(2)

[
−1

τ

]
, (4.17)

which is going to be a symmetry of the theory when the coupling is τ = i. This is one
example of a non-invertible self-duality defect. The non-invertibility comes from the
gauging action which acts non-trivially on line operators.
This discussion can be further generalized to theories with general gauge groups by
considering an additional operator. In the SU(2) case we can also get the SO(3)− theory
by stacking the partition function with a topological action3, which can be considered as

3In the literature this is known as Symmetry Protected Topological phase or SPT for short.
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a new operator τ acting on SU(2) as

τ : SU(2)→ SU(2)⊗ SPT, (4.18)

which just acts by stacking the partition function, in this case, with

Z[SPT] = exp

(
πi

2

∫
P(B(e))

)
= (−1)

∫ P(w2)
2 . (4.19)

This is exactly the topological term we introduced in (4.11). This operator, together with
gauging, are generators of an additional SL(2,Z2). By using combinations of these oper-
ators with the S, T transformations, one can construct various non-invertible symmetry
generators [244].

4.2 Higher-form and Non-invertible Symmetries in N = 3 S-folds

4.2.1 Introduction

In the recent past, a new paradigm for the notion of symmetry in QFTs became domi-
nant. It is based on the necessity to include higher-form symmetries and the correspond-
ing extended objects in the description of quantum field theories [189]. Restricting to
four-dimensional QFTs, the simplest way to proceed consists in classifying the one-form
symmetries in supersymmetric and conformal theories (SCFTs). A seminal paper that
allowed for such a classification has been [16] where a general prescription was given
in terms of the spectrum of mutually local Wilson and ’t Hooft lines [245]. Such a pre-
scription was initially based on the existence of a Lagrangian description for the SCFT
under investigation. In absence of a Lagrangian description it is nevertheless possible
to use other tools, coming from supersymmetry, holography and/or branes. These con-
structions have allowed to figure out the one-form symmetry structure of many different
QFTs, including some 4d non-Lagrangian SCFTs, see [18, 51, 60, 68, 97, 100–102, 122, 153,
154, 171, 173, 174, 191, 223, 271].
A class of theories that has not been deeply investigated so far are SCFTs with 24 super-
charges, i.e. N = 3 conformal theories. Such models have been predicted in [10], and
then found in [192]. Many generalizations have been then studied by using various ap-
proaches [17, 28, 58, 59, 117, 193, 242, 260]. A key role in the analysis of [192] is based on
the existence, in the string theory setup, of non-perturbative extended objects that gen-
eralizes the notion of orientifolds, the S-folds (see [172, 229] for their original definition).
From the field theory side, the projection implied by such S-folds on N = 4 SYM has
been associated to the combined action of an R-symmetry and an S-duality twist on the
model at a fixed value of the holomorphic gauge coupling, where the global symmetry
is enhanced by opportune discrete factors. Four possible Zk have been identified, corre-
sponding to k = 2, 3, 4 and 6. While the Z2 case corresponds to the original case of the
orientifolds [47, 105, 106, 282, 283, 287], where actually the holomorphic gauge coupling
does not require to be fixed, the other values of k correspond to new projections that
can break supersymmetry down to N = 3. The analysis has been further refined in [17],
where the discrete torsion, in analogy with the case of orientifolds, has been added to
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this description. In this way, it has been possible to achieve a classification of such N = 3

S-folds SCFT in terms of the Shephard–Todd complex reflection groups.
The goal of this Chapter consists in classifying one-form symmetries for such theories,
constructing the lattices of lines and identifying which models possess non-invertible
symmetries. The main motivation behind this expectation is that for the rank-2 S-folds,
in absence of discrete torsion, the SCFTs enhance to N = 4 SYM [17] where these prop-
erties are present. The existence of non-trivial one-form symmetries in some exceptional
N = 3 theories has also been argued in [136].
Our strategy adapts the one presented in [173] to S-fold setups. There, the spectrum of
lines is built from the knowledge of the electromagnetic charges of massive states in a
generic point of the Coulomb branch. These charges are read from the BPS quiver, under
the assumption that the BPS spectrum is a good representative of the whole spectrum
of electromagnetic charges. In the case of S-folds however such a BPS quiver descrip-
tion has not been worked out, and we extract the electromagnetic charges of dynamical
particles from the knowledge of the (p, q)-strings configurations in the Type IIB setup
[288, 311]. The main assumption behind the analysis is that such charges are a good
representative of the electromagnetic spectrum.
We proceed as follows. First we choose an N = 3 theory constructed via an S-fold projec-
tion of Type IIB. This consists in having N D3-branes, together with their images, on the
background of an S-fold. At a generic point of the Coulomb branch, the corresponding
low energy gauge dynamics corresponds to a U(1)N gauge theory where each U(1) is as-
sociated to a D3. Then we list all (p, q)-strings that can be stretched between D3-branes
and their images. They have electric and magnetic charges with respect to U(1)N . Even-
tually we run the procedure of [173]. This consist in finding all the lines that are genuine,
i.e. have integer Dirac pairing with the local particles, modulo screening by the dynami-
cal particles. This gives the lattice of possible charges, then the different global structures
correspond to maximal sub–lattices of mutually local lines.

Table 4.1: Summary of our results. 1 represents a trivial group.

S-fold One-form
symmetry

# of inequivalent
lattices

Non-invertible
symmetry

S3,1 Z3 2 Yes
S3,3 1 1 No
S4,1 Z2 2 Yes
S4,4 1 1 No
S6,1 1 1 No

Our results are summarized in Table 4.1. In the first column, one finds the type of S-fold
projection that has been considered. Such projections are identified by the two integers k
and ℓ in Sk,ℓ. The integer k corresponds to the Zk projection while the second integer ℓ is
associated to the discrete torsion. Then, when considering an Sk,ℓ S-fold on a stack of N
D3-branes the complex reflection group associated to such a projection is G(k, k/ℓ,N).
In the second column, we provide the one-form symmetry that we found in our analy-
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sis, and in the third, the number of inequivalent line lattices that we have obtained. The
last column specifies whether there exist cases that admit non-invertible symmetries. In-
deed, here we find that in some of the cases there exists a zero-form symmetry mapping
some of the different line lattices, that are therefore equivalent. Furthermore in such
cases we expect the existence of non-invertible symmetries obtained by combining the
zero-form symmetry with a suitable gauging of the one-form symmetry.
A remarkable observation strengthening our results regards the fact that our analysis
reproduces the limiting G(k, k, 2) cases, where supersymmetry enhances to N = 4 with
su(3), so(5) and g2 gauge groups for k = 3, 4 and 6 respectively. Another check of
our result is that it matches with the cases G(3, 1, 1) and G(3, 3, 3), where an N = 1

Lagrangian picture has been worked out in [320].

4.2.2 Generalities

4.2.2.1 Global Structures from the IR

The strategy adopted here, as already discussed in the introduction, is inspired by the
one of [173]. The main difference is that instead of using BPS quivers, not yet available
for our S-folds, we take advantage of the type IIB geometric setups and probe the charge
spectrum with (p, q)-strings – the bound state of p fundamental strings F1 and q Dirichlet
strings D1.4

Despite this difference, the rest of the procedure is the one of [173] which we now sum-
marize. Denote as

γi = (e
(i)
1 ,m

(i)
1 ; . . . ; e(i)r ,m(i)

r ) (4.20)

a basis vector of the electromagnetic lattice of dynamical state charges under the U(1)re×
U(1)rm gauge symmetry on the Coulomb branch. The spectrum of lines can be deter-
mined by considering a general line Lwith charge

ℓ = (e
(l)
1 ,m

(l)
1 ; . . . ; e(l)r ,m

(l)
r ) . (4.21)

This is a genuine line operator if the Dirac pairings with all dynamical states Ψ are inte-
ger

⟨Ψ,L⟩ ∈ Z ∀Ψ . (4.22)

This can be rephrased as the condition

r∑
j=1

e
(i)
j m

(l)
j −m

(i)
j e

(l)
j ∈ Z ∀ i . (4.23)

Furthermore, inserting a local operator with charge γi on the worldline of a line with
charge ℓ shifts its charge by γi. Therefore if a line with charge ℓ appears in the spectrum
then a line with charges ℓ +

∑
kiγi with ki ∈ Z must also appear. When classifying

the spectrum of charges of the line operators of a QFT it is then useful to consider the
4In order to provide the IR spectrum of line operators of the SCFTs from this UV perspective, we assume the

absence of wall-crossing. While such an assumption is a priori motivated by the high degree of supersymmetry,
a posteriori it is justified by the consistency of our results with the literature
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charges ℓ modulo these insertions of local states. This gives rise to equivalence classes of
charges with respect to the relation

ℓ ∼ ℓ+ γi ∀ i . (4.24)

Borrowing the nomenclature of [173], we will refer to such identification as screening and
we will work with each equivalence class by picking one representative. The genuine
lines after screening form a lattice. In general two such lines are not mutually local and
a choice of global structure corresponds to a choice of a maximal sublattice of mutually
local lines.

4.2.2.2 Charged States in Sk,l-folds

We aim to determine the electromagnetic charges of the local states generated by (p, q)-
strings stretched between (images of) D3-branes in presence of an S-fold. The S-fold
background of Type IIB string theory consist of a spacetime R4 × (R6/Zk) where the
Zk quotient involves an S-duality twist by an element ρk ∈ SL(2,Z) of order k, where
k = 2, 3, 4, 6. For k > 2 the value of the axio-dilaton vev is fixed by the requirement that
it must be invariant under the modular transformation associated to ρk. The matrices ρk
and the corresponding values5 of τ are given in Table 4.2.

Table 4.2: Elements ρk of SL(2,Z) of order k used in S-fold projections, and the corresponding
fixed coupling τ .

SL(2,Z) S2 = −I2 (ST )−1 S (S3T )−1

k 2 3 4 6

ρk

(
−1 0
0 −1

) (
0 1
−1 −1

) (
0 −1
1 0

) (
0 −1
1 1

)

ρ−1
k

(
−1 0
0 −1

) (
−1 −1
1 0

) (
0 1
−1 0

) (
1 1
−1 0

)
τ any τ e2iπ/3 i e2iπ/3

A stack of N D3-branes probing the singular point of the S-fold background engineer an
N = 3 field theory on the worldvolume of the stack of D3-branes. It is useful to consider
the k-fold cover of spacetime, and visualize theN D3-branes together with their (k−1)N
images under the Sk-fold projection. We are going to label them-th image of the i-th D3-
brane with the index im, where i = 1, . . . , N and m = 1, . . . , k.
Under the S-fold projection, the two-form gauge fields of the closed string sector B2 and

5In our convention, an SL(2,Z) transformation of the axio-dilaton τ → (aτ+b)/(cτ+d) relates to a matrix

ρk =

(
d c
b a

)
. We also have S =

(
0 −1
1 0

)
and T =

(
1 0
1 1

)
.
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C2 transform in the fundamental representation(
B2

C2

)
→ ρk

(
B2

C2

)
. (4.25)

Consistently, the (p, q) strings charged under these potentials are mapped to (p′, q′) where

(p′ q′) = (p q) · ρ−1
k . (4.26)

We denote a state associated to a (p, q) connecting the im-th D3-brane and the jn D3-
brane as

|p, q⟩im,jn = | − p,−q⟩jn,im , (4.27)

where we identity states with both opposite charges and orientation.
First, strings linking branes in the same copy of R6/Zk transform as follows

|p, q⟩im,jm → ζ−1
k |p

′, q′⟩im+1,jm+1
, (4.28)

where (p′, q′) are related to (p, q) by (4.26) and ζk is the primitive k-th root of unity. These
states always collectively give rise to a single state in the quotient theory, with charges

D3iD3j : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ;

j-th︷ ︸︸ ︷
−p,−q; . . . ; 0, 0) . (4.29)

An important ingredient we need to add to our picture is the discrete torsion for B2 and
C2 [17, 310]. In presence of such a discrete torsion, a string going from the im-th brane
to the jm+1-th brane should pick up an extra phase which depends only on its (p, q)-
charge and the couple (θNS, θRR). More precisely, one expects that the S-fold action can
be written as follows [219]:6

|p, q⟩imjm+1
→ ζ−1

k e2πi(pθNS+qθRR) |p′, q′⟩im+1jm+2
, (4.30)

where again (p′, q′) are related to (p, q) by (4.26). For i ̸= j, this always leads to the
following state in the projected theory [213, 233]:7

D3iD3ρj : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ;

j-th︷ ︸︸ ︷
−(p q) · ρk; . . . ; 0, 0) . (4.31)

Note that this is the only case that might not lead to any state in the quotient theory when
i = j, i.e. when a string links a brane and its image. When the quotient state exists, it has

6We thank Shani Meynet for pointing out [219] to us.
7The action on (p, q) involves ρ−1

k , see (4.26). In writing (4.31) however, we measure the charge with respect
to the brane in the chosen fundamental domain, hence the appearance of ρk instead of its inverse.
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charges

D3iD3ρi : (0, 0; . . . ;

i-th︷ ︸︸ ︷
(p q)− (p q) · ρk; . . . ; 0, 0) . (4.32)

Analogously, strings twisting around the S-fold locus n-times pick up n-times the phase
in (4.30).
A last remark is that discrete torsion allows some strings to attach to the S-fold if the
latter has the appropriate NS and/or RR charge. If this is the case, the state is mapped
as in (4.28)

|p, q⟩Skim
→ |p′, q′⟩Skim+1

, (4.33)

and provides the following charge in the projected theory

SkD3i : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ; 0, 0) . (4.34)

These rules are illustrated and details on discrete torsion are provided in the remaining
of this section for orientifolds and S-folds separately.

The case with k = 2: orientifolds In this subsection we apply the formalism described
above for orientifolds and reproduce the spectrum of strings known in the literature.
The matrix ρ2 is diagonal, therefore the two p and q factors can be considered inde-
pendently. In this case the field theory obtained after the projection is Lagrangian and
can be studied in perturbative string theory with unoriented strings. Discrete torsion
takes value in (θNS, θRR) ∈ Z2⊕Z2, giving four different choices of O3-planes related by
SL(2,Z) actions [310], see Table 4.3.

Table 4.3: Different discrete torsions on O3-planes.

O3-planes O3− O3+ Õ3
−

Õ3
+

(θNS, θRR) (0, 0) (1/2, 0) (0, 1/2) (1/2, 1/2)

The orientifold action is then recovered from (4.28) and (4.30) with ζ2 = −1. First, we
have

|p, q⟩i1j1 → −| − p,−q⟩i2j2 = −|p, q⟩j2i2 . (4.35)

For the strings that stretch from one fundamental domain of R6/Z2 to the next, there are
four cases depending on the values of θNS and θRR

O3− : |p, q⟩i1j2 → −|p, q⟩j1i2 ,
O3+ : |p, q⟩i1j2 → −epπi|p, q⟩j1i2 ,
Õ3

−
: |p, q⟩i1j2 → −eqπi|p, q⟩j1i2 ,

Õ3
+

: |p, q⟩i1j2 → −e(p+q)πi|p, q⟩j1i2 .

(4.36)
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It is interesting to consider strings connecting one brane to its image, i = j. In the case
of trivial discrete torsion, corresponding to the O3−-plane, all such strings are projected
out. On the contrary, in the O3+ case, an F1-string linking mirror branes survives the
projection, while a D1-string similarly positioned is projected out. We also find strings
that can attach to the different orientifolds following [213]

O3− : none , O3+ : |0, 1⟩O3+im , Õ3
−

: |1, 0⟩
Õ3

−
im
, Õ3

+
: |1, 1⟩

Õ3
+
im
, (4.37)

as well as bound states of these.

The cases with k > 2: S-folds The construction discussed above can be applied to
Sk>2 in order to obtain the string states in the quotient theory. For k > 2, the discrete
torsion groups have been computed in [17], the result being θNS = θRR ∈ Z3 for the S3-
case and θNS = θRR ∈ Z2 for the S4-case. The S6-fold does not admit non-trivial discrete
torsion. It was also pointed out that, for the S3-case, the choices θNS = θRR = 1/3 and
θNS = θRR = 2/3 are related by charge conjugation; therefore everything boils down to
whether the discrete torsion is trivial or not. Following the notation of [17], we denote
as Sk,1 the S-folds with trivial discrete torsion and as Sk,k the S-folds with non-trivial
discrete torsion.
As before, the only states that might not lead to any state in the quotient theory are the
strings linking different covers of R6/Zk. (4.30) generalizes in the following way [219]: a
state |p, q⟩imjn is mapped to ζ−1

k e2πi(pθNS+qθRR) |p′, q′⟩im+1jn+1
with (p′, q′) obtained as in

(4.26). In more details

S3,1 : |p, q⟩i1jm+1
→ e−i2π/3|q − p,−p⟩i2jm+2

,

S3,3 : |p, q⟩i1jm+1
→ e−i2π/3eim(p+q)2π/3|q − p,−p⟩i2jm+2

,

S4,1 : |p, q⟩i1jm+1
→ e−iπ/2| − q, p⟩i2jm+2

,

S4,4 : |p, q⟩i1jm+1 → e−iπ/2eim(p+q)π| − q, p⟩i2jm+2 ,

S6,1 : |p, q⟩i1jm+1
→ e−iπ/3|p− q, p⟩i2jm+2

.

(4.38)

This shows that no state is projected out for S3,1 and S3,3. Analogously to the orientifold
cases, we project out some strings linking mirror branes: |p, q⟩inin+2

in S4,1 and S4,4, and
|p, q⟩inin+3

in S6,1 respectively.
Finally, we get extra strings linking the S-fold to D-branes for the cases with discrete
torsion. Following the discussion in [233], we know that these S-folds admit all kinds of
p and q numbers

S3,3 : |p, q⟩S3,3in , S4,4 : |p, q⟩S4,4in . (4.39)

4.2.2.3 Dirac Pairing from (p, q)-strings

Having determined the states associated to (p, q)-strings that survive the S-fold projec-
tion we now analyze the electromagnetic charges of these states. It is useful to consider
the system of a stack of D3-branes and an Sk,ℓ-fold on a generic point of the Coulomb
branch. This corresponds to moving away the D3-branes from the S-plane. On a generic
point of the Coulomb branch, the low energy theory on the D3-branes is a U(1)Ni gauge
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symmetry, where each U(1)i factor is associated to the i-th D3-brane. The theory includes
massive charged states generated by the (p, q)-strings studied in the previous section. A
(p, q)-string stretched between the i-th and j-th D3-brane has electric charge p and mag-
netic charge q under U(1)i as well as electric charge −p and magnetic charge −q under
U(1)j , and is neutral with respect to other branes. We organize the charges under the
various U(1)s in a vector

(e1,m1; e2,m2; . . . ; eN ,mN ) (4.40)

where ei and mi are the electric and magnetic charge under U(1)i, respectively. In this
notation the charge of a string stretched between the i-th and j-th D3-brane in the same
cover of R6/Z2 has charge

D3iD3j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−p,−q; . . . ) , (4.41)

where the dots stand for null entries. We will keep using this notation in the rest of the
Chapter. A (p, q)-string stretched between the i-th D3-brane and the l-th image of the
j-th D3-brane imparts electromagnetic charges (p, q) under U(1)i and charges −(p, q)ρlk
under U(1)j . In formulas

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρlk; . . . ) . (4.42)

The last ingredient for our analysis is given by the Dirac pairing between two states.
Consider a state Ψ with charges ei,mi under U(1)i and a state Ψ′ with charges e′i,m

′
i

under U(1)i. The pairing between F1 and D1-strings in Type IIB dictates that the Dirac
pairing between these states is given by

⟨Ψ,Ψ′⟩ =
N∑
i=1

(eim
′
i −mie

′
i) . (4.43)

By using this construction we can reproduce the usual Dirac pairing of N = 4 SYM with
ABCD gauge algebras. As an example we now reproduce the Dirac pairing of DN ,
engineered as a stack of N D3-branes probing an O3−-plane. In this case the allowed
(p, q)-strings have the following charges

D3iD3j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−p,−q; . . . )

D3iD3ρj : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷︸︸︷
p, q ; . . . )

(4.44)

The states associated to (1, 0)-strings correspond to theW bosons while the states asso-
ciated to (0, 1)-strings correspond to magnetic monopoles M. For each root Wi of DN
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letMi be the corresponding coroot. More precisely ifWi is associated to a (1, 0)-string
connecting two D3-branes, then the corootMi corresponds to the string (0, 1) stretched
between the same pair of D3-branes. The only non-vanishing Dirac pairing is the one
between a Wi boson and an Mj monopole. This pairing between the simple (co)roots
Wi andMj is given by the intersection betweenWi andWj , explicitly

⟨Wi,Mj⟩ = (ADN
)i,j , (4.45)

where ADN
is the Cartan matrix of the DN algebra, corresponding to an so(2N) gauge

theory. Indeed the intersection between F1 strings in the background of an O3− repro-
duces the intersection of the roots of DN . The Dirac pairing (4.45) reproduces the Dirac

pairing of so(2N) N = 4 SYM. Similar constructions for O3+, Õ3
−

, and Õ3
+

lead to the
B and C cases (while branes in absence of orientifold would give A). The corresponding
gauge algebras are summarized in Table 4.4.

Table 4.4: F1-string, D1-string, and the F1-D1 bound state providing respectively the electric, mag-
netic, and dyonic charges of the projected N = 4 gauge theory.

O3-planes F1-string D1-string F1-D1 bound state

O3− so(2N) so(2N) so(2N)
O3+ usp(2N) so(2N + 1) usp(2N)

Õ3
−

so(2N + 1) usp(2N) usp(2N)

Õ3
+

usp(2N) usp(2N) so(2N + 1)

4.2.2.4 Lines in O3-planes

Before moving to new results, we illustrate our method with well understood O3-planes.
Specifically, we consider placing N = 2 D3-branes in the background of an O3+-plane.

In this specific example, the F1-strings corresponding to elementary dynamical states in
the quotient theory can be chosen to be |1, 0⟩1211 and |1, 0⟩1121 . The first links the i = 1

brane to its mirror (D3ρ1D31) and the second links the i = 1 to the i = 2 brane (D31D32).
A pictorial representation of this setup is shown in Figure 4.4. In the notation of the
previous section, they lead toWi-bosons in the gauge theory with the following charge
basis

D3ρ1D31 : w1 = (2, 0; 0, 0) , D31D32 : w2 = (−1, 0; 1, 0) . (4.46)

These generate the algebra usp(4) of electric charges. The elementary magnetic monopoles
Mi come from the D1-strings |0, 1⟩O3+11 and |0, 1⟩1121 , and provide the following charges

O3+D31 : m1 = (0, 1; 0, 0) , D31D32 : m2 = (0,−1; 0, 1) . (4.47)

This generates the algebra so(5) of magnetic charges. Finally, the elementary (1, 1)-
strings leading to states in the quotient theory can be chosen to be |1, 1⟩1211 and |1, 1⟩1121 ,
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D3ρ2 D3ρ1

D31 D32

(1,0)

(1,0)

O3+

Figure 4.4: A pictorial representation of two D3-branes probing the O3+ orientifold on a generic
point of the Coulomb branch. The light blue shaded area is a possible choice of fundamental
domain under the spacetime identification induced by the orientifold. Black (gray) dots represent
(images of) D3-branes. Black lines correspond to (p, q)-strings stretched between D3-branes. In
particular, we drew (p, q)-strings generating the W-bosons corresponding to simple roots N = 4
usp(4) SYM.

i.e. D3ρ1D31 and D31D32 respectively. They provide dyons Di

D3ρ1D31 : d1 = (2, 2; 0, 0) , D31D32 : d2 = (−1,−1; 1, 1) , (4.48)

which reproduces an usp(4) algebra. We will limit ourselves to considering the W-
bosons and magnetic monopoles M. Indeed, they generate the full lattice of electro-
magnetic charges admissible in the orientifold theory. See that

d1 = w1 + 2m1 d2 = w2 +m2 . (4.49)

Clearly, all other allowed (p, q)-charges can be reconstructed in this way. The Dirac pair-
ing between these elementary electromagnetic charges reads

⟨W1,W2⟩ = ⟨M1,M2⟩ = 0 ,

⟨M1,W2⟩ = 1 ,

⟨W1,M1⟩ = ⟨M2,W1⟩ = ⟨W2,M2⟩ = 2 .

(4.50)

Now, introduce a line operator L with charge vector ℓ. It is convenient to express it in
the basis of dynamical charges

ℓ = α1w1 + α2w2 + β1m1 + β2m2 , (4.51)

where αi and βi to be determined. Screening with respect toW1 andW2 imposes

α1 ∼ α1 + 1 , α2 ∼ α2 + 1 , (4.52)
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respectively, while screening with respect toM1 andM2 imposes

β1 ∼ β1 + 1 , β2 ∼ β2 + 1 . (4.53)

Mutual locality with respect to the dynamical charges requires the quantities

⟨L,W1⟩ = −2β1 + 2β2 , ⟨L,W2⟩ = β1 − 2β2 ,

⟨L,M1⟩ = 2α1 − α2 , ⟨L,M2⟩ = −2α1 + 2α2 ,
(4.54)

to be integers. All these constraints set

α1 =
e

2
α2 = 0 , β1 = 0 , β2 =

m

2
mod 1 , (4.55)

with e,m = 0, 1. Linearity of the Dirac pairing then guarantees mutual locality with re-
spect to the full dynamical spectrum. Thus, the charge of the most general line (modulo
screening) must read

ℓe,m =
1

2
(2e,−m; 0,m) . (4.56)

A choice of global structure consists in finding a set of mutually local lines. The mutual
locality condition between two lines L and L′ with charges ℓe,m and ℓe′,m′ is given by

⟨L,L′⟩ = 1

2
(−em′ + e′m) ∈ Z . (4.57)

Equivalently
em′ −me′ = 0 mod 2 . (4.58)

We find three such sets, each composed of a single line with non-trivial charge: ℓ1,0,
ℓ0,1, or ℓ1,1. In agreement with [16], we find that the line with charge ℓ1,0 transforms as a
vector of usp(4) and the theory is USp(4). The line with charge ℓ0,1 transforms as a spinor
of so(5) and corresponds to the global structure (USp(4)/Z2)0. The line with charge
ℓ1,1 transforms both as a vector and a spinor, and the gauge group is (USp(4)/Z2)1.
Motivated by the match between our results (obtained through the procedure described
above) and the global structures of Lagrangian theories [16], in the next sections we use
our method to analyze the line spectra of S-fold theories.

4.2.3 Lines in S-folds with N = 4 Enhancement

We now derive the spectrum of mutually local lines for the gauge theories obtained
with N = 2 D3-branes in the background of an Sk,1 plane, in each case k = 3, 4 and
6. More precisely, exploiting the strategy spelled out in Section 4.2.2, we first compute
the electromagnetic charge lattice of local states generated by (p, q)-strings. From this we
extract the possible spectra of lines and compare them with the ones obtained in an N = 4

Lagrangian formalism [16], since these theories have been claimed to enhance to N = 4

SYM [15]. Matching the spectra provides an explicit dictionary between the various
lattices and corroborates the validity of our procedure. In section 4.2.4 we will then
generalize the analysis to the pure N = 3 Sk,ℓ projections for any rank, thus providing
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D32D3ρ1

D3ρ2

D3ρ
2

1 D3ρ
2

2

D31

±(1,0)

±(1,1)

±(0,1)

Figure 4.5: A pictorial representation of two D3-branes probing the S3,1-fold. The transverse direc-
tions to the S-fold are shown. The light blue dot represents the position of the S3,1-fold. The light
blue shaded area is a possible choice of fundamental domain under the spacetime identification in-
duced by the S3,1-fold. Black (gray) dots represent (images of) D3-branes. Black lines correspond
to (p, q)-strings stretched between D3-branes. In particular, we drew (p, q)-strings corresponding
to W-bosons of N = 4 su(3) SYM.

the full classification for the one-form symmetries in all such cases.

4.2.3.1 Lines in su(3) from S3,1

Dynamical states and their charges Two D3-branes probing the singular point of the
S3,1-fold are claimed to engineer su(3) N = 4 SYM. The charges of states generated by
(p, q)-strings stretching between D31 and D32 or its first copy (see Figure 4.5) are

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q; q, q − p) , D31D3ρ
2

2 : (p, q; p− q, p) . (4.59)

One may also consider copies of the strings listed in Equation 4.59 such as

D3ρ1D3ρ2 : (−q, p− q; q, q − p) , (4.60)

as well as the strings going from one D3-brane to its own copies, for instance8

D31D3ρ1 : (2p− q, p+ q; 0, 0) . (4.61)

The charges of a generic string D31D3ρ
2

2 in (4.59) can be expressed in terms of D31D32

8In the absence of discrete torsion, these states have not been considered previously in the literature [4,
233], and we do here for the sake of consistency with the analysis of section 4.2.2. Note however that since
their charge (which is the only feature that matters in order to derive line spectra) can be expressed as linear
combinations of the charges of more conventional states, our results are independent of whether we consider
them or not.
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and D31D3ρ2 charges

D31D3ρ
2

2 : (p, q; p− q, p) = q(1, 0;−1, 0) + (q − p)(0, 1; 0,−1)
+(p− q)(1, 0; 0,−1) + p(0, 1; 1, 1) ,

(4.62)

where the first two vectors on the RHS come from D31D32 with p = 1, q = 0 and p = 0,
q = 1 respectively, and the last two come from D31D3ρ2 with p = 1, q = 0 and p = 0, q = 1

respectively. Acting with ρ3, one can express all D3ρ1D3ρ2 and D3ρ
2

1 D3ρ
2

2 charges in terms
of D31D32 charges. The charges D3iD3ρi can also be expressed as linear combinations of
D31D3ρ2 and D3ρ2D3ρ1 charges. All in all, we find that the charges of the strings D31D32
and D31D3ρ2 form a basis of the lattice of dynamical charges.
The states corresponding to theW-bosons generate the su(3) algebra. One can take the
strings D31D32 with p = 1 and q = 0 and D31D3ρ2 with p = 0 and q = 1 as representing a
choice of positive simple roots. Their electromagnetic charge w reads

w1 = (1, 0;−1, 0) , w2 = (0, 1; 1, 1) . (4.63)

Furthermore, one can choose the strings D31D32 with p = 0 and q = 1 and D31D3ρ2 with
p = −1 and q = −1 as generating the charge lattice of magnetic monopolesM of N = 4

SYM with gauge algebra su(3)

m1 = (0, 1; 0,−1) , m2 = (−1,−1;−1, 0) . (4.64)

The qualification of electric chargesW and magnetic monopolesM of the N = 4 theory
makes sense since the Dirac pairing reads

⟨W1,W2⟩ = ⟨M1,M2⟩ = 0 ,

⟨W1,M1⟩ = ⟨W2,M2⟩ = 2 ,

⟨W1,M2⟩ = ⟨W2,M1⟩ = −1 .
(4.65)

In [4, 233], it has been shown that these states correspond indeed to BPS states, and this
is a strong check of the claim of the supersymmetry enhancement in this case.

Line lattices Having identified the electromagnetic lattice of charges of (p, q)-strings
we can now construct the spectrum of line operators and the corresponding one-form
symmetries. It is useful to consider the charge ℓ = (e1,m1; e2,m2) of a general line L to
be parameterized as follows

ℓ = α1w1 + α2w2 + β1m1 + β2m2

= (α1 − β2, α2 + β1 − β2;−α1 + α2 − β2, α2 − β1) .
(4.66)

Screening with respect to wi and mi translates as the identifications

αi ∼ αi + 1 , βi ∼ βi + 1 . (4.67)
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The Dirac pairing between the generic line L with charge ℓ given in (4.66) and the states
W andMmust be an integer, i.e.

⟨L,W1⟩ = 2β1 − β2 , ⟨L,W2⟩ = −β1 + 2β2 ,

⟨L,M1⟩ = −2α1 + α2 , ⟨L,M2⟩ = α1 − 2α2
∈ Z . (4.68)

Mutual locality with respect to the other states then follows by linearity as soon as (4.68)
holds. Combining (4.67) and (4.68) we have

α1 = −α2 =
e

3
, and β1 = −β2 =

m

3
, (4.69)

for e,m = 0, 1, 2. Then, the charge of the most general line compatible with the spectrum
of local operators modulo screening reads

ℓe,m =
1

3
(2e−m, e+m; −e−m, e− 2m) . (4.70)

These charges form a finite 3 × 3 square lattice. The Dirac pairing between two lines L
and L′ with charges ℓe,m and ℓe′,m′ is

⟨L,L′⟩ = 2

3
(em′ − e′m) . (4.71)

Two lines L and L′ are mutually local if their Dirac pairing is properly quantized. In our
conventions this corresponds to the requirement that ⟨L,L′⟩ is an integer

e′m− em′ = 0 mod 3 . (4.72)

The lattice of lines together with the mutual locality condition obtained in (4.72) fully
specifies the global structure of the S3,1 SCFT of rank-2.
Our result is equivalent to the one obtained in [16] from the Lagrangian description of
su(3) N = 4 SYM theory. Let us first write the charges in (4.70) as

ℓe,m = e
w1 − w2

3
+m

m1 −m2

3
. (4.73)

Note that (w1−w2)/3 (respectively, (m1−m2)/3) is a weight of the electric (respectively,
magnetic) algebra su(3) with charge 1 under the center Z3 of the simply-connected group
SU(3). Therefore, the line ℓe,m corresponds to a Wilson-’t Hooft line of charge (e,m)

under Z3 × Z3.
As shown in [16], there are four possible lattices of mutually local Wilson-’t Hooft lines
specified by two integers i = 0, 1, 2 and p = 1, 3. The corresponding gauge theories are
denoted (SU(3)/Zp)i and relate to the line spectra we have obtained as follows

SU(3) ↔ {ℓ0,0, ℓ1,0, ℓ2,0} ,
(SU(3)/Z3)0 ↔ {ℓ0,0, ℓ0,1, ℓ0,2} ,
(SU(3)/Z3)1 ↔ {ℓ0,0, ℓ1,1, ℓ2,2} ,
(SU(3)/Z3)2 ↔ {ℓ0,0, ℓ2,1, ℓ1,2} .

(4.74)
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It follows from linearity and screening that each lattice in the S-fold picture is deter-
mined by a single non-trivial representative, that can itself be identified by two integers
(e,m). For example, a possible choice is

(e,m) = (1, 0), (0, 1), (1, 1), (2, 1) . (4.75)

4.2.3.2 Lines in so(5) from S4,1

Dynamical states and their charges Two D3-branes probing the singular point of the
S4,1-fold are claimed to engineer so(5) N = 4 SYM. Following a reasoning similar to one
of the S3,1-fold case, we can write all string charges as linear combinations of two kinds
of strings, say

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q;−q, p) . (4.76)

States corresponding to theW-bosons of N = 4 SYM are generated by D31D32 with p = 1

and q = 0, and D31D3ρ2 with p = −1 and q = −1. Their charges are

w1 = (1, 0;−1, 0) , w2 = (−1,−1; 1,−1) . (4.77)

These states generate the algebra so(5) with short and long positive simple roots w1

and w2, respectively. A possible choice of states corresponding to elementary magnetic
monopolesM is D31D32 with p = −1 and q = 1, and D31D3ρ2 with p = 1 and q = 0. The
charges of these strings are

m1 = (−1, 1; 1,−1) , m2 = (1, 0; 0, 1) , (4.78)

with m1 the long and m2 the short positive simple roots of the Langland dual algebra
usp(4). The Dirac pairings betweenW andM are as expected

⟨W1,W2⟩ = ⟨M1,M2⟩ = 0 ,

⟨W1,M1⟩ = ⟨W2,M2⟩ = ⟨M1,W2⟩ = 2 ,

⟨M2,W1⟩ = 1 .

(4.79)

Line lattices We begin by parametrizing the charge ℓ of a general line L as

ℓ = α1w1 + α2w2 + β1m1 + β2m2

= (α1 − α2 − β1 + β2, β1 − α2; −α1 + α2 + β1, −α2 − β1 + β2) .
(4.80)

Screening with respect to the local statesW andM translates as

αi ∼ αi + 1 , βi ∼ βi + 1 . (4.81)
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Mutual locality with respect to the dynamical states generated by (p, q)-strings reads

⟨L,W1⟩ = 2β1 − β2
⟨L,W2⟩ = −2β1 + 2β2
⟨L,M1⟩ = −2α1 + 2α2

⟨L,M2⟩ = α1 − 2α2

∈ Z . (4.82)

This imposes α1 = β2 = 0 and α2, β1 ∈ 1
2Z, and therefore the charge of the most general

line compatible with the spectrum of local states can be written as

ℓe,m =
e

2
w2 +

m

2
m1 =

1

2
(−e−m,−e+m; e+m,−e−m) . (4.83)

The Dirac pairing between two lines L and L′ with charges ℓe,m and ℓe′,m′ is

⟨L,L′⟩ = 1

2
(e′m− em′) . (4.84)

Two such lines are mutually local if their Dirac pairing if ⟨L,L′⟩ is an integer, i.e.

(e′m− em′) = 0 mod 2 . (4.85)

Therefore, the allowed lines form a finite 2×2 square lattice parametrized by e,m = 0, 1,
where the mutual locality condition is given by (4.85). This reproduces the expected
global structures of N = 4 so(5) SYM. There are three possible choices of maximal lattices
of mutually local lines which correspond to the three possible global structures of so(5).
The explicit mapping can be obtained by comparing the electromagnetic charges of the
lines with the charges of theW bosons and monopolesM, along the lines of the analysis
of above in the su(3) case. We obtain the following global structures

Spin(5) ↔ {ℓ0,0, ℓ1,0} ,
SO(5)0 ↔ {ℓ0,0, ℓ0,1} ,
SO(5)1 ↔ {ℓ0,0, ℓ1,1} .

(4.86)

4.2.3.3 Trivial Line in g2 from S6,1

Dynamical states and their charges Two D3-branes probing the singular point of the
S6,1-fold are claimed to engineer g2 N = 4 SYM. The charges of states generated by
(p, q)-strings are

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q;−q, p− q) ,
D31D3ρ

2

2 : (p, q; p− q, p) , D31D3ρ
3

2 : (p, q; p, q) ,

D31D3ρ
4

2 : (p, q; q,−p+ q) , D31D3ρ
5

2 : (p, q;−p+ q,−p) ,
...

...
...

...

(4.87)

As shown in [17] and as before, one can choose a set of strings representing dynamical
particles and generating the algebra g2.
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Line lattice The analysis of the charge spectrum in the case of the S6,1-fold can be car-
ried out along the lines of the previous sections. One can show that the only line that is
mutually local with respect to the local states generated by (p, q)-strings modulo screen-
ing is the trivial line with charges ℓ = (0, 0; 0, 0). This is consistent with the enhancement
to N = 4 with gauge algebra g2 because the center of the simply-connected G2 is triv-
ial, which implies the absence of non-trivial lines [16]. There is only one possible global
structure, and the one-form symmetry is trivial.

4.2.4 Lines in N = 3 S-folds

In this section, we generalize the procedure spelled out in the previous sections to S-
folds theories of arbitrary rank, and later to the cases with non-trivial discrete torsion
for the B2 and C2 fields. This allows us to classify the line spectrum for every N = 3

S-fold theory, and identify the one-form symmetry group as well as the allowed global
structures for a given theory.
The basic ingredients needed in the analysis are the lattice of electromagnetic charges of
local states and the Dirac pairing, both of which can be inferred from the Type IIB setup
along the lines of the rank-2 cases studied in Section 4.2.3. As already emphasized, we
work under the assumption that the states generated by (p, q)-string form a good set of
representatives of the electromagnetic charge lattice of the full spectrum.
Note that it does not strictly make sense to talk about (p, q)-strings on the R4×R6/Zk S-
fold background because the S-fold projection involves an SL(2,Z) action which mixes
F1 and D1 strings. This is analogous to the fact that in the orientifold cases it only makes
sense to consider unoriented strings, since the orientifold action reverses the worldsheet
parity (equivalently, it involves the element−I2 ∈ SL(2,Z)). Nevertheless it makes sense
to consider oriented strings (together with their images) on the double cover of the space-
time; this allows the computation of the electromagnetic charge lattice of local states and
the Dirac pairing, as reviewed in Section 4.2.2. Similarly when dealing with Sk-folds we
consider (p, q)-strings on the k-cover of the spacetime, and extract from this the charges
of local states and the Dirac pairing. The spectrum of lines can then be obtained using
the procedure of [173] reviewed in Section 4.2.2.

4.2.4.1 Lines in S3,1-fold

Let us first determine the lattice of electromagnetic charges of dynamical states. The
charges generated by (p, q)-strings on the background of an S3,1 fold are given by

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρl3; . . . ; 0, 0) . (4.88)

This expression is obtained from a (p, q)-string stretched between the i-th D3-brane and
the l-th image of the j-th D3-brane. Recall that ρ3 generates a Z3 subgroup of SL(2,Z).
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A possible basis for the lattice of charges generated by (p, q)-strings is given by

w1 = (1, 0;−1, 0; . . . ) ,
w2 = (0, 1; 1, 1; . . . ) ,

m1 = (0, 1; 0,−1; . . . ) ,
m2 = (−1,−1;−1, 0; . . . ) ,

Pi = (1, 0; 0, 0; . . . ;

i−th︷ ︸︸ ︷
−1, 0; 0, 0; . . . ) ,

Qi = (0, 1; 0, 0; . . . ;

i−th︷ ︸︸ ︷
0,−1; 0, 0; . . . ) ,

(4.89)

where wi and mi are the charges of the corresponding states in the rank-2 case, with all
other entries set to 0. Let Pi andQi be the states with charges Pi and Qi respectively, for
i = 3, . . . , N . Note that when the rank is N > 2, it does not make sense to talk aboutW-
bosons and magnetic monopolesM since the pure N = 3 theories are inherently strongly
coupled and do not admit a Lagrangian description. Nevertheless, we will denote Wi

andMi the states with charges wi and mi respectively, by analogy with the above.

The charge ℓ of a general line L can be written as the linear combination

ℓ = α1w1 + α2w2 + β1m1 + β2m2 +

N∑
i=3

(δiPi + γiQi) . (4.90)

Besides, screening translates into the identifications

αi ∼ αi + 1 , βi ∼ βi + 1 , δi ∼ δi + 1 , γi ∼ γi + 1 . (4.91)

Let us now analyze the constraints imposed on this line given by mutual locality with
respect to the dynamical states generated by (p, q)-strings. Our results are summarized
in Table 4.5.

Table 4.5: The charges of allowed lines in the S3,1-fold theories. The charges wi,mi, P and Q are
given in (4.89), and r, s = 0, 1, 2. The mutual locality condition for two lines with charges ℓr,s and
ℓr′,s′ is rs′ − sr′ = 0 mod 3.

Rank Line charge

3n ℓr,s =
r

3
w1 +

s

3
w2 −

r

3
m1 −

s

3
m2 +

r + s

3
(P −Q)

3n+ 1 ℓr,s =
r

3
w1 +

r − s
3

w2 +
s

3
m1 +

r

3
m2 +

r + s

3
(P −Q)

3n+ 2 ℓr,s =
r

3
w1 −

r

3
w2 +

s

3
m1 −

s

3
m2 −

r + s

3
(P −Q)
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Consider the mutual locality conditions

⟨L,Pi − Pj⟩ = δi − δj ∈ Z ⇒ δi = δj = δ i, j = 3, . . . , N , (4.92)

and

⟨L,Qi −Qj⟩ = γj − γi ∈ Z ⇒ γj = γi = γ i, j = 3, . . . , N . (4.93)

Furthermore, there are dynamical states with charges

(0, 0; . . . ;

i−th︷ ︸︸ ︷
1,−1; . . . ) =(p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )

∣∣∣∣∣ p=0
q=1

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
p− q, p; . . . )

∣∣∣∣∣ p=0
q=−1

,

(0, 0; . . . ;

i−th︷︸︸︷
2, 1 ; . . . ) =(p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )

∣∣∣∣∣ p=−1
q=0

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
p− q, p; . . . )

∣∣∣∣∣ p=1
q=0

.

(4.94)

Mutual locality with respect to these impies

γ = −δ , δ ∈ 1

3
Z . (4.95)

Therefore, the charge of a general line can be rewritten as

ℓ = α1w1 + α2w2 + β1m1 + β2m2 + δ(P −Q) , (4.96)

where

P =

N∑
i=3

pi = (N − 2, 0; 0, 0;−1, 0;−1, 0; . . . ;−1, 0) ,

Q =

N∑
i=3

qi = (0, N − 2; 0, 0; 0,−1; 0,−1; . . . ; 0,−1) .

(4.97)

In (4.97), we have modified our notation slightly since the dots . . . now represent a se-
quence of pairs (−1, 0) and (0,−1) for P andQ respectively. Mutual locality between the
line L and the generators of the charge lattice of dynamical states imposes the following
constraints

⟨L,Pi⟩ = (N − 1)δ − α2 − β1 + β2 ,

⟨L,Qi⟩ = (N − 1)δ + α1 − β2 ,
⟨L,W1⟩ = (N − 2)δ − 2β1 + β2 ,

⟨L,W2⟩ = (N − 2)δ − 2β2 + β1 ,

⟨L,M1⟩ = (N − 2)δ + 2α1 − α2 ,

⟨L,M2⟩ = −2(N − 2)δ − α1 + 2α2

∈ Z . (4.98)
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One can compute the following

⟨L,W1 + 2W2⟩ = 3(N − 2)δ − 3β2 ∈ Z ⇒ β2 ∈ 1
3Z ,

⟨L,M1 + 2M2⟩ = −3α1 ∈ Z ⇒ α1 ∈ 1
3Z ,

⟨L,W1 −W2⟩ = 3(β2 − β1) ∈ Z ⇒ β1 ∈ 1
3Z ,

⟨L,M1 −M2⟩ = 3(N − 2)δ + 3(α1 − α2) ∈ Z ⇒ α2 ∈ 1
3Z .

(4.99)

In brief, we have found that αi, βi, δ ∈ 1
3Z. It is now useful to treat separately three

cases, depending on the value of N mod 3. In all these cases we find that the lines
modulo screening can be arranged in a finite 3× 3 lattice, the one-form symmetry group
is Z3 and there are four choices of global structure.

Case N = 3n The mutual locality conditions in (4.98) can be written as

⟨L,Pi⟩ = −δ − α2 − β1 + β2 ,

⟨L,Qi⟩ = −δ + α1 − β2 ,
⟨L,W1⟩ = δ − 2β1 + β2 ,

⟨L,W2⟩ = δ − 2β2 + β1 ,

⟨L,M1⟩ = δ + 2α1 − α2 ,

⟨L,M2⟩ = δ − α1 + 2α2

∈ Z . (4.100)

One computes that

⟨L,Qi +W1⟩ = α1 + β1 ⇒ β1 = −α1 ,

⟨L,Pi +W2⟩ = −α2 − β2 ⇒ β2 = −α2 ,

⟨L,Qi⟩ = −δ + α1 + α2 ⇒ δ = α1 + α2 ,

(4.101)

and this implies

α1 = −β1 =
r

3
, α2 = −β2 =

s

3
, δ =

r + s

3
, r, s = 0, 1, 2 . (4.102)

Therefore the lines form a finite 3 × 3 lattice parametrized by r and s. Mutual locality
between two general lines L and L′ with charges ℓr,s and ℓr′,s′ reads

⟨L,L′⟩ = 2

3
(sr′ − rs′) ∈ Z , (4.103)

or equivalently
sr′ − rs′ = 0 mod 3 . (4.104)

There are four possible choices of maximal lattices of mutually local lines. As in the rank-
2 case discussed in section 4.2.3, each lattice is uniquely identified by one of its element,
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or equivalently by the pair (r, s) of one of its non-trivial elements

(r, s) =


(1, 0)↔ {ℓ0,0, ℓ1,0, ℓ2,0}
(0, 1)↔ {ℓ0,0, ℓ0,1, ℓ0,2}
(1, 1)↔ {ℓ0,0, ℓ1,1, ℓ2,2}
(1, 2)↔ {ℓ0,0, ℓ1,2, ℓ2,1}

. (4.105)

Case N = 3n+ 1 In this case the mutual locality constraints (4.98) are

⟨L,Pi⟩ = −α2 − β1 + β2
⟨L,Qi⟩ = α1 − β2
⟨L,W1⟩ = −δ − 2β1 + β2
⟨L,W2⟩ = −δ − 2β2 + β1
⟨L,M1⟩ = −δ + 2α1 − α2

⟨L,M2⟩ = 2δ − α1 + 2α2

∈ Z . (4.106)

One computes that
α2 = α1 − β1 ,
δ = α1 + β1 ,

α1 = β2 .

(4.107)

Therefore the most general αi, βi and δ satisfy

α1 = β2 =
r

3
, β1 =

s

3
, α2 =

r − s
3

, δ =
r + s

3
, r, s = 0, 1, 2 . (4.108)

The lines again form a finite 3 × 3 lattice parametrized by r and s. Mutual locality be-
tween two general lines L and L′ with charges ℓr,s and ℓr′,s′ reads

⟨L,L′⟩ = 1

3
(sr′ − rs′) ∈ Z , (4.109)

or equivalently
sr′ − rs′ = 0 mod 3 . (4.110)

Similarly to the case N = 3n there are four possible choices of maximal lattices of
mutually local lines that can be indexed by one of their element, or equivalently by
(r, s) = (1, 0), (0, 1), (1, 1), (1, 2).

Case N = 3n+ 2 In this case, the mutual locality constraints (4.98) are

⟨L,Pi⟩ = δ − α2 − β1 + β2
⟨L,Qi⟩ = δ + α1 − β2
⟨L,W1⟩ = −2β1 + β2 = β1 + β2
⟨L,W2⟩ = −2β2 + β1
⟨L,M1⟩ = 2α1 − α2 = −α1 − α2

⟨L,M2⟩ = −α1 + 2α2

∈ Z . (4.111)



118 4.2 Higher-form and Non-invertible Symmetries in N = 3 S-folds

One can compute that the solution is given by

β2 = −β1 ,
α2 = −α1 ,

δ = −α1 − β1 .
(4.112)

Therefore the most general αi, βi and δ satisfy

α1 = −α2 =
r

3
, β1 = −β2 =

s

3
, δ = −r + s

3
, r, s = 0, 1, 2 . (4.113)

Dirac pairing between two general lines L and L′ with charges ℓr,s and ℓr′,s′ reads

⟨L,L′⟩ = 2

3
(sr′ − rs′) ∈ Z . (4.114)

Two such lines are mutually local if they satisfy the constraint

sr′ − rs′ = 0 mod 3 . (4.115)

As before, there are four possible choices of maximal lattices of mutually local lines that
can be indexed by one of their element, or equivalently by

(r, s) = (1, 0), (0, 1), (1, 1), (1, 2) . (4.116)

4.2.4.2 Lines in S4,1-fold

We now study the spectrum of lines in theories engineered by a stack of D3-branes prob-
ing the S4,1-fold. The charges of states generated by a (p, q)-string on the background of
an S4,1-fold read

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρl4; . . . ; 0, 0) (4.117)

for a (p, q)-strings stretched between the i-th D3-brane and the l-th image of the j-th
D3-brane. One possible basis for the lattice of charges generated by (p, q)-strings is

w1 = (1, 0;−1, 0; 0, 0; . . . ) ,
w2 = (−1,−1; 1,−1; 0, 0; . . . ) ,
m1 = (−1, 1; 1,−1; 0, 0; . . . ) ,
m2 = (1, 0; 0, 1; 0, 0; . . . ) ,

Pi = (1, 0; 0, 0; . . . ;

i−th︷ ︸︸ ︷
−1, 0; 0, 0; . . . ) ,

Qi = (0, 1; 0, 0; . . . ;

i−th︷ ︸︸ ︷
0,−1; 0, 0; . . . ) ,

(4.118)

where wi and mi are the charges of the corresponding states in the rank-2 case, with all
other entries set to 0. We denoteWi,Mi,Pi andQi the states with charges wi, mi, Pi and
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Qi, respectively.
The charge ℓ of a general line L can be written as the linear combination

ℓ = α1w1 + α2w2 + β1m1 + β2m2 +

N∑
i=3

(δiPi + γiQi) . (4.119)

Screening translates into the identifications

αi ∼ αi + 1, βi ∼ βi + 1, δi ∼ δi + 1, γi ∼ γi + 1 . (4.120)

In the remainder of this section we compute the constraints imposed by mutual locality
between the general line L and dynamical states. Our results are summarized in Table
4.6.

Table 4.6: The charges of allowed lines in the S4,1-fold theories. The charges wi,mi, P and Q are
given in (4.118), (4.97), and r, s = 0, 1. The mutual locality condition for two lines with charges
ℓr,s and ℓr′,s′ is rs′ − sr′ = 0 mod 2.

Rank Line charge

2n ℓr,s =
r

2
w2 +

s

2
m1 +

r + s

2
(P −Q)

2n+ 1 ℓr,s =
r

2
w1 +

s

2
w2 +

s

2
m1 +

r

2
m2 +

r

2
(P −Q)

Consider first the mutual locality conditions

⟨L,Pi − Pj⟩ = δi − δj ∈ Z ⇒ δi = δj = δ , (4.121)

⟨L,Qi −Qj⟩ = γj − γi ∈ Z ⇒ γj = γi = γ . (4.122)

Furthermore, there are dynamical states with charges

(0, 0; . . . ;

i−th︷ ︸︸ ︷
1,−1; . . . ) = (p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )

∣∣∣∣∣ p=0
q=1

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
−q, p; . . . )

∣∣∣∣∣ p=0
q=−1

,

(0, 0; . . . ;

i−th︷︸︸︷
1, 1 ; . . . ) = (p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )

∣∣∣∣∣ p=−1
q=0

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
−q, p; . . . )

∣∣∣∣∣ p=1
q=0

.

and mutual locality with respect to these states implies

γ = −δ, δ ∈ 1

2
Z . (4.123)
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Therefore, the charge of a general line can be rewritten as

ℓ = α1w1 + α2w2 + β1m1 + β2m2 + δ(P −Q) , (4.124)

where P and Q are defined in (4.97). Mutual locality between the line L and the genera-
tors of the charge lattice of dynamical states implies

⟨L,Pi⟩ = (N − 1)δ + α2 − β1 ,
⟨L,Qi⟩ = (N − 1)δ + α1 − α2 − β1 + β2 ,

⟨L,W1⟩ = (N − 2)δ − 2β1 + β2 ,

⟨L,W2⟩ = 2(N − 2)δ − 2β2 + 2β1 ,

⟨L,M1⟩ = 2α1 − 2α2

⟨L,M2⟩ = (N − 2)δ − α1 + 2α2

∈ Z . (4.125)

One computes the following

⟨L,W1 +W2 −M1 −M2⟩ = −β2 − α1 ∈ Z ⇒ β2 = −α1 ,

⟨L,Qi + Pi⟩ = −2β1 ∈ Z ⇒ β1 ∈ 1
2Z ,

⟨L,Qi − Pi⟩ = −2α2 ∈ Z ⇒ α2 ∈ 1
2Z ,

⟨L,M1⟩ = 2α1 ∈ Z ⇒ α1, β2 ∈ 1
2Z .

(4.126)

We have thus shown that αi, βi, δ ∈ 1
2Z and α1 = −β2. It is now useful to treat separately

the cases of odd and even N . In both cases we find that the lines form a 2× 2 lattice, the
one-form symmetry is Z2 and there are three choices of global structure.

Case N = 2n Mutual locality conditions (4.125) read

⟨L,Pi⟩ = −δ − β1 + α2

⟨L,Qi⟩ = −δ − α2 − β1
⟨L,W1⟩ = β2
⟨L,W2⟩ = 0

⟨L,M1⟩ = 0

⟨L,M2⟩ = −α1

∈ Z , (4.127)

and each solution can be written as

α2 =
r

2
, β1 =

s

2
, α1 = β2 = 0 , δ =

r + s

2
, r, s = 0, 1 . (4.128)

Therefore the lines form a 2×2 lattice parametrized by r, s. Mutual locality between two
lines L and L′ with charges ℓr,s and ℓr′,s′ respectively translates into

⟨L,L′⟩ = 1

2
(r′s− rs′) ∈ Z , (4.129)

or equivalently
r′s− rs′ = 0 mod 2 . (4.130)
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The one-form symmetry group is thus Z2 and there are three different choices of maximal
lattices of mutually local lines parametrized by (r, s) = (1, 0), (0, 1), (1, 1).

Case N = 2n+ 1 The Dirac pairings (4.125) read

⟨L,Pi⟩ = α2 − β1 ,
⟨L,Qi⟩ = −α2 − β1 ,
⟨L,W1⟩ = δ + β2 ,

⟨L,W2⟩ = 0 ,

⟨L,M1⟩ = 0 ,

⟨L,M2⟩ = δ − α1

∈ Z , (4.131)

and the general solution can be written as

α1 = β2 = δ =
r

2
, α2 = β1 =

s

2
, r, s = 0, 1 . (4.132)

Mutual locality between two lines L and L′ with charges ℓr,s and ℓr′,s′ respectively trans-
lates into

⟨L,L′⟩ = 1

2
(r′s− rs′) ∈ Z , (4.133)

or equivalently
r′s− rs′ = 0 mod 2 . (4.134)

As in the previous case, the one-form symmetry group is therefore Z2 and there are three
different choices of maximal lattices of mutually local lines that can be parametrized by

(r, s) = (1, 0), (0, 1), (1, 1) . (4.135)

4.2.4.3 Trivial Line in S6,1-fold

The analysis of the spectrum of lines in the case of the S6,1-fold can be carried out along
the lines of the previous subsections. One finds that the integer lattice of charges asso-
ciated to (p, q)-strings is fully occupied. To see this notice that there are two states with
the following charges

(1, 0; 0, 0; 0, 0; . . . ) = (p, q; p− q, p; 0, 0; . . . )

∣∣∣∣∣ p=0
q=−1

− (p, q;−q, p, 0, 0; . . . )

∣∣∣∣∣ p=1
q=0

,

(0, 1; 0, 0; 0, 0; . . . ) = (1, 0; 0, 0; 0, 0; . . . )− (p, q;−p− q; 0, 0; . . . )

∣∣∣∣∣ p=0
q=1

−(p, q;−q, p; 0, 0; . . . )

∣∣∣∣∣ p=0
q=−1

.
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By combining these states with Pi and Qi we can obtain states with electric or magnetic
charge 1 with respect to the i-th brane, and all other charges set to zero. Let us now
consider a general line L with charge ℓ = (e1,m1; e2,m2, . . . ). Mutual locality with
respect to the local states we have just discussed implies

ei,mi ∈ Z ∀i , (4.136)

and the insertion of the same local states along the lines translates to the identification

ei ∼ ei + 1, mi ∼ mi + 1 . (4.137)

Therefore, the only allowed line modulo screening is the trivial line, with charge
ℓ = (0, 0; 0, 0; . . . ). This implies that the one form symmetry group is trivial, and ac-
cordingly there is only one possible choice of global form.

4.2.4.4 Trivial Line in the Discrete Torsion Cases

We generalize the analysis discussed in the previous sections to the cases with non-trivial
discrete torsion in the S3,3-fold and S4,4-fold.
As we argued in Section 4.2.2 all the strings states that are present when the discrete
torsion is trivial are also allowed when the discrete torsion is non-zero. Furthermore,
there are strings ending on the S-fold itself, as discussed in Section 4.2.2. Thus, the
lattice of charges of local states in the case of the S3,3-fold and S4,4-fold are generated
by strings stretched between (images of) D3-branes – as in the cases with trivial discrete
torsion – together with those additional strings. One can show that the integer lattice
of electromagnetic charges of dynamical states is then fully occupied. Therefore, by a
similar argument to the one used in the case of the S6,1-fold in Section 4.2.4.3, the only
line that is allowed is the trivial one, and the one-form symmetry group is 1 for the
S3,3-fold and S4,4-fold with non-zero discrete torsion.

4.2.5 Non-invertible Symmetries

We now discuss the possible presence of non-invertible symmetries in S-fold theories.
In the case of N = 4 theories, the presence of S-duality orbits can imply the existence of
non-invertible duality defects which are built by combining the action of some element
of SL(2,Z) and the gauging of a discrete one-form symmetry [48, 74, 75, 98, 99, 103, 104,
147, 148, 217, 243, 244].
Similar structures can be inferred from the S-fold construction. Consider moving one of
the D3-brane along the non-contractible one-cycle of S5/Zk until it reaches its original
position. The brane configurations before and after this are identical, and therefore the
S-fold theories are invariant under this action. Going around the non-contractible one-
cycle of S5/Zk in the case an Sk,l-fold involves an SL(2,Z)-transformation on the electric
and magnetic charges ei, mi associated to the D3-brane that has been moved. Let Σik
denote the process of moving the i-th D3-brane along the non-contractible cycle of an
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Sk,l-fold. The action of Σik on the charges is

Σik :

(
ej
mj

)
→


ρk ·

(
ej
mj

)
j = i(

ej
mj

)
j ̸= i

. (4.138)

The charge lattice of dynamical states is invariant under Σik, while the set of line lattices
can be shuffled. Consider for example the S3,1-case with rank N = 2. One can compute
explicitly the following orbits

(1, 0) (0, 1) (1, 1) (1, 2) , (4.139)

where the pairs (e,m) parametrize the maximal sub-lattice of mutually local lines as dis-
cussed in section (4.2.3.1). Two line lattices connected by an arrow in (4.139) are mapped
to each other under proper combinations of Σi3.

This theory enhances to su(3) N = 4 SYM. Using the mapping (4.74) between the line
lattices parametrized by (e,m) and the global structures of su(3), the formula (4.139)
reproduces the N = 4 orbits under the element ST ∈ SL(2,Z). As shown in the liter-
ature [147, 148, 243, 244], this transformation can be combined with a proper gauging
of the one-form symmetry to construct the non-invertible self-duality defects of su(3) at
τ = e2πi/3. Therefore in our notation we expect the existence of non-invertible symme-
tries involving Σik for the lattices labeled by (e,m) = (1, 0), (0, 1), (1, 1), and none in the
(e,m) = (1, 2) case.
Similarly, one can consider the orbits in the case of S4,1 with N = 2, where the SCFT
enhances to so(5) N = 4 SYM. By using the transformations Σi4 as above we find the
following orbits

(0, 1)←→ (1, 0) (1, 1) , (4.140)

where the pairs (e,m) parametrize the maximal sub-lattices of mutually local lines as
discussed in section (4.2.3.2).
These reproduce the N = 4 orbits under the element S ∈ SL(2,Z). Again this transfor-
mation can be combined with a proper gauging of the one-form symmetry to construct
the non-invertible self-duality defects of so(5) at τ = i.
Motivated by this match, one can expect that in the case of general rank, non-invertible
symmetries will be present when multiple choices of maximal sub-lattices of mutually
local lines are related by the transformations Σik, as above. The orbits are

S3,1 : (1, 0)←→ (0, 1)←→ (1, 1) (1, 2) , (4.141)

S4,1 :

(0, 1)←→ (1, 0) (1, 1) N = 0 mod 2

(1, 0)←→ (1, 1) (0, 1) N = 1 mod 2
, (4.142)
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where the pairs (r, s) parametrize the maximal sub-lattices of mutually local lines as in
section 4.2.4.
In the S6,1, S3,3 and S4,4-cases, there is only one possible global structure that is mapped
to itself by the Σik transformations.
By analogy with the cases where there is N = 4 enhancement, we expect the existence of
non-invertible symmetries when the transformations Σik map different line lattices, built
by combining this Σik-action with a suitable gauging of the one-form symmetry.

4.3 Discussion and Conclusions

In this Chapter, we have exploited the recipe of [173] for arranging the charge lattice of
genuine lines modulo screening by dynamical particles. We have adapted such strategy,
originally designed for BPS quivers, to the case of (p, q)-strings, in order to access to the
electromagnetic charges of non-Lagrangian N = 3 S-fold SCFTs. This procedure has
allowed us to provide a full classification of the one-form symmetries of every S-fold
SCFT. We singled out two cases with a non-trivial one-form symmetry, corresponding
to the Z3 and the Z4 S-folds in absence of discrete torsion, denoted here as S3,1 and
S4,1 respectively. Our results are consistent with the supersymmetry enhancement that
takes place when two D3-branes are considered. Lastly, we discuss the possibility of
non-invertible duality defects, by recovering the expected results for the cases with su-
persymmetry enhancement and proposing a generalization at any rank.
We left many open questions that deserve further investigations. It would for exam-
ple be interesting to study in more details the projection of the states generated by the
(p, q)-configurations in an S-fold background. In the present article, the only relevant
information was the electromagnetic charges carried by these states, but a deeper anal-
ysis of the dynamics of these S-fold theories requires more work. This would in turn
improve our understanding of their mass spectrum. For instance, a comparison of the
BPS spectrum could be made exploiting the Lagrangian descriptions of [320]. This could
also help find the origin of the mapping between the multiple lattices found in the S3,1

and S4,1-cases. Further investigations in this direction would deepen our geometric un-
derstanding of the non-invertible symmetries expected in this class of theories, along the
lines of the brane analysis of [50, 194, 218].
It would also be of interest to generalize the analysis to other N = 3 SCFTs that are
not constructed from S-fold projections, such as the exceptional N = 3 theories [193,
242]. These theories can be obtained from M-theory backgrounds and one may study
the charge lattice with probe M2-branes. One could therefore apply an analysis similar
to the one spelled in [34, 39, 40, 176, 318].
Regarding the S-fold constructions, the cases of S-folds with N = 2 supersymmetry
[52, 195] also deserve further investigations (see [49, 76] for similar analysis in class S
theories). In the absence of BPS quivers, one needs to adapt the UV analysis of [173]. In
general, one would like to find a stringy description that avoids wall crossing and allows
reading the charge lattices and the one-form symmetries for such theories.
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A prediction of the AdS/CFT correspondence is the matching of exact quantities of a
CFT with their gravitational counterparts. An ancestor result in this direction was ob-
tained in [120], where the central charges of a 2d CFT was computed in terms of an AdS3

gravitational background. Furthermore, in absence of a Lagrangian description of an
interacting fixed point the correspondence represents a definition of the desired CFT.
Another way to produce superconformal field theories consists of compactifying higher
dimensional theories on curved manifolds, preserving some supersymmetry by turning
on quantized magnetic background fluxes for the global symmetries. Such mechanism,
commonly referred to as (partial) topological twist [94, 95, 316], has been vastly studied
in many stringy and holographic setups.
The prototypical example was discussed in [265] in terms of branes wrapped on Rie-
mann surfaces. From the gravitational side the mechanism is usually referred as a (grav-
itational) flow across dimensions. Then in [83] such flows have been generalized and
related to the c-extremization principle of [82]. The c-extremization principle in this case
is related to a gravitational attractor mechanism (see [45, 84, 109, 249, 251] for related
works in this direction).
Recently it has been observed that one can extend the notion of the topological twist on
manifolds with orbifold singularities [182]. The explicit orbifold considered in [183] is
the spindle, topologically a two sphere with deficit angles at the poles. Supersymmetry
in this case is preserved such that the Killing spinors are neither constant nor chiral on
the orbifold. Furthermore, there are two ways to preserve supersymmetry, denoted as
the twist and the anti-twist. Many field theoretical and gravitational constructions have

125
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been proposed in the recent years by considering compactifications on orbifolds [42, 113–
115, 140, 141, 161–163, 165–167, 178–181, 183, 184, 196, 226, 228, 234, 250, 293, 295, 296].
This Chapter is based on [35] and is organized as follows. In section 5.2.1 we study the
spindle compactification of the 4d non-lagrangian theories obtained in [67]. First, in sub-
section 5.2.1.1, we review the relevant aspects of the construction of [67] focusing on the
’t Hooft anomalies and on the distinction between the trial R-symmetry emerging from
the higher dimensional picture and the exact one due to a-maximization. This distinc-
tion indeed plays a crucial role in the analysis. Then in sub-section 5.2.1.2 we study the
compactification on the spindle and we compute the central charge of the emerging two-
dimensional theory. In the computation of the exact 2d R-symmetry we observe that the
result can be formulated (when the conditions of integerness on the fluxes is satisfied)
in terms of the 4d trial R-symmetry or in terms of the 4d exact one. As a bonus we also
study in subsection 5.2.1.3 the case of the spindle compactification of 4d models asso-
ciated to negative degree bundles, corresponding to the models obtained in [274]. The
in section 5.2.2 we review the supergravity truncation of [132] in order to fix the nota-
tions and the conventions that we use in subsequents sections of the Chapter. In section
5.2.3 we study the compactification of the spindle of these 5d N = 2 gauged supergrav-
ities, obtaining the relevant BPS and Maxwell equations. In section 5.2.4 we focus on
the calculation of the conserved charges and of the integer fluxes. In this way we can
fix most of the scalars at their boundary values on the spindle and from these results
we extract the exact central charges form the gravitational perspective. We eventually
observe that these results agree with the ones obtained from the field theoretical anal-
ysis. In section 5.2.5 we complete our analysis by studying the gravitational solution.
First, in sub-section 5.2.5.1 we look for an analytical solution, finding that it exists for
the universal twist, for choices of p and q that correspond to a rational 4d R-symmetry.
Then in sub-section 5.2.5.2 we look for numerical solutions for more generic values of
p and q, by turning on also the magnetic charge associated to the flavor symmetry. We
find numerical solutions only in the case of the anti-twist class for Riemann surfaces of
positive curvature.

5.1 Anomaly Polynomials and Reduction

In this section, we will review the definition and some basic properties of anomaly poly-
nomials and their behavior under dimensional reduction. This will be the basis for the
computation of the 2d central charge of the compactified model discussed in this Chap-
ter.
Given a 2d-dimensional quantum field theory (QFT), the anomaly polynomial is a (2d+2)-
form I2d+2 from which anomalies can be extracted through the descent formalism [19–
21, 307]. One can give a more physical interpretation of this in the following way. If one
considers the partition function of a QFT Z[gµν , AI ], this is actually a section of a certain
line bundle. The first Chern class of this bundle is given by the integral of the anomaly
polynomial over the whole spacetime. The argument goes as follows: the partition func-
tion of a gauge theory must be a well-defined function over the space of connections
modulo gauge transformations A/G. Any line bundle on A is trivializable, but not on
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Figure 5.1: ”The forbidden everything bagel”. An artist depiction of M5-branes wrapped around
a geometry resembling T 2 × Σ.

A/G. Consider then Z ∈ Γ(L,A/G), a section on L → A/G. Any trivialization of A/G
allows one to promote Z to an actual function (a globally defined section). Anomalies
are obstructions to such trivialization, i.e., a class in H2(A/G,Z).
In general, the anomaly polynomial is a characteristic class constructed from the fiber
bundle and the tangent bundle. In the cases of our interest, the fiber bundle corresponds
to the global symmetry group. If S is the set of chiral fields in the theory, then the total
anomaly polynomial is defined as [108]

I2d+2 =

∑
ψi∈S

c(ψi)

Pd+1 =
∑
ψi∈S

I
(i)
2d+2, (5.1)

where c(ψi) are coefficients depending on the chiral field content of the theory and Pd+1

is the characteristic class constructed out of polynomials in the curvature of the bundle

Pd+1 = TrF d := TrF ∧ F ∧ · · · ∧ F
d−times

. (5.2)

5.1.1 Anomaly Polynomial of a Stack of M5-branes

The anomaly polynomial relevant to our discussion is that of the 6d N = (2, 0) SCFT,
the worldvolume theory of an M5-brane. The M5-brane of M-theory has chiral world-
volume fields that lead to potential anomalies in diffeomorphisms of the five-brane
world-volume TW , as well as in diffeomorphisms that act as SO(5) gauge transforma-
tions of the connection on the normal bundle NW . More precisely, the field content of
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this theory comprises a three-form with self-dual field strength, five scalars, and four
real Weyl fermions [215, 236, 313, 319]. The chiral spinors contribute to the I8 anomaly
polynomial by the following factor

ID =
1

2
chS(NW )Â(TW ). (5.3)

The chiral spinors are sections of a rank-four spinor bundle constructed from the normal
bundle NW using the spinor representation of SO(5), which is the remaining isometry
from M-theory after the insertion of the M5-brane. The class Â(TW ) is the A-roof genus
of the tangent bundle, generalizing the index of the Dirac operator on it. Up to order
four, this is given by

Â(TW ) = 1− p1(TW )

24
+

7p1(TW )2 − 4p2(TW )

5760
. (5.4)

By expanding the Chern character up to the required order, the contribution from the
Weyl spinors amounts to

ID =
1

2

(
p2(NW )

24
+
p1(NW )2

96
− p1(NW )p1(TW )

48
+

7p1(TW )2 − 4p2(TW )

1440

)
. (5.5)

The chiral two-form propagates on the worldvolume and does not “see” the normal
bundle. The standard anomaly of such a field is given by

IA =
1

5760

(
16p1(TW )2 − 112p2(TW )

)
. (5.6)

There is an additional contribution term arising from a careful treatment of the Chern-
Simons term in 11d supergravity in the presence of an M5-brane, which amounts to [185]

ICS = − 1

24
p2(NW ). (5.7)

When considering a stack of M5-branes, the situation is a bit trickier. The contributions
from the worldvolume fields scale linearly with the number of branes, but the Chern-
Simons interaction scales cubically [215]. Therefore, the final anomaly polynomial for a
stack of M5-branes of type AN is given by

I8 =
N − 1

48

[
p2(NW )− p2(TW ) +

1

4
(p1(TW )− p1(NW ))

2

]
+
N3 −N

24
p2(NW ). (5.8)

5.1.2 Reducing the Anomaly Polynomial

Following [224], we review how to relate the anomaly polynomial of a d-dimensional1

theory to the one a dimensionally reduced (d− s)-dimensional theory. We first suppose

1To ease the discussion we are going to always consider even dimensional spaces as anomalies are absent
in odd dimensions.
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that we can neglect the isometries of the compactification manifold M(s) and then see
how the come into play.
Intuitively, if we consider a 2d-dimensional theory with anomaly polynomial Id+2, then
by compactifying the theory on a M(s) manifold, the new anomaly polynomial is given
by

Id−s+2 =

∫
M(s)

Id+2. (5.9)

To see how this relation comes about, let X(d) be the space-time manifold on which the
initial theory is defined. Let Y(d+1) = X(d) × S1. We introduce a background metric and
background gauge fields on Y(d+1) by gluing the ones of X(d) × [0, 1] on the boundaries
X(d)|0 and X(d)|1 by the aforementioned diffeomorphism and gauge transformation that
modify the phase of the partition function of the theory. Such phase is given by∫

Y(d+1)

CSd+1, where dCSd+1 = Id+1. (5.10)

Compactifying on a manifold M(s) means taking, at least locally, X(d) = X(d−s) ×M(s),
which implies Y(d+1) = Y(d−s+1) ×M(d). Therefore∫

Y(d+1)

CSd+1 =

∫
Y(d−s+1)

CSd−s+1, where CSd−s+1 =

∫
M(s)

CSd+1. (5.11)

By considering a manifold Z(d−s+2) such that ∂Z(d−s+2) = Y()d− s+ 1 and set Z(d+2) =

Z(d−s+2) ×M(s), then (5.11) implies∫
Z(d+2)

Id+2 =

∫
Z(d−s+2)

Id−s+2 =⇒ Id−s+2 =

∫
M(s)

Id+2. (5.12)

To include isometries in this discussion, one needs to add a background gauge field for
such isometry. This is done by taking Z(d+2) to be a non-trivial M(s) bundle over Z(d−s+2)

with a non-trivial G-connection, so that

M(s) ↪→ Z(d+2) π−−→ Z(d−s+2). (5.13)

5.2 Spindle Compactification of 4d SCFTs from Riemann Surfaces

In this Chapter we will focus on the case of M5 branes wrapped on a complex curve
Cg in a Calabi-Yau three-fold X [66, 67]. These models are a generalization of the ones
obtained in [265] where M5 branes wrapped on a Riemann surface were considered. The
construction of [66, 67] generates an infinite family of 4d SCFTs obtained by gluing TN
theories [188]. The setup is specified by two integers that depend on the local geometry
of X, corresponding to a decomposable C2 bundle over Cg. The (non-negative) integers,
denoted as p and q, are the Chern numbers of the line bundles L1,2 that specify L1 ⊕
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L2 → Cg. For p = q the N = 1 case studied in [265] is recovered, while p = 0 (or
q = 0) corresponds to the N = 2 case of [265] . For other choices of p and q the 4d SCFT
corresponds to a different N = 1 SCFT.
While M5 branes and the theories of [265] have been already studied on the spindle in
various setups [114, 140, 181, 295] a general analysis for the models introduced in [66, 67]
has not been pursued so far. Here we are interested in generic choices of p and q from the
supergravity perspective. Our starting point are the 5d consistent truncations obtained
in full generality by [132] (see also [133, 177, 268, 299] for earlier results in this direction).
Such truncations have the advantage to hold for any choice of p and q, but the price to
pay in this case is the presence of hypermultiplets. Anyway, by exploiting the general
recipe of [56], we can analyze the reduction on the spindle of the consistent truncations of
[132] even in presence of hypermultiplets. The reason is that in this case one hyperscalar
triggers an Higgs mechanism that gives a mass to one of the vector multiplets. The
Higgsing simplifies the analysis of the BPS equations and of the fluxes at the poles of
the spindle, allowing to find the boundary conditions that most of the scalars have to
satisfy at the poles in order to compute the central charges in the twist and in the anti-
twist class. While this analysis makes the calculation of the central charges possible, it
does not guarantee the existence of a solution. Furthermore, it does not fix the boundary
condition for the hyperscalar.
However, by restricting to the graviton sector, the universal analytic solution of the type
discussed in [180, 182] is found. In this case the scalars are fixed to their AdS5 value.
Observe that the universal twist is consistent only if the 4d superconformal R-charge is
rational, and this limits the amount of accessible truncations. For more general twists,
beyond the universal one, we solved numerically the BPS equations for various values
of the hyperscalar at one of the poles of the spindle. When the (unique) value of the hy-
perscalar that solves the BPS equation, at such pole of the spindle, is found, the existence
of the solution is guaranteed. The procedure fixes also the boundary condition for the
hyperscalar at the other pole and the finite distance between the poles.
In the following we will exploit such procedure for the consistent truncations of [132]
and we will compare our results with the one found on the field theory side by integrat-
ing the anomaly polynomial.

5.2.1 The 4d SCFT on the Spindle

In sub-section 5.2.1.1 we are going to review the M-theory construction of N = 1 SCFTs
in 4d of [67], which is going to be the starting point for our effective 2d theories com-
pactified on the spindle. These models turn out to be dual to N = 1 SCFT built by
opportunely gluing TN blocks [188]. Then in sub-section 5.2.1.2 we construct the theory
compactified on the spindle Σ, closely following [56, 182] mutatis mutandis. Eventually
in sub-section 5.2.1.3 we study the case of negative degree bundles, obtained in [274], on
the spindle.
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5.2.1.1 The 4d Model

The worldvolume theory of stack of N M5-branes is well known to be a 6d N = (2, 0)

SCFT. One can construct effective 4d theories by wrapping the branes on some specific
geometry. In this particular case, we are interested in effective 4d theories obtained by
wrapping the M5-branes on a complex Riemann curve of genus g Cg in a Calabi-Yau
three-fold. This geometric construction gives rise to an infinite family of 4d effective
theories which are parametrized by two integers depending on the local geometry of the
Calabi-Yau three-fold X which in the case of interest is just a holomorphic C2 bundle
over Cg

C2 ↪→ X
π−→ Cg. (5.14)

Crucially, when X is decomposable it will take the simpler form X = L1 ⊕ L2. This
structure has a manifest U(1)2 isometry, one factor for each fiber in the line bundle. The
two isometries give rise to two abelian symmetries, one being the R-symmetry U(1)R
and the other being an additional flavor symmetry U(1)F .
The integers describing the families of IR N = 1 SCFTs are just the Chern numbers
labelling the possible bundle decomposition

c1(L1) = p, c1(L2) = q, (5.15)

subject to the Calabi-Yau condition p + q = 2(g − 1). Depending on the choices of these
two integers, the fields in the M5-brane theory transform in different representation of
the U(1)F symmetry, leading to different IR fixed points. A solution to the constraint of
the Chern numbers is given by the following parametrization

p = (1 + z)(g− 1), q = (1− z)(g− 1) (5.16)

where z(g− 1) ∈ Z.
An explicit field theory construction for these theories can be given when the integers
p, q in (5.15) are positive. For these cases in fact the theories can be described, from class-
S, as opportune gluing of 2(g − 1) TN building blocks to create a Riemann surface with
no punctures. In the next section we are going also to consider the cases of negative p, q
whose explicit construction was given in [274] but for which no dual gravity solution is
known.
In this setup the key observables are the central charges c and a, determined by the
following combinations of R-symmetry anomalies

c =
1

32

(
9TrR3 − 5TrR

)
,

a =
3

32

(
3TrR3 − TrR

)
.

(5.17)

Note that in the largeN limit, for holographic SCFTs a = c. The central charges can be re-
covered from the known anomaly polynomial of the M5-brane theory integrated over Cg,
assuming that no accidental symmetries are generated along the flow. Since the abelian
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symmetries U(1)R and U(1)F mix together, the exact superconformal R-symmetry is
found by a-maximization [239].
One finds that the ’t Hooft anomalies of the trial R-chargeR(ϵ4d) = R+ϵ4dF , for theories
of type G = AN , DN , EN , are given by

TrR(ϵ4d)
3 = (g− 1)[(rG + dGhG)(1 + zϵ34d)− dGhG(ϵ24d + zϵ)] ,

TrR(ϵ4d) = (g− 1)rG(1 + zϵ4d) , (5.18)

where rG, dG and hG are the rank, dimension and Coxeter number of G respectively,
while ϵ is the mixing parameter.
We are interested in the AN−1 case at large N . By plugging (5.18) into (5.17) we can
use a-maximisation to find the superconformal R-charge. This is given by the mixing
R(ϵ∗4d) ≡ R∗ = R+ϵ∗4dF where the mixing parameter at largeN , fixed by a-maximisation,
is given by

ϵ∗4d =
1 + k

√
1 + 3z2

3z
, (5.19)

where k is half of the scalar curvature of Cg2. Choosing k = −1 for later purposes, the ’t
Hooft anomalies for the superconformal R-symmetry read

kR∗R∗R∗ =
2(g− 1)

27z2

[
9z2 − 1 + (3z2 + 1)3/2

]
N3, kR∗R∗F = 0,

kR∗FF = − (g− 1)

3

√
3z2 + 1N3, kFFF = (g− 1)zN3.

(5.20)

The mixed ’t Hooft anomalies between the R-symmetry R and the flavor symmetry F
can be computed from (5.18) and they read

k
RRR

= (g− 1)N3, k
RRF

= −1

3
(g− 1)zN3,

k
RFF

= −1

3
(g− 1)N3, k

FFF
= (g− 1)zN3. (5.21)

5.2.1.2 BBBW on the Spindle

Consider the 4d SCFT reviewed above, whose anomaly polynomial in the large N limit
reads

I6 =
1

6

∑
i,j,k=R,F

kijk c1(Fi)c1(Fj)c1(Fk)
(5.22)

where the coefficients kijk are given by the mixed ’t Hooft anomalies (5.21) and the
c1(FR,F ) are the first Chern-classes for the U(1)-bundles over the total space X4 with

2The Ricci scalar curvature is normalized such that k = 1 for g = 0, k = 0 for g = 1 and k = −1 for g > 1.
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Figure 5.2: A Spindle from two different view angles. The proper coordinate system on Σ is shown.

gauge curvatureR and F . We proceed to compactify further the 4d theory over the spin-
dle Σ ≡ WCP1

[nN ,nS ], where nN , nS label the deficit angles at the north and south pole
of the orbifold respectively, with background magnetic fluxes for the two abelian U(1)R
and U(1)F symmetries of the 4d theory. In order to do that, we need to take into ac-
count the azimuthal U(1)J isometry of the spindle which is generated by rotations about
the axis passing through the poles. Geometrically, this is given by considering the total
space X4 as a X2 orbibundle fibered over Σ. In the field theory, this can be achieved by
turning on a connection AJ for the U(1)J isometry, so that we can write the following
gauge connections

A(I) = ρI(y)(dz +AJ) I = R,F (5.23)

where ρI(y) are the background fluxes for the abelian symmetries, and (y, z) are re-
spectively the longitundal and azimuthal coordinates over Σ, with y ∈ [yN , yS ] and
z ∼ z + 2π. The curvatures for the fields (5.23) are given by

F (I) = ρ′I(y) dy ∧ (dz +AJ) + ρI(y)FJ I = R,F (5.24)

where FJ = dAJ . These fields are consistent with the flux condition

1

2π

∫
Σ
F (I) = [ρI ]

yS
yN =

pI
nSnN

. (5.25)
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The curvature forms F (I) define a U(1)-line bundle LI over X4, and the associated first
Chern classes are3

c1(LI) ≡
[
F (I)

2π

]
∈ H2(X4,R), c1(J) ≡

[
FJ
2π

]
∈ H2(X2,R). (5.26)

To obtain the 2d anomaly polynomial, we make the following substitution

c1(R)→ c1(R) +
1

2
c1(LR), c1(F )→ c1(F ) + c1(LF ) (5.27)

where c1(R) and c1(F ) are the pull-back of the U(1)R and U(1)F bundles overX2 respec-
tively. The choice of normalization is such that the R-symmetry generators give charge
1 to the supercharges. Thus, we shift the curvatures in Eq. (5.24) accordingly, compute
the anomaly polynomial in Eq. (5.22) and integrate it over Σ. The result is a combination
of the four non-zero mixed ’t Hooft anomalies given in sec. 5.2.1.1. In the following, as a
working example we show only the computation for the terms proportional to kRRR∫

Σ

(
c1(R) +

1

2
c1(LR)

)3

=

∫
Σ

(
3

2
c1(R)

2c1(LR) +
3

4
c1(R)c1(LR)2 +

1

8
c1(LR)3

)
,

(5.28)
where the product of forms is understood. Notice that the c1(R) does not depend on the
spindle, so they can be factorized out of the integral. Let us consider the first term in
(5.28) ∫

Σ

3

2
c1(R)

2c1(LR) =
3

2
c1(R)

2

∫
Σ

F (R)

2π
=

3

2
c1(R)

2[ρR]
yS
yN . (5.29)

The second term reads∫
Σ

3

4
c1(R)c1(LR)2 =

3

4
c1(R)

∫
Σ

1

4π2
F (R) ∧ F (R)

=
3

4
c1(R)

∫
Σ

2

4π2
ρR(y)ρ

′
R(y) dy ∧ (dz +AJ) ∧ FJ

=
3

4
c1(R)

∫
Σ

1

4π2
dρ2R ∧ (dz ∧ FJ +AJ ∧ FJ) (5.30)

=
3

4
c1(R)c1(J)

∫
Σ

1

2π
dρ2R ∧ dz

=
3

4
c1(R)c1(J)[ρ

2
R]
yS
yN

where we used the fact thatAJ ∧FJ is just a total derivative and that FJ does not depend
on the spindle as stated in (5.26). In the second to last step we went back from forms to
cohomology classes. The last term in (5.28) evaluates to

1

8

∫
Σ
c1(LR)3 =

1

8

∫
Σ

1

(2π)3
F (R) ∧ F (R) ∧ F (R) =

1

8
c1(J)

2[ρ3R]
yS
yN . (5.31)

3Note that the gauge curvature of J is only defined on X2. It’s Chern class will not contribute in the integral.
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The complete anomaly 4-form of the 2d theory reads

I4 =
1

4

(
kRRR[ρR]

yS
yN + 2kRRF [ρF ]

yS
yN

)
c1(R)

2 +
1

4

(
kRFF [ρR]

yS
yN + 2 kFFF [ρF ]

yS
yN

)
c1(F )

2

+
1

48

(
kRRR[ρ

3
R]
yS
yN + 8kFFF [ρ

3
F ]
yS
yN + 6kRRF [ρF ρ

2
R]
yS
yN + 12kRFF [ρRρ

2
F ]
yS
yN

)
c1(J)

2

+
1

2

(
kRRF [ρR]

yS
yN + 2 kRFF [ρF ]

yS
yN

)
c1(F )c1(R)

+
1

8

(
kRRR[ρ

2
R]
yS
yN + 4kRRF [ρRρF ]

yS
yN + 4kRFF [ρ

2
F ]
yS
yN

)
c1(J)c1(R)

+
1

8

(
4 kFFF [ρ

2
F ]
yS
yN + kRRF [ρ

2
R]
yS
yN + 4kRFF [ρRρF ]

yS
yN

)
c1(J)c1(F )

(5.32)

To compute the exact central charge we allow a mixing between the various U(1) factors
c1(J) = ϵ2d c1(R) and c1(F ) = x2d c1(R), extremizing the function

c2dtrial(ϵ2d, x2d) =
6I4

c1(R)2
. (5.33)

The background magnetic fluxes are fixed to be∫
F (R)

2π
=

pR
nSnN

,

∫
F (F )

2π
=

pF
nSnN

(5.34)

where pR, pF ∈ Z. For theR-symmetry, we have two possible choices of fluxes consistent
with supersymmetry

ρR(yN ) =
(−1)tN
nN

, ρR(yS) =
(−1)tS+1

nS
(5.35)

where tN = 0, 1, while tS is fixed by the twisting procedure, namely tS = tN for the
twist, while tS = tN + 1 for the anti-twist. For the flavor symmetry, the flux can be fixed
to

ρF (yN ) = z0, ρF (yS) =
pF

nSnN
+ z0 (5.36)

where z0 is an arbitrary constant.
Let us consider the following parametrization of the on-shell central charge

c2dtrial(ϵ
∗
2d, x

∗
2d) ≡ c∗2d =

f(nS , nN , pF ; z)

g(nS , nN , pF ; z)
(g− 1)N3. (5.37)
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In the case of the twist we have

f(nS , nN , pF ; z) =
(
(nN + nS)

2 − 4p2F

) (
2zpF + (−1)tN (nN + nS)

)
×
(
(−1)tN (nN + nS)

(
16zpF +

(
z2 + 3

)
(−1)tN (nN + nS)

)
+ 4

(
3z2 + 1

)
p2F

)
,

g(nS , nN , pF ; z) = 2nNnS

(
8p2F

(
−2nNnS + 3z2(n2S + n2N )

)
− 32zp3F (−1)tN (nN + nS)

+ 8zpF (−1)tN (nN + nS)
(
3n2N − 2nNnS + 3n2S

)
− 48z2p4F + (nN + nS)

2 (− 2
(
z2 + 2

)
nNnS +

(
z2 + 4

)
n2S

+
(
z2 + 4

)
n2N
))
.

(5.38)

The central charge is extremized by the mixing ϵ∗2d, x
∗
2d for which we give the exact, albeit

quite cumbersome, result

ϵ∗2d =
ε(nS , nN , pF ; z)

d(nS , nN , pF ; z)
, x∗2d =

χ(nS , nN , pF ; z)

d(nS , nN , pF ; z)
− z0ϵ

∗
2d (5.39)

where

ε(nS , nN , pF ; z) = 4nNnS(−1)tN (nN − nS)(2nN (−1)tN (8zpF + (z2 + 3)nS(−1)tN )

+ 16zpFnS(−1)tN + 4(3z2 + 1)p2F + (z2 + 3)n2S + (z2 + 3)n2N ) (5.40)

χ(nS , nN , pF ; z) = −2n2S
(
2
(
z2 − 3

)
pFnN (−1)tN − 20zp2F + 3zn2N

)
− 4n3S(−1)tN

(
znN (−1)tN − 2pF

)
− 4znS(−1)tN

(
n2N − 4p2F

) (
2zpF + nN (−1)tN

)
− 16

(
z2 + 1

)
p3FnN (−1)tN − 4

(
z2 + 1

)
pFn

3
N (−1)tN

− 24zp2Fn
2
N − 16zp4F − zn4S − zn4N (5.41)

d(nS , nN , pF ; z) = 24z2p2Fn
2
S + 4n3N (−1)tN

(
6zpF + (−1)tNnS

)
+ 2zn2N

(
4pFnS(−1)tN + 12zp2F − zn2S

)
+ 4nN (−1)tN

(
n2S − 4p2F

) (
2zpF + nS(−1)tN

)
+ 24zpFn

3
S(−1)tN − 32zp3FnS(−1)tN

− 48z2p4F +
(
z2 + 4

)
n4S +

(
z2 + 4

)
n4N (5.42)

Notice that there is no explicit z0 dependence in the central charge.
We can check the validity of the result, by considering the S2 limiting case, where nS =

nN = 1, pF = 0 and comparing with the result of [83]. As expected the two results
match4. One can see that in this limit the mixing parameter ϵ∗2d = 0. This is to be expected
since in this limit the spindle becomes a P1, and the abelian U(1)J is enhanced to the

4From the result of [83], one fixes η1 = 2(g − 1), η2 = −2, κ1 = −1, κ2 = 1, z1 = z2 = z to find the
matching.
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SU(2) isometry of the P1, thus does not mix anymore with the R-symmetry.
Instead, for the anti-twist case the on-shell central charge is given by

f(nS , nN , pF ; z) =
(
(nS − nN )

2 − 4p2F

) (
2zpF + (−1)tN (nN − nS)

)
×
(
(−1)tN (nN − nS)

(
16zpF +

(
z2 + 3

)
(−1)tN (nN − nS)

)
+ 4

(
3z2 + 1

)
p2F

)
g(nS , nN , pF ; z) = 2nNnS

(
8p2F

(
2nNnS + 3z2n2S + 3z2n2N

)
+ 32zp3F (−1)tN (nS − nN )

− 8zpF (−1)tN (nS − nN )
(
3n2N + 2nNnS + 3n2S

)
− 48z2p4F + (nS − nN )

2 (
2
(
z2 + 2

)
nNnS +

(
z2 + 4

)
n2S

+
(
z2 + 4

)
n2N
))

(5.43)

where the extremum, using the same parametrization as in (5.39), is reached for the
following mixing

ε(nS , nN , pF ; z) = −4nNnS(−1)tN (nN + nS)
(
2nN (−1)tN

(
8zpF − (−1)tN

(
z2 + 3

)
nS
)

− 16zpFnS(−1)tN + 4
(
3z2 + 1

)
p2F +

(
z2 + 3

)
(n2S + n2N )

)
χ(nS , nN , pF ; z) = −2n2S

(
2(−1)tN

(
z2 − 3

)
pFnN − 20zp2F + 3zn2N

)
+ 4(−1)tNn3S

(
(−1)tN znN − 2pF

)
+ 4(−1)tN znS

(
n2N − 4p2F

) (
2zpF + (−1)tNnN

)
− 16(−1)tN

(
z2 + 1

)
p3FnN − 4(−1)tN

(
z2 + 1

)
pFn

3
N

− 24zp2Fn
2
N − 16zp4F − z(n4S + n4N )

d(nS , nN , pF ; z) = 24z2p2Fn
2
S + 4(−1)tNn3N

(
6zpF − (−1)tNnS

)
+ 2zn2N

(
−4(−1)tN pFnS + 12zp2F − zn2S

)
+ 4(−1)tNnN

(
n2S − 4p2F

) (
2zpF − (−1)tNnS

)
− 24(−1)tN zpFn

3
S + 32(−1)tN zp3FnS

− 48z2p4F +
(
z2 + 4

)
(n4S + n4N )

(5.44)

Once again, the on-shell central charge does not depend on z0 as expected.
The central charge calculated from the R∗, F anomalies (5.20) instead of R, can be com-
puted in the same manner as just described. The two exact central charges will then
match as follows

c∗2d

(
ϵ
(1)∗
2d , x

(1)∗
2d ;R,F, nS(−1)tN + nN (−1)tS , pF

)
= c∗2d

(
ϵ
(2)∗
2d , x

(2)∗
2d ;R∗, F, nS(−1)tN + nN (−1)tS , pF + ϵ∗4d

nS(−1)tN + nN (−1)tS
2

) (5.45)
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where ϵ∗4d is the 4d mixing parameter found in (5.19) with k = −1, and we specified
which symmetries we are considering as well as their fluxes. Namely, the former is
obtained from the anomaly polynomial considering the ’t Hooft anomalies (5.21) and
their fluxes, while the latter is obtained considering the anomalies (5.20) and their fluxes
are related with the other by a shift.
Observe that the universal twist is consistent only if the exact 4dR-symmetry is rational.
From the second line in (5.45) it follows that this choice requires to set the combination
pF + ϵ∗4d

nS(−1)tN +nN (−1)tS

2 to zero. The integerness conditions on pF , nS and nN then
restrict the allowed values of p and q admitting the universal twist.

5.2.1.3 Negative Degree Bundles

Here we further generalize the construction of [66, 67] by gluing 2(g− 1) together copies
of T (m)

N theories [5]. This construction reproduces the model of [66, 67] when m = 0

[274] and generalizes it for generic m. The construction of [66, 67] in fact allows only
for positive p, q ≥ 0, while in the construction of [274], one can allow also for negative
degree bundles. Although these theories have no known supergravity description at this
time, we give the field theory calculation for completeness.
The cubic anomalies of the model of [66, 67] can be recovered from the ones of the T (m)

N

blocks by linear combination of the U(1)i isometries of the line bundles. Namely, R =

(J++J−)/2 and F = (J−−J+)/2, following the naming convention of [274]. Therefore,
in the large-N limit

kRRR =
N3

2
, kRRF = −1

6
(1 + 2m)N3,

kRFF = −N
3

6
, kFFF =

1

2
(1 + 2m)N3

(5.46)

where the integer m parametrizes the degree of the line bundles p = m+ 1 and q = −m.
Following the same arguments as before, we can compactify these theories on the spindle
and find the central charge of a family of theories parametrized by m. By taking the
anomaly polynomial constructed from the anomalies (5.46), we find the following central
charge in the case of the twist

f(nS , nN , pF ;m) = 2
(
4p2F − (nN + nS)

2
) (

2(2m+ 1)pF + (−1)tN (nS + nN )
)

×
(
(−1)tN (nN + nS)

(
4(2m+ 1)pF +

(
m2 +m+ 1

)
(−1)tN (nN + nS)

)
+ 4(3m(m+ 1) + 1)p2F

)
(5.47)

g(nS , nN , pF ;m) = nNnS

(
(−1)tN

(
4n3S

(
6(2m+ 1)pF + (−1)tNnN

)
+ 2(−1)tN (2m+ 1)n2S

(
12(2m+ 1)p2F

− (−1)tNnN
(
(−1)tN (2m+ 1)nN − 4pF

) )
+ 4nS

(
n2N − 4p2F

) (
2(2m+ 1)pF + (−1)tNnN

)
+ nN

(
(−1)tNnN

(
(−1)tNnN

(
24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

)
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+ 24(2m+ 1)2p2F
)
− 32(2m+ 1)p3F

)
+ (−1)tN (4m(m+ 1) + 5)n4S

)
− 48(2m+ 1)2p4F

)
(5.48)

where we used the parametrization (5.37). The mixing is given by

ε(nS , nN , pF ;m) = 16nNnS(−1)tN
(
4(−1)tN (2m+ 1)pF

(
n2N − n2S

)
+ 4(3m(m+ 1) + 1)p2F (nN − nS)

+
(
m2 +m+ 1

)
(nN − nS) (nN + nS)

2
)

(5.49)

χ(nS , nN , pF ;m) = −4n3N (−1)tN
(
2
(
2m2 + 2m+ 1

)
pF + (−1)tN (2m+ 1)nS

)
− 4nN (−1)tN

(
2
(
2m2 + 2m− 1

)
pFn

2
S + 8

(
2m2 + 2m+ 1

)
p3F

− 4(−1)tN (2m+ 1)p2FnS + (−1)tN (2m+ 1)n3S

)
− 2(2m+ 1)n2N

(
4(−1)tN (2m+ 1)pFnS + 12p2F + 3n2S

)
+ 32(−1)tN (2m+ 1)2p3FnS + 40(2m+ 1)p2Fn

2
S

− 16(2m+ 1)p4F + 8(−1)tN pFn3S − (2m+ 1)n4S − (2m+ 1)n4N

d(nS , nN , pF ;m) = −32(−1)tN (2m+ 1)p3F (nN + nS)

+ 8p2F
(
3(2m+ 1)2n2N + 3(2m+ 1)2n2S − 2nNnS

)
+ 8(−1)tN (2m+ 1)pF (nN + nS)

(
−2nNnS + 3n2N + 3n2S

)
− 48(2m+ 1)2p4F + (nN + nS)

2
(
− 2(4m(m+ 1) + 3)nNnS

+ (4m(m+ 1) + 5)(n2N + n2S)
)

(5.50)

For the anti-twist case we get

f(nS , nN , pF ;m) = 2
(
(nN − nS)2 − 4p2F

) (
2(2m+ 1)pF + (−1)tN (nS + nN )

)
×
(
(−1)tN (nN − nS)

(
4(2m+ 1)pF +

(
m2 +m+ 1

)
(−1)tN (nN − nS)

)
+ 4(3m(m+ 1) + 1)p2F

)
(5.51)

g(nS , nN , pF ;m) = −nNnS
(
(−1)tN

(
− 4n3S

(
6(2m+ 1)pF + (−1)tNnN

)
+ 2(−1)tN (2m+ 1)n2S

(
12(2m+ 1)p2F

− (−1)tNnN
(
(−1)tN (2m+ 1)nN − 4pF

) )
− 4nS

(
n2N − 4p2F

) (
2(2m+ 1)pF + (−1)tNnN

)
+ nN

(
(−1)tNnN

(
(−1)tNnN

(
24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

)
+ 24(2m+ 1)2p2F

)
− 32(2m+ 1)p3F

)
+ (−1)tN (4m(m+ 1) + 5)n4S

)
− 48(2m+ 1)2p4F

)
(5.52)
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where we used the parametrization (5.37). The mixing is given by

ε(nS , nN , pF ;m) = −16nNnS(−1)tN
(
4(−1)tN (2m+ 1)pF

(
n2N − n2S

)
+ 4(3m(m+ 1) + 1)p2F (nN + nS)

+
(
m2 +m+ 1

)
(nN + nS) (nN − nS)2

)
χ(nS , nN , pF ;m) = −4n3N (−1)tN

(
2
(
2m2 + 2m+ 1

)
pF − (−1)tN (2m+ 1)nS

)
− 4nN (−1)tN

(
2
(
2m2 + 2m− 1

)
pFn

2
S + 8

(
2m2 + 2m+ 1

)
p3F

+ 4(−1)tN (2m+ 1)p2FnS − (−1)tN (2m+ 1)n3S

)
− 2(2m+ 1)n2N

(
−4(−1)tN (2m+ 1)pFnS + 12p2F + 3n2S

)
− 32(−1)tN (2m+ 1)2p3FnS + 40(2m+ 1)p2Fn

2
S

− 16(2m+ 1)p4F − 8(−1)tN pFn3S − (2m+ 1)n4S − (2m+ 1)n4N (5.53)

d(nS , nN , pF ;m) = −32(−1)tN (2m+ 1)p3F (nN − nS) (5.54)

+ 8p2F
(
3(2m+ 1)2n2N + 3(2m+ 1)2n2S + 2nNnS

)
+ 8(−1)tN (2m+ 1)pF (nN − nS)

(
2nNnS + 3n2N + 3n2S

)
− 48(2m+ 1)2p4F + (nN − nS)2

(
2(4m(m+ 1) + 3)nNnS

+ (4m(m+ 1) + 5)(n2N + n2S)
)

(5.55)

In in the limit of m → 0 one recovers the same result of the compactified model of [66,
67], as expected.

5.2.2 The 5d Supergravity Truncation

The five-dimensional supergravity model we are working with is a consistent truncation
from eleven-dimensional supergravity studied in [132]. It contains two vector multiplets
and one hypermultiplet and it has gauge group U(1)× R.
As we mentioned before, this truncation generalizes the structure associated with the
solutions of [66, 67] and it completes the consistent truncation of seven-dimensional
N = 4 SO(5) gauged supergravity reduced on a Riemann surface Cg analyzed in [299].
There, the 5d model was obtained truncating the 7d supergravity to the U(1)2 sector,
corresponding to the Cartan of SO(5). Besides enclosing the two U(1) gauge fields and
the two scalars belonging to the vector multiplets, the bosonic sector of the construction
made in [132] also includes all the scalar fields in the hypermultiplet, and furthermore
it gives a direct derivation of the gauging. In the following we outline the construction
made in [132]. The eleven-dimensional metric is

ds211 = e2∆ds2AdS5
+ ds26, (5.56)
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which corresponds to a warped product AdS5×wMwith warp factor e2∆ℓ2 = e2f0∆̄1/3,
where ℓ is the AdS radius and ∆̄ and f0 are constants.M6 is a six-dimensional manifold
given by a fibration of a squashed-sphere M4 over the Riemann surface Cg and has
metric

ds26 = ∆̄1/3e2g0ds2Cg
+

1

4
∆̄−2/3ds24, (5.57)

where g0 is a constant. The Riemann surface has Ricci scalar curvature k as discussed
after formula (5.19) and the metric onM4 is

ds24 = X−1
0 dµ2

0 +
∑
i=1,2

X−1
i

(
dµ2

i + µ2
i (dφi +A(i))2

)
, (5.58)

with
µ0 = cos ζ, µ1 = sin ζ cos

θ

2
, µ2 = sin ζ sin

θ

2
. (5.59)

The angles φ1, φ2 are in [0, 2π], while ζ, θ are in [0, π]. A(1) and A(2) gauge two U(1)

isometries of the squashed S4. Furthermore,

∆̄ =

2∑
I=0

XIµ
2
I , ef0 = X−1

0 , e2g0 = −1

8
kX1X2

[
(1− z)X1 + (1 + z)X2

]
, (5.60)

where z, that can be read from (5.16) as

z =
p− q
p+ q

, (5.61)

is a discrete parameter related to the Chern numbers p and q and

X0 = (X1X2)
−2,

X1X
−1
2 =

1 + z

2z− k
√
1 + 3z2

,

X5
1 =

1 + 7z+ 7z2 + 33z3 + k(1 + 4z+ 19z2)
√
1 + 3z2

4z(1− z)2
.

(5.62)

There is also a four-form flux, but we address the interested reader to [132] for its explicit
form.
Notice that the N = 1 and N = 2 twistings studied in [265] can be recovered as special
cases from this model: the first one arises from setting p = q (corresponding to z = 0),
while the second one from p = 0 or q = 0 (z = ±1 ).

5.2.2.1 N = 2 Supergravity Structure

The reduction described above gives rise to an infinite family of N = 2 gauged super-
gravity theories in five dimensions. Here we summarize the most salient features of the
model and we refer the reader to appendix A of [42] for a short review of 5d N = 2
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gauged supergravity5.
Focusing on the vector multiplet sector, the two real scalars Σ and ϕ parametrize the
Very Special Real Manifold

MV = R+ × SO(1, 1) (5.64)

that has metric

gxy =

(
3
Σ2 0

0 1

)
. (5.65)

The homogeneous coordinates hI(Σ, ϕ) (from now on we will omit the explicit depen-
dence of the sections from the two real scalars Σ and ϕ) are given by

h0 =
1

Σ2
, h1 = −ΣH1, h2 = −ΣH2, (5.66)

where
H1 = sinhϕ, H2 = coshϕ (5.67)

parametrize the unit hyperboloid SO(1, 1), while Σ parametrizes R+. The metric gxy is
the pull-back of the metric aIJ in the ambient space, which takes the form

aIJ =
2

3Σ2

Σ6

2 0 0

0 2(H1)2 + 1 −2H1H2

0 −2H1H2 2(H2)2 − 1

 . (5.68)

The non-zero components of the totally symmetric tensor CIJK are

C0ĪJ̄ = CĪ0J̄ = CĪJ̄0 =
1

3
ηĪJ̄ , for Ī , J̄ = 1, 2, (5.69)

with η = diag(−1, 1).
Moving to the hypermultiplet sector, the quaternionic manifold

MH =
SU(2, 1)

SU(2)×U(1)
(5.70)

is spanned by the scalars qX = {φ,Ξ, θ1, θ2}with line element6

gXY dq
XdqY = −dφ2 − 1

2
e2φ(dθ21 + dθ22)−

1

4
e4φ(dΞ− θ1dθ2 + θ2dθ1)

2. (5.71)

Only the hypermultiplet sector is gauged and the corresponding Killing vectors kI =

5The Lagrangian in (B.10) of [132] that we are using here can be obtained from the one used in [42] by
rescaling the gauge fields and the coupling constant as

AI
there = −

√
3

2
AI

here, gthere = −
√

2

3
ghere. (5.63)

6We are using a different normalization w.r.t. [132]. This allows us to obtain a simplified version of the
hyperino variation, as it was pointed out in [42].
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kXI ∂X read

k0 = ∂Ξ, k1 = zk∂Ξ, k2 = −k∂Ξ + 2(θ2∂θ1 − θ1∂θ2), (5.72)

with associated Killing prepotentials

P r0 = {0, 0, 1
4
e2φ},

P r1 = {0, 0, zk
4
e2φ}, (5.73)

P r2 = {
√
2eφθ1,

√
2eφθ2,−1 +

1

4
e2φ(2θ21 + 2θ22 − k)}.

Thus, the bosonic part of the five-dimensional Lagrangian is

e−1L =
1

2
R− 1

Σ2
∂µΣ ∂

µΣ− 3

4
aĪJ̄ ∂µ(ΣH

Ī) ∂µ(ΣH J̄)− 1

2
gXYDµqXDµqY (5.74)

−Σ4

12
F 0
µνF

0µν − 1

4
aĪJ̄F

Ī
µνF

J̄µν − e−1

12

√
2

3
ϵµνρστ

(
F 1
µνF

µν1 − F 2
µνF

µν2
)
A0
τ − g2V ,

where we recall the notation Ī , J̄ = 1, 2 and V represents the scalar potential of the
theory.

5.2.2.2 The Model

In the remainder of this paper we will work with a further truncation of the 5d super-
gravity model introduced above, which is obtained by setting

θ1 = θ2 = 0, (5.75)

consistently with the AdS5 vacuum of the model we started from. In this truncation, the
Killing vectors (5.72) simplify to

k0 = ∂Ξ, k1 = zk∂Ξ, k2 = −k∂Ξ. (5.76)

Notice that from (5.76) we can see that the field Ξ gets charged under the vector A(0)
µ +

zkA
(1)
µ − kA

(2)
µ , that becomes massive. Furthermore, only the third SU(2)-components

of the Killing prepotentials (5.73) survive and they reduce to

P 3
0 =

1

4
e2φ, P 3

1 =
zk

4
e2φ, P 3

2 = −1− k

4
e2φ. (5.77)

We can thus introduce a superpotential as

W = hIP 3
I =

Σ3
((
ke2φ + 4

)
coshϕ− zke2φ sinhϕ

)
+ e2φ

4Σ2
. (5.78)
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Furthermore, the following AdS5 vacuum is also a vev for the scalars Σ, ϕ, φ in this
truncation:

φ =
1

2
log

(
4√

3z2 + 1− 2k

)
,

ϕ = arctanh

(
1 + k

√
1 + 3z2

3z

)
,

Σ3 =

√
2
(
3z2 − 1− k

√
1 + 3z2

)
z
(√

1 + 3z2 − 2k
) .

(5.79)

5.2.3 The 5d Truncation on the Spindle

In this section we briefly review the geometric construction used to split the five-dimensional
background as the warped product AdS3 × Σ, where the space Σ is a compact spindle
with azimuthal symmetry and conical singularities at the poles. Once introduced the
ansatz on the geometry and on the gauge fields, we present the corresponding BPS equa-
tions and Maxwell equations of motion.
We refer the reader to [56] for the original derivation and to [42] for a more detailed
analysis made using our conventions.

5.2.3.1 The Ansatz and Maxwell Equations

We begin by considering the AdS3 × Σ ansatz made in [56]7:

ds2 = e2V (y)ds2AdS3
+ f(y)2dy2 + h(y)2dz2,

A(I) = a(y)(I)dz, (5.80)

where ds2AdS3
is the metric on unitary AdS3, while (y, z) are the coordinates on Σ, which is

a compact spindle with an azimuthal symmetry generated by ∂z . A spindle is a weighted
projective space WCP1

[nN ,nS ] with conical deficit angles at the north (nN ) and at the south
(nS) pole, whose geometry is determined by the two co-prime integers nN ̸= nS that are
associated to the deficit angles 2π

(
1− 1

nN,S

)
at the poles.

The azimuthal coordinate z has periodicity ∆z = 2π. The longitudinal coordinate y is
compact, bounded by yN and yS (with yN < yS), implying that the function h(y) van-
ishes at the poles of the spindle.

We assume that the scalars Σ, ϕ, φ depend on the y coordinate only, while the hyperscalar
Ξ is linear in z, i.e. Ξ = Ξz (with Ξ a constant).
Following [56], we will use an orthonormal frame to simplify the analysis of the Killing
spinor equations and of the equations of motion of the gauge fields:

ea = eV ēa, e3 = f dy, e4 = h dz, (5.81)
7We are using the mostly plus signature, as in [42].
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where ēa is an orthonormal frame for AdS3. In this basis, the field strengths read

f hF
(I)
34 = ∂ya

(I). (5.82)

Given that Σ, ϕ, φ are functions of y only and Ξ = Ξz, two out of the three gauge equa-
tions of motion specified to our ansatz can be integrated, and they can be written in the
orthonormal frame as

2e3V

3Σ2

[
(cosh 2ϕ− z sinh 2ϕ)F

(1)
34 + (z cosh 2ϕ− sinh 2ϕ)F

(2)
34

]
= E1, (5.83)

2e3V

3Σ2

[
zkΣ6F

(0)
34 −(cosh 2ϕ+z sinh 2ϕ)F

(1)
34 +(z cosh 2ϕ+sinh 2ϕ)F

(2)
34

]
= E2, (5.84)

∂y

(1
3
e3V Σ4F

(0)
34

)
=

1

4
e4ψ+3V g f h−1DzΞ, (5.85)

where E1 and E2 are constants, and we defined DzΞ ≡ Ξ + g(a(0) + zka(1) − ka(2)).

5.2.3.2 The BPS Equations

To derive the BPS equations for the geometry introduced above, we need to factorize the
Killing spinor [56]:

ϵ = ψ ⊗ χ, (5.86)

where χ is a two-component spinor on the spindle and ϕ is a two-component spinor on
AdS3 such that

∇mψ = −κ
2
Γmψ, (5.87)

with κ = ±1 depending on the N = (2, 0) or N = (0, 2) supersymmetry chirality of the
dual 2d SCFT.
We then decompose the 5d gamma matrices as

γm = Γm ⊗ σ3, γ3 = I2 ⊗ σ1, γ4 = I2 ⊗ σ2. (5.88)

with Γm = (−iσ2, σ3, σ1).
The analysis of the BPS equations is similar to the one in appendix C of [42] (or to the
original of [56]). Here again the spinor χ can be written in terms of an auxiliary function
ξ(y) as

χ = eV/2eisz

(
sin ξ

2

cos ξ2

)
, (5.89)
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with s a constant. Notice that, as expected, the spinor is not constant on the spindle.
In the following we summarize the differential relations coming from the BPS equations

ξ′ − 2f(gW cos ξ + κe−V ) = 0

V ′ − 2

3
fgW sin ξ = 0

Σ′ +
2

3
fgΣ2 sin ξ ∂ΣW = 0

ϕ′ + 2fg sin ξ ∂ϕW = 0

φ′ +
fg

sin ξ
∂φW = 0

h′ − 2fh

3 sin ξ
(gW (1 + 2 cos2 ξ) + 3κe−V cot ξ) = 0,

(5.90)

where W is the superpotential defined in (5.78). Besides the first-order equations, there
are also two algebraic constraints that can be derived from the supersymmetry variations

sin ξ(s−Qz) = −h(gW cos ξ + κe−V )

gh∂φW cos ξ = ∂φQz sin ξ,
(5.91)

whereQz can be read from the supercovariant derivativeDµϵ = ∇µϵ−iQµϵ that appears
in the gravitino variation and for our model takes the form

Qz =
e2φ

4
DzΞ− ga(2). (5.92)

We can also reduce the differential system by observing that

h = keV sin ξ (5.93)

where k is an arbitrary constant that needs to be determined. Finally, we can take ad-
vantage of the BPS equations to express the field strengths in terms of the scalar fields
as

F
(0)
34 =

6κe−V + 4gW cos ξ − 4gΣ ∂ΣW cos ξ

3Σ2
,

F
(1)
34 =−2Σ

3

[
sinhϕ

(
g cos ξ

(
2W+Σ ∂ΣW

)
+ 3κe−V

)
+ 3g∂ϕW cos ξ coshϕ

]
,

F
(2)
34 =−2Σ

3

[
coshϕ

(
g cos ξ

(
2W+Σ ∂ΣW

)
+ 3κe−V

)
+ 3g∂ϕW cos ξ sinhϕ

]
.

(5.94)

5.2.4 Analysis at the Poles

In this section we study the solutions of the BPS equations derived above and we show
how to obtain the 2d central charge from the pole analysis. The procedure follows the
one originally described in [56] and then applied in [42, 293] for the case of the coni-
fold. We start by summarizing the BPS equations, the constraints and the Maxwell equa-
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tions. Then we derive the explicit expressions of the conserved charges and the magnetic
fluxes. The charge conservation imposes the constraints that allow us to fix the bound-
ary conditions at the poles for the scalars that enter the calculation of the central charge.
We then compute the central charge from the Brown-Henneaux formula and discuss its
relation with the calculation done on the field theory side.
Before starting our analysis let us stress that, differently from the discussion in [42, 56,
293] we have not found from the pole analysis immediate reasons to exclude the possi-
bility of having solutions in the twist class. We will further comment on this issue in the
next section where we provide numeric and analytical solutions of the BPS equations.

5.2.4.1 Conserved Charges and Restriction to the Poles

From the expressions of the field strengths in (5.94) we can study the Maxwell equations
using the two conserved charges E1,2 in (5.83) and (5.84). In order to keep the hyperscalar
φ(y) finite we require that ∂φW |N,S = 0. This constraint gives rise to

kΣ|3N,S +
1

coshϕ|N,S − z sinhϕ|N,S
= 0 , (5.95)

where W is given in (5.78). Using (5.95) and the fact that E1 and E2 are conserved we
found simpler expressions by working with the following linear combinations

Q1|N,S = E1|N,S =
4

3
e2V |N,S

(
κ(sinh(ϕ|N,S)− z cosh(ϕ|N,S))

Σ|N,S
− zgeV |N,S cos(ξ|N,S)

)
,

Q2|N,S = E1|N,S − E2|N,S =
4κe2V |N,S

3Σ|N,S
(
2 sinh(ϕ|N,S)− zkΣ|3N,S

)
. (5.96)

At the north and at the south poles we have k sin ξ → 0. For non-vanishing k this gives
cos ξN,S = (−1)tN,S with tN,S = 0 or tN,S = 1. Denoting the poles as yN,S we can work
with yN ≤ y ≤ yS . Furthermore,

|h′|N,S = |k sin′ ξ|N,S =
1

nN,S
. (5.97)

This relation is due to the metric and to the deficit angles at the poles 2π
(
1− 1

nN,S

)
where nN,S > 1. From the Z2 symmetry of the BPS equations acting on h, a(I), s,Qz
and k we can restrict to h ≥ 0 and k sin ξ ≥ 0. We have then k sin ξ ≥ 0 and this quan-
tity is vanishing at the poles, with a positive derivative at yN and a negative one at yS .
Formally we introduce two constants, lN = 0 and lS = 1 such that

k sin′ ξ|N,S =
(−1)lN,S

nN,S
. (5.98)

Then the cases (tN , tS) = (0, 0) and (1, 1) correspond to the twist while (tN , tS) = (1, 0)

and (0, 1) correspond to the anti-twist. Plugging the evaluation of cos ξ at the poles in
(5.98), we obtain a relation for ξ′ at the poles as well. Furthermore, ξ′ following from the
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first BPS equation in (5.90) in the conformal gauge, can be shown to be proportional to
the quantity (s − Qz) in (5.91), after plugging in this last the relation (5.93). It follows
that, the quantity (s−Qz) at the poles becomes

s−QZ |N,S =
1

2nN,S
(−1)tN,S+lN,S+1. (5.99)

Furthermore, the relation ∂φW |N,S = 0 imposes from the second relation in (5.91) that
∂φQz|N,S = 0. Another assumption (justified a posteriori by the numerical results) is
that ψ|N,S ̸= 0. Such assumption implies also that DzΞ|N,S = 0.

5.2.4.2 Fluxes

Here we introduce the magnetic fluxes for the reduction of this truncation on the spindle.
This will be necessary in order to find the constant k introduced in (5.93) in terms of the
data of the spindle. First, from the relations (5.94), we observe that

F (I)
yz = (a(I))′ =

(
I(I)

)′
with I(I) ≡ −keV cos ξ hI . (5.100)

At this point we need to define the fluxes starting from (5.100). Let’s start by defining
the integer fluxes pI from the relations

pI
nNnS

=
1

2π

∫
Σ

gF (I) = gI(I)
∣∣S
N
. (5.101)

The magnetic charge associated to the R-symmetry is

−gnNnSI(2)|SN =
1

2

(
nS(−1)tN + nN (−1)tS

)
. (5.102)

This expression is quantized if nS(−1)tN + nN (−1)tS is even. Observe also that

I(0) + zkI(1) − kI(2) = 0 (5.103)

that implies also that the combination p0 + zkp1 − kp2 does not give rise to a conserved
magnetic flux. The last flux that we need to discuss is the one associated to the flavor
symmetry. The integer flavor flux is given by

pF = gnNnSI(1)|SN . (5.104)

It is important to observe that the relation p0 = k(zpF+p2) ∈ Z requires that for z ∈ Q\Z
we have the further constraint zpF ∈ Z.
Furthermore we also found useful to introduce an auxiliary function δ, in terms of which
we can rewrite

tanh(ϕ) ≡ 1− δ
z

(5.105)
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such that the charges evaluated at the poles simplify to

Q1N,S =
kδN,S((−1)lN,S − 2κknN,S(−1)tN,S )2

6zg2k3n3N,S

× (2κknN,S(δN,S − 1)δN,S − (−1)lN,S−tN,S ((δN,S − 1)2 − z2)), (5.106)

Q2N,S =
kκ((−1)lN,S − 2κknN,S(−1)tN,S )2

3zg2k2n2N,S
(z2 − 1 + δN,S(4− 3δN,S)).

(5.107)

It follows that we have three equations: the first one is (5.104), that after the substitution
(5.105) becomes

pF =
(δN − 1)nS(−1)−tN + nN (−1)−tS (δS − 1)− 2κknNnS(δN − δS)

2z
(5.108)

while the other two equations correspond to Q1|N = Q1|S , i.e.

(1 + 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
· δSn

3
N

δNn3S
· 2κknS(−1)tS (δS − 1)δS + (δS − 1)2 − z2

2κknN (−1)tN (δN − 1)δN − (δN − 1)2 + z2
= (−1)tS+tN

(5.109)

and Q2|N = Q2|S , i.e.

n2N
n2S
· z

2 − 1 + δS(4− 3δS)

z2 − 1 + δN (4− 3δN )
· (1 + 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
= 1 (5.110)

for the three variables, k, δS and δN . By solving these three equations we obtain then the
boundary conditions to impose for the scalars V, h, ϕ,Σ in terms of the integers nS , nN
and pF of the spindle for generic values of the parameters z ∈ Q and k = ±1 in both the
twist and the anti-twist class. The requirement of reality for these fields imposes further
constraints on the allowed values of the integers nS,N and pF . The only field that is not
involved in this analysis is the hyperscalar φ, that we are assuming as non-vanishing at
the poles.

5.2.4.3 Central charge from the Pole Data

Once the boundary data for δN,S and the constant k are specified we can read the central
charge of the putative 2d CFT from the pole analysis. The central charge is obtained from
the Brown–Henneaux formula [120]

c2d =
3RAdS3

2G3
=

3

2G5
∆z

∫ yS

yN

eV (y)|f(y)h(y)|dy. (5.111)
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The relation
eV (y)f(y)h(y) = − k

2κ
(e3V (y) cos ξ(y))′ (5.112)

implies that the central charge can be computed from the value of the fields at the poles
that we have computed above, without specifying the value of the hyperscalar. The
consistency of this analysis represents just a necessary condition for the existence of a
solution. Nevertheless, when a solution exists, the central charge computed here is the
correct one.
In the conformal gauge f = eV the integrand in (5.111) is eV (y)|h(y)|, where we remove
the absolute value here and consider h(y) > 0 thanks to the symmetries of the BPS
equations as discussed above. The central charge becomes c2d = cS − cN where

cN,S =
3πkδN,S

2z2g3G5κk2

(
κk − (−1)lN,S−tN,S

2nN,S

)3

((δN,S − 1)2 − z2). (5.113)

The central charge in the case of the anti-twist, splitting numerator and denominator for
ease of readability, is given by

Numerator = 3πkκ(4p2F − (nS − nN )2)(2zpF (−1)tN − nN + nS)

× (nS − nN )
(
16zpF (−1)tN + (z2 + 3)(nS − nN ) + 4(3z2 + 1)p2F

)
,

(5.114)

Denominator = 4g3G5nNnS

(
8zpF (−1)tN (nS − nN )(3n2N + 2nNnS + 3n2S − 4p2F )

+ 16p2FnNnS + 4(nS − nN )(n3S − n3N )

+ z2
(
24p2F (n

2
N + n2S)− 48p4F + (n2S − n2N )2

))
, (5.115)

while the central charge in the case of the twist is given by

Numerator = 3πkκ(4p2F − (nS − nN )2)(2zpF (−1)tN − nN + nS)

×
(
(nN + nS)(16zpF (−1)tN + (z2 + 3)(nN + nS)) + 4(3z2 + 1)p2F

)
,

(5.116)

Denominator = = 4g3G5nNnS

(
8zpF (−1)tN (nN + nS)(3n

2
N − 2nNnS + 3n2S − 4p2F )

− 16p2FnNnS + 4(nN + nS)(n
3
N + n3S)

+ z2
(
24p2F (n

2
N + n2S)− 48p4F + (n2S − n2N )2

))
. (5.117)

The five dimensional Newton constant can be read from the holographic dictionary. In-

deed from the general relation a4d =
πR3

AdS5

8G5
and from the explicit values of the central



Geometric Engineering and Compactifications: The Spindle 151

charge and of the AdS5 radius, given by

a4d =
(g − 1)

(
(1− 9z2)k+

(
3z2 + 1

)3/2)
48kz2

, R3
AdS5

=
(1− 9z2)k+

(
3z2 + 1

)3/2
4z2

(5.118)

we can extract G5 = 3πk
2(g−1) . Substituting this expression in the 2d central charge com-

puted above we can then recover the result obtained from the field theory calculation in
Section 5.2.1.2.
Some comments are in order. First we have checked in many cases if the various con-
straints, imposed by the quantization of the fluxes, by the reality condition on the scalars
and by the positivity of the central charge, are enough to exclude the existence of some
solutions. While in many cases the answer is affirmative, we have not been able to ex-
clude whole families of solutions. In general there are four main families of possible
solutions, identified by the value of k = ±1 and by the fact that they can be in the twist
or in the anti-twist class. Anyway, anticipating the results of next section, we have found
solutions only in the anti-twist class for k = −1.

5.2.5 The Solution

In this section we obtain the AdS3 × Σ solution for the model discussed above. We sep-
arate the analysis in two parts. In the first part we discuss the analytic solution for the
universal truncation. This corresponds to a further truncation of the model to the gravi-
ton sector. In this case we found the explicit solution corresponding to the general one
found in [180, 182]. Similarly to the cases discussed in [42, 56, 293] in presence of hyper-
multiplets, here we found an analytic solution only in the anti-twist class. Furthermore,
we have found such solution only for k = −1. We have also checked that the 2d central
charge matches the general expectation [182]

c2d =
4

3

a4d(nS − nN )3

nNnS(n2N + nNnS + n2S)
. (5.119)

In the second part of this section we study the solution turning on a generic flux pF . In
this case we have obtained the solution numerically. Again we found solutions only in
the anti-twist class for k = −1 and for generic values of z.

5.2.5.1 Analytic Solution for the Graviton Sector

Here we study the AdS3 × Σ solution by restricting to the graviton sector. It will turn
out that the solution is exactly the same as the one studied in the original Spindle paper
[182]. This is consistent with similar results obtained in other 5d truncations in presence
of hypermultiplets [42, 56, 293]. This requires to fix A(1) + ϵ∗4dA

(2) = 0 (with ϵ∗4d defined
in (5.19)) and identifying A(R) = −A(2). This further fixes 2pF = ϵ∗4d(nS − nN ). We have
found a solution in this case for the anti-twist class and k = −1 by fixing the scalars Σ(y),
ϕ(y) and φ(y) at their AdS5 value (5.79). Observe that ϕN,S = ϕAdS5

and ΣN,S = ΣAdS5

when pF = ϵ∗4d(nS − nN )/2.
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Before continuing the discussion a comment is in order. The choice of pF that allows to
study the universal twist is, for generic values of z, in contrast with the requirement that
zpF is an integer. The only cases that are allowed correspond to the ones that give rise
to a rational exact R-symmetry. In these cases a solution exists when (the even quantity)
nS − nN gives rise to an integer zpF . This analysis restricts the possible truncations
to the graviton sector that can be placed on the spindle. This is the counterpart of the
field theory argument that we made after formula (5.45). The discussion fits with similar
ones appeared in the literature of the spindle (see for example footnote 20 of [226] for
an analogous behavior in the case of toric SE5). Having this caveat in mind, the scalar
functions V (y), f(y) and h(y) in (5.80) are

eV (y) =

√
y

W
, f(y) =

3

2W

√
y

q(y)
, h(y) =

c0
√
q(y)

4Wy
(5.120)

while the gauge field is

A(R) =

(
c0κ(a− y)

4y
− s
)
dz . (5.121)

We also found that

sin ξ(y) =

√
q(y)

2y3/2
, cos ξ(y) =

κ(3y − a)
2y3/2

(5.122)

with

q(y) = 4y3 − 9y2 + 6ay − a2 . (5.123)

The constants a and c0 are obtained from the solutions of the BPS equations at the poles.
We found

c0 =
2
(
n2N + nNnS + n2S

)
3nNnS (nN + nS)

(5.124)

while the constant a is

a =
(nN − nS) 2 (2nN + nS)

2 (nN + 2nS)
2

4 (nNnS + n2N + n2S)
3

. (5.125)

From here it follows that

yN =

(
−2n2N + nNnS + n2S

)2
4 (n2N + nNnS + n2S)

2 , yS =
(nN − nS)2 (nN + 2nS)

2

4 (n2N + nNnS + n2S)
2 . (5.126)

The central charge becomes

c2d =
9π (nS − nN )

3

16G5W 3
critnNnS (n

2
N + nNnS + n2S)

. (5.127)
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Table 5.1: Some numerical solutions found in our analysis for various, consistent, values of deficit
angles nN,S , flavor flux pF and geometry z. The boundary values for the field φ are found so to
give rise to a finite Spindle in the y direction.

nS nN pF z φS φN ∆y

1 3 0 2 -0.285076 -0.274493 1.83241

1 7 -1 2 -0.172372 -0.170589 2.39707

1 3 0 3 -0.555814 -0.542721 1.82303

1 5 -1 3 -0.300428 -0.300346 2.16012

1 9 3 1
3 0.463989 0.363277 2.57446

1 5 0 1
3 0.126802 0.124497 2.16392

1 7 2 1
2 0.484886 0.347516 2.3322

3 7 0 1
2 0.104192 0.103447 1.74866

Using then a4d =
πR3

AdS5

8G5
and RAdS5 = 3

2Wcrit
we arrive at the expected universal result

(5.119). Observe that Wcrit can be consistently found from the relation (5.118).
Before turning on a generic value for the flavor flux pF and studying the solution nu-
merically, a comment is in order. We have so far referred to the solution with pF set
to ϵ∗4d(nS − nN )/2 as ”universal” solution. Such terminology refers to the fact that the
truncation is restricted the ”pure” gravity sector, indeed recovering the AdS5 vacuum.
On the field theory side the constraint on pF indeed reflects on the ones on p and q that
set the exact R-symmetry to be rational, as discussed at the end of subsection 5.2.1.2.

5.2.5.2 Numerical Solution for Generic pF

Here we look for more generic solutions of the BPS equations interpolating among the
poles of the spindle. From the analysis above we have observed that the analytic solu-
tions with pF = ϵ∗4d(nS − nN )/2 are in the anti-twist class with k = −1. Here we search
for numerical solutions for a generic integer zpF . We have scanned over large regions of
parameters and again we have only found solutions with k = −1 in the anti-twist class.
The solutions are found along the lines of the analysis of [42, 56, 293]. First we spec-
ify the values of z, nS , nN and pF . Then we fix the initial conditions imposed by the
analysis at the poles. In this way we are left with one unknown initial condition for the
hyperscalar φ. Finding the initial condition of φ corresponds to find the solution for the
BPS equations on the spindle. There is just (up to the numerical approximation) a single
value φS (here we are fixing the south pole at yS = 0) that allows to integrate the BPS
equation giving rise to a finite spindle in the y direction. Once this value is found a good
sanity check consists of running the numerics until 2∆y, that corresponds to solve the
BPS equations from the north to the south pole as well. We have scanned over various
values of the parameters and we present some of the solutions that we found in table
5.1.
In each case we have fixed k = −1 and chosen κ = 1 (corresponding to the choice
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nN > nS). The explicit solutions are plot in Figure 5.3. Observe that the solutions for
the cases at pF = 0 do not correspond to the universal twist (at least for z ̸= 0). The
cases at pF = 0 correspond to a twist along a trial R-symmetry, obtained from a linear
combination (with irrational coefficients) of the (irrational) exact R-symmetry and the
flavor symmetry.
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5.3 Discussion and Conclusions

In this Chapter we studied the reduction of the consistent truncations found in [132]
on the spindle. These truncations are associated to M5 branes wrapping holomorphic
curves in a CY3 and the dual field theories have been obtained in [66, 67]. Using these
results we matched the 2d central charge obtained from the field theoretical analysis with
the one predicted in gauged supergravity from the analysis at the poles of the spindle.
We have also studied the full solution, showing its existence for consistent choices of the
parameters, analytically for the universal anti-twist and numerically after including the
magnetic charge of the flavor symmetry.
There are many interesting aspects that we did not investigate. A first open question
regards the uplift of our solutions to 7d and 11d supergravity. An interesting limit corre-
sponds to set z = ±1 and consider pF = 2z

(
q − 1

4 (nS − nN )
)
. In this case we reproduce

the results obtained in [114] for the N = 2 Maldacena-Nuñez theory. Observe that the
matching works when pF and (nS − nN )/2 have the same parity.
Another open question regards the existence of solutions for k = 1 and |z| > 1 in both
the twist and the anti-twist class and for k = −1 in the twist class. Even if we have not
been able to exclude these possibilities (for generic values of z) we have not found any
solution of this type neither in the analytical nor in the numerical analysis carried out
in section 5.2.5. Nevertheless, we observe that by choosing z = 0 we can simplify the
problem (for k = −1) and we obtain results similar to the one studied in [42, 56, 293].
This limit corresponds to the N = 1 Maldacena-Nuñez theory and in this case the pole
analysis completely excludes the existence of solutions in the twist class. The reason
is that in this case we can impose further reality constraints on the conserved charges
against the existence of such solutions.
Our analysis has been performed at leading order in N , i.e. the central charge here
is scales with N3. There is a subleading contribution of order N , proportional to the
gravitational anomaly of the SCFT, that one could compute from the field theoretical
side. It would be interesting to match this contribution from the holographic analysis. A
similar calculation was carried out for the case of the topological twist in [65].
It would also be interesting to consider M5 branes wrapping other geometries. For ex-
ample by considering a disc, an holographic dual of an N = 2 SCFT of AD type was
proposed in [69–71] (see also [162]) As then observed in [164, 294] indeed the disc and
spindle geometries are different global completions of the same local solution.
Finally, it would be possible to study the models discussed here from the 11d perspective
along the lines of the recent discussions of [79, 80, 157, 267] from the theory of equivari-
ant localization.
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In the recent past important progress in the microstates counting of 5d rotating charged
supersymmetric black hole has been possible thanks to the role played by the Supercon-
formal Index (SCI) of [256, 286]. Such a proliferation of results spread after the seminal
work of [225] where an entropy function, counting microstates of the dual black hole,
was proposed. The microscopic origin of the Bekenstein-Hawking entropy of the holo-
graphic dual supersymmetric black hole was provided in [125].
Motivated by these results it became crucial to extract the entropy function of [225] from
a pure field theory calculation. The SCI, even if expected to be the natural candidate
for this computation, initially failed to provide the O

(
N2
)

scaling of the microscopic
degrees of freedom [256] due to large cancellations among states with opposite statistics.
The resolution of the puzzle was found for SU(N) N = 4 SYM in [89, 144] by using two
different methodologies. Based on these, one can then distinguish two broad classes of
computations of the index for supersymmetric theories in 4d. Either one first compute
the integral exactly and then evaluate the leading contribution to the entropy [7, 13, 86,
88–90, 156, 203, 259, 261, 266] or one evaluates the integrand and then extract the entropy
from a saddle point analysis [25, 26, 29, 46, 53, 57, 124, 127, 129, 145, 146, 200–202, 220,
241, 254]. The first approach, originally discussed in [88, 89], provides, in principle, an
exact answer in any regime of charges. However, the formal exact evaluation turns out
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Figure 6.1: Depicion of a D3 brane probing a Black Hole

to be rather complicated and it boils down to solve a set of algebraic equation, referred
in the literature as Bethe Ansatz Equations (BAEs). Despite such difficulties in the case
of SU(N) N = 4 SYM the solutions are known at large N and it has allowed to extract
the black hole entropy, matching it with the gravitational expectations [208, 209]. A
simpler calculation, valid only in a restricted regime of charges, corresponds to the so
called Cardy-like limit [144]. In this case one estimates the integral from a saddle point
analysis and then the entropy can be obtained also at finite N . Furthermore, a third
method consists of a direct saddle point evaluation of the matrix integral at large N in
[129]. Observe that the saddle point evaluations of the index can be generalized to other
4d models with different matter content and supersymmetry and such results inspired
the EFT calculations of [55, 134] on the high temperature limit on the second sheet of the
index.
Despite the power of the results discussed so far it is desirable to go beyond, by perturb-
ing the black hole, and as a consequence the superconformal index in a controlled way.
For example, perturbing the system with the addition of a Polyakov loop provides an
order parameter to detect the confinement/deconfinement transition, expected to cor-
respond to the dual mechanism of the (first order) Hawking-Page transition from the
thermal AdS to the large black hole [14, 297, 309] (see [138, 142, 143, 159, 280] for recent
progresses in the understanding of the Hawking-Page transition from the field theory
side).
Recently another (supersymmetry preserving) order parameter for the deconfinement
phase transition has been proposed in [139] by adding a surface defect corresponding
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on the gravitational side to a probe D3-brane, extended across the time and a radial
direction, and wrapped on one compact direction in AdS5 and one compact direction
in S5. Such a probe D3 is interpreted in the dual field theory as a half BPS Gukov-
Witten surface defect placed on R2 at x2 = x3 = 0 in R1,3. The defect corresponds to
a codimension-2 singularity in N = 4 SYM. A class of Gukov-Witten defects in N = 4

SYM is classified by specifying its Levi subgroup embedding. The defect studied in
[139] corresponds to the maximal Levi subgroup embedding. From the 2d SCFT point
of view the theory living on the defect is then an N = (4, 4) U(1) gauge theory with
N fundamental hypermultiplets1. The surface operator defined in this way probes a
1/16 BPS black hole in the generalized thermal ensemble given by the superconformal
index. At technical level the effect of the surface defect on the index is obtained by
coupling the 4d-2d system along the lines of the discussion of [187]. This coupling is
done by gauging the global symmetry of the 2d theory, identifying it to the SU(N) gauge
symmetry of 4d N = 4 SYM. The final expression for the superconformal index of the 4d-
2d coupled system is then given by the original index and in addition to the integrand
the contribution of opportune insertions of Jacobi θ0 functions carrying the charges of
the 2d fields once expressed in terms of the 4d ones.
From the gravitational side the leading contribution of the probe D3 to the free energy
of the Black Hole has been computed in [139] in the case of equal charges and different
angular momenta. The final result correspond to a sum of the unperturbed result and to
the perturbative contribution from the DBI action. Translating the result to the entropy in
turns out that the charge and the entropy of the D3 are complex in this case. The result
is apparently contradictory with respect with the one obtained from the field theory
side using the superconformal index, where such quantities are real. The way out of
the apparent contradiction has been subsequently discussed in [128], where it has been
shown that by borrwing the field theory result, where the entropy is obtaind from the
laplace transform of the superconformal index, also the gravitational entropy can be
shown to be real.
Furthermore while in [139] the evaluation of the defect superconformal index has been
pursued using a direct saddle point evaluation at 1/N order in a fixed regime of charges,
in [128] the evaluation of the superconformal index has been done through a systematic
Cardy-like expansion with more generic regimes of charges allowed.
While the two result match in the regime of small angular momenta at fixed charges, this
second approach is intriguing because it tells us more informations about the backreac-
tion of the probe D3, predicting a fully backreacted answer at leading order in the Cardy
like limit. The result furthermore suggests the structure of the subleading correction in
the Cardy-like limit in terms of the angular fugacities. Namely a series expansion in the
angular momenta could be derived, going beyond the leading order approximation.
This Chapter is based on [31] and is organized as follows. We firstly introduce the
Gukov-Witten operators and their construction as 2d gauge theories in section 6.1. We
will then discuss the backreaction effect from the SCI perspective, evaluating the SCI
in the Cardy-like limit in section 6.3, and with the Bethe Ansatz (BA) approach in sec-
tion 6.4. To this end we compute such backreaction in the Cardy-like limit around the

1See also [255] for a similar setup where the actual defect corresponds to the one studied in [273]
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holonomy saddles giving rise to the black hole. The result is compatible with [128] and
it allows to estimate the 3d partition function with the addition of the effect of the defect.
Surprisingly we find that the two regions corresponding to the second and the third
sheet from the EFT approach give rise to the same result, symmetrizing the seeming
asymmetry of [128].
Then we confirm our result following the Bethe Ansatz approach. We first verify its
feasibility in presence of the defect and then we compute the contribution of the basic
solution of the BAEs. The computation is done for equal, not necessarily large, angular
momenta and for arbitrary flavor charges. Thus, we generalize the result obtained for
equal and fixed flavor charges in [139]. The resulting index, once evaluated on the basic
solution, recovers its symmetry in agreement with the Cardy-like analysis.

6.1 Gukov-Witten Surface Operators

6.1.1 Field Theory Construction

In this section we give a brief review of the construction of two-dimensional operators
by Gukov and Witten (GW) [206, 207]. We then discuss their field theory interpretation
as a coupled 4d-2d system and the computation of the SCI in the presence of such defects
[187].
Extended operators in a QFT can be broadly divided into two sub-categories: either
defined by functionals of local operators on some higher co-dimension manifold or as
singularities in the gauge field. From this classification one recognizes Wilson and ’t
Hooft line operators of four-dimensional pure Yang-Mills theory. The former are classi-
fied by representations of the gauge group G, while the latter are, generically, classified
by integers labelling the amount of magnetic charge.
Gukov and Witten gave a prescription to generalize this construction to two dimensional
surface operators as singularities for the vector field on a surface Σ. Surface defects, in
contrast to line defects, are classified not only by the singularity of the vector field along
Σ, but also by the subgroup of G under which they are invariant. In this section we will
consider such defects in 4d N = 4 SYM even if the construction is more general.
We regard the field content of N = 4 SYM in N = 1 language where we the field content
is given by a vector multiplet V and chiral multiplets Φi=1,2,3. A half-BPS GW surface
operator oriented along the (x0, x1) direction, is defined as a singularity on the vector
field and the scalar component of the chiral multiplets

A = a(r) dθ + · · · , ϕ = b(r)
dr

r
− c(r) dθ + · · · , (6.1)

where A = Aµ dx
µ , ϕ = ϕµ dx

µ with µ = 2, 3 and z ≡ reiθ = x2 + ix3 is the normal
direction to Σ. The BPS condition can be casted in the form of Hitchin equations{

FA − ϕ ∧ ϕ = 0,

dAϕ = 0, dA ⋆ ϕ = 0
(6.2)
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and conformal invariance requires a, b, c in (6.1) to be independent on r. Hitchin equa-
tions also require a, b, c to be mutually commuting. The easiest solution to (6.1) is ob-
tained by conjugating the algebra-valued parameters a, b, c to parameters α, β, γ valued
in the Lie algebra t of the maximal torus T of the gauge group G. Therefore, the singu-
larity is described by

A = α dθ + · · · , ϕ = β
dr

r
− γ dθ + · · · . (6.3)

Furthermore, it turns out that one can add a 2d θ-term labelling topologically distinct re-
strictions of the G-bundle to the defect. The parameter η labelling this choice generically
takes value in a subgroup of LT, the maximal torus of the Langlands dual of G. This
fully defines the insertion of a GW surface defect in the path integral. However, when
summing over gauge configurations in the path integral, one divides by the subgroup
of G commuting with the parameters α, β, γ, η. This condition defines the subgroup that
preserves the singularity which is denoted as Levi subgroup L. The choice of L is re-
garded as the definition of the defect. Therefore, the insertion of the defect amounts to a
choice of

(α, β, γ, η) ∈ (T× t× t× LT)/Weyl(L). (6.4)

In the rest of the Chapter we focus on G = SU(N). The Levi subgroups in this case
are classified by partitions of N = λ1 + · · · + λs. A partition λ = [λ1, . . . , λs], with
0 < λ1 ≤ λ2 ≤ · · · ≤ λn < N , is associated to the Levi subgroup

L = S

(
n⊗
i=1

U(ki)

)
, N =

n∑
i=1

ki , (6.5)

where ki are the number of boxes in the i-th column Young tableaux associated to λ. For
example, let us consider G = SU(5) and λ = [4, 1]. Here the Young tableaux is

4

1

2 1 1 1

(6.6)

and the associated Levi subgroup is

L = S(U(2)×U(1)×U(1)×U(1)) ≃ SU(2)×U(1)3. (6.7)

For SU(N), the Levi subgroup associated to the partition λ = [N − 1, 1] is dubbed ”max-
imal Levi sub-group”. This is going to be the relevant sub-group for our analysis.
The 2d defect is coupled to the 4d theory by imposing the singular behavior on the 4d
gauge fields in the path integral. In practice this is quite cumbersome and usually one
can add a 2d theory acting as a Lagrange multiplier such to impose the singular behavior
on Σ. This 2d gauge theory is built so that, when integrating out the excitation on the
defect, one recovers the original 4d theory with the constrained fields.
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The 2d theory must satisfy certain properties [187, 206, 207] to prescribe the singularity
as described above. Let us consider the scenario where the 2d theory is a Gauge Linear
Sigma Model (GLSM) with some target space Mα,β,γ . A half-BPS defect must preserve
N = (4, 4) supersymmetry, implying that the target space of the GLSM must be hyper-
Kähler. Additionally, it must possess a G action, suggesting that the 2d theory must
have a G flavor symmetry that is used to couple it to the 4d bulk. Furthermore, it must
be dependent on the choice of L. The simplest target space is the cotangent space of
G/L, denoted as T ∗(G/L). It is worth noting that T ∗(G/L) = GC/LC is also as the
moduli space of solutions with the prescribed singularity of the form (6.3). The action of
the 2d system can be obtained straightforwardly: the coupling to the 4d theory induces
a singularity in the BPS equations (6.2)

F23 +
[
ϕ2, ϕ

†
2

]
= 2πδ(2)(x⃗)qq†, Dz̄ϕ2 = πδ(2)(x⃗)qq̃ , (6.8)

where qq† and qq̃ are moment maps for the G action on Mα,β,γ . By virtue of the BPS
equations of the 2d theory, the moment maps are integrated out in favour of the Kähler
moduli α + iη and β + iγ respectively. This, together with the δ-functions, induces the
singular behavior of the solution (6.3).
In order to describe the gauge group G2d of the 2d theory, one further needs to describe
Mα,β,γ as an hyper-Kähler quotient of some vector space by the group G2d. For the case
at hand, where the 4d gauge theory is N = 4 SU(N) SYM, this quotient can always be
constructed [257] and the resulting gauge theory is a 2d N = (4, 4) theory with flavor
symmetry G = SU(N) and gauge group

G2d =

n−1⊗
i=1

U(pi), where pi =

i∑
j=1

kj . (6.9)

The matter content is given by bi-fundamental hypermultiplets in the (pi,pi+1) rep-
resentation and N fundamental hypermultiplets for U(pn−1). In N = (2, 2) language
the theory is given by the quiver diagram in figure 6.2. The theory also carries a Weyl
anomaly [137, 306] c2d which for a defect of the form (6.5) is given by

c2d = 3

(
N2 −

n∑
i=1

k2i

)
. (6.10)

The construction just described is necessary in order to define the SCI of the 4d-2d cou-
pled system.

6.2 The 2d Elliptic Genus

Here we briefly discuss how the SCI computation changes in the presence of the GW
defect. Firstly, to preserve the right supercharges on S3 × S1 the GW defect has to be
wrapped appropriately on this geometry. This corresponds to wrapping once the defect
around the thermal circle and once around the great circle of S3. By the state-operator
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SU(N) U(pn−1) U(pn−2) U(p1)

2d N = 4 SYM 2d theory

Figure 6.2: Quiver diagram of the 4d-2d coupled system in the N = (2, 2) language in 2d and
N = 2 language in 4d. Notice that the ranks of the gauge groups of the 2d theory go from right to
left.

correspondence, the Hilbert space of the theory is now twisted by the presence of the
defect. Therefore, the SCI must be computed on the Hilbert space HGW(S3). However,
this approach is quite involved and one usually exploits the fact that the index of the
4d-2d coupled system can be casted in the following form

I(p, q, vi) =
∫
SU(N)

du I4d(p, q, vi;u)I2d(p, q, vi;u) , (6.11)

where I2d is the index of the 2d theory living on the defect, which is wrapped along a
temporal T 2 in S1 × S3.
To fully compute the SCI (6.11) one needs to understand how the superconformal algebra
of the 2d N = (4, 4) theory is embedded in the one of 4d N = 4. The insertion of an half-
BPS GW operator in 4d breaks the superconformal algebra in

u(1)A ⋉ (psu(1, 1|2)× psu(1, 1|2))⋉ u(1)C ⊂ psu(2, 2|4) (6.12)

which is the usual 2d N = (4, 4) superVirasoro algebra, centrally extended by u(1)C . The
abelian factor u(1)A acts as the outer-automorphism of the algebra and need not be a
realized symmetry on the defect.
The 2d contribution to (6.11) can be found by the following 2d index

INSNS = TrNSNS(−1)F e2πiτ2dL0e−2πiτ̄2d(L̄0− 1
2 J̄0)e2πizNSJ0e2πiχJAe2πiuC , (6.13)

where τ2d is the complex structure of the temporal T 2 and the trace is taken over the
NSNS-sector. The various bosonic generators of the embedding (6.12) that enter in the
definition of this index are the right- and left-moving Hamiltonians L̄0, L0, the Cartan
of su(2)R J0 and the flavor symmetry JA of the GLSM. To ease the computation of such
index, we will use the fact that the NSNS-sector and RR-sector indices are related, and
that the latter is the elliptic genus of the GLSM. In fact, as discussed in Appendix C of
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[139], the following relation holds

INSNS(τ2d, zNS, χ, u) = e2πiτ2d(−
c2d
24 )e−

πic2d
3 (zNS−

τ2d
2 )IRR(τ2d, zNS −

τ2d
2
, χ, u) , (6.14)

where IRR is the RR-sector index (or fully-refined elliptic genus) and one identifies zR ≡
zNS − τ2d

2 . The 2d contribution in (6.11) is then given by

I2d(τ2d, zNS, χ, u) = e−
πic2d

3 zRIRR(τ2d, zR, χ, u). (6.15)

Following the discussion of [87, 139, 187], the elliptic genus of a general N = (2, 2) gauge
theory is given by

ZT 2 =
1

|W |
∑

u∗∈M∗
sing

JK-Res
u=u∗

(Q(u∗), η)Z1-loop , (6.16)

where the residues are evaluated following the Jeffrey-Kirwan prescription and Q(u∗)

are the chemical potentials for the fields constrained by the poles at u∗. The one-loop
contributions for the multiplets are

Zchiral
R (τ, ζ, u) =

∏
ρ∈R

θ1(y
R
2 −1xρ; q)

θ1(y
R
2 xρ; q)

,

ZVector
G (τ, ζ, u) =

(
2πη(q)3

θ1(y−1; q)

)rankG ∏
α∈G

θ1(x
α; q)

θ1(y−1xα; q)

rankG∏
a=1

dµa ,

ZTwisted(τ, ζ) =
θ1(y

−RA
2 +1; q)

θ1(y−
RA
2 ; q)

,

(6.17)

where η(q) is the Dedekind eta function and θ1(z; q) is the Jacobi theta function. These
functions depend on fugacities related to the gauge and global symmetries, which are
defined by q = e2πiτ2d , y = e2πiζ , xa = e2πiµa and xρ = e2πiρ(µ).
For the case of interest, the 2d theory associated to the maximal SU(N) GW operator
λ = [N − 1, 1] is a U(1) gauge theory with a N = (4, 4) hypermultiplet which is just a
pair of N = (2, 2) chiral multiplets in the bi-fundamental of SU(N). Moreover, we have
a N = (4, 4) U(1) vector multiplet, corresponding in the N = (2, 2) language to a chiral
multiplet and a vector multiplet2. The one-loop determinant is given by

Z1-loop =
2πη(q)3

θ1(−ζ; τ)
θ1(−2χ; τ)
θ1(2χ− ζ; τ)

N∏
i=1

θ1(µ− ui + χ− ζ; τ)
θ1(µ− ui + χ; τ)

θ1(−µ+ ui + χ− ζ; τ)
θ1(−µ+ ui + χ; τ)

dµ ,

(6.18)

where χ is a fugacity associated to the U(1)A symmetry in (6.12). Here the arguments of
the Jacobi theta function are the chemical potentials rather than the fugacities to avoid

2In the abelian case, this is equivalent to a twisted chiral multiplet.
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clutter. The elliptic genus is computed by integrating over the gauge holonomy µ. Com-
puting the residue around µ = uj−χ one gets cancellations between the vector multiplet
determinant and fundamentals with β = α ending with the following result

ZT 2(τ, ζ, χ) =

N∑
i=1

∏
j ̸=i

θ1(uij + ζ − 2χ; τ)θ1(uij − ζ; τ)
θ1(uij ; τ)θ1(uij − 2χ; τ)

, uij = ui − uj . (6.19)

The last step is to use this result in (6.15) to get the 2d contribution. The phase factor
in (6.15) depends on the 2d central charge, which for the maximal defect is given by
c2d = 6(N − 1) by using formula (6.10). Here, the phase can be reabsorbed into the
Jacobi θ1-function, using (A.7), to get

I2d =
N∑
i=1

N∏
j ̸=i

θ0(uij + ζ − 2χ; τ)θ0(uij − ζ; τ)
θ0(uij ; τ)θ0(uij − 2χ; τ)

, ζ ≡ zNS. (6.20)

6.3 Cardy-like Approach

6.3.1 The 4d Superconformal Index

In this section we compute the Cardy-like limit of the index of the 4d-2d coupled system,
describing the insertion of a GW defect in N = 4 SU(N) SYM.
The SCI, originally constructed in [256] for 4d N = 4 SYM, can be defined for a generic
4d N = 1 SCFT [286], choosing one supercharge Q, as refined Witten index of the theory
in radial quantization. The index counts the difference between bosonic and fermionic
states annihilated byQ in the Hilbert space of the theory on S3. Explicitly, the SCI, in the
notation of Dolan and Osborn [175], is

I4d = Tr(−1)F e−β{Q,Q̄}pJ1qJ2(pq)R/2
∏
k

vQk

k , (6.21)

where the refinement is obtained by including charges in the commutant of {Q, Q̄}. In
(6.21) J1 and J2 correspond to the angular momenta of the S3,R is the U(1) R-charge and
the fugacities vk parametrize the Cartan subalgebra, with charges Qk, of other generic
symmetries the theory may have.
We are interested in the case of N = 4 SYM with SU(N) gauge group, for which the
index (6.21) takes the form

I4d = Trgauge(−1)F e−β{Q,Q̄}pJ1qJ2(pq)R/2vQ1

1 vQ2

2 , (6.22)

where the trace is taken over gauge singlets and Q1, Q2 parametrize the Cartan of the
su(3) ⊂ su(4)R commuting with {Q, Q̄}. In order to discuss the Cardy-like limit of the
index we define

p = e2πiτ , q = e2πiσ, v = e2πiξ (6.23)
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and introduce the chemical potentials ∆a associated to the matter fields, given by

∆a = ρa(ξ) +
τ + σ

2
Ra, (6.24)

together with the constraint

3∑
a=1

∆a = σ + τ mod 1. (6.25)

The trace over gauge-invariant states can be achieved by integrating over the holonomies
of the gauge group. Defining the elliptic gamma functions

Γ(z; p, q) :=

∞∏
m=0

∞∏
n=0

1− pm+1qn+1/z

1− pmqnz
, Γ̃(u) := Γ(e2πiu; e2πiτ , e2πiσ) (6.26)

and the q-Pochhammer symbol

(z; q)∞ :=

∞∏
k=0

(
1− zqk

)
, (6.27)

the index can be expressed as an elliptic hypergeometric integral [175]

I(∆, τ, σ) = (p; p)N−1
∞ (q; q)N−1

∞
N !

3∏
a=1

Γ̃(∆a)
N−1

∫ N−1∏
i=1

dui

∏3
a=1

∏N
i ̸=j Γ̃(uij +∆a)∏N
i ̸=j Γ̃(uij)

,

(6.28)
where uij := ui − uj . The integral is taken over the gauge holonomies, subjected to the
SU(N) constraint

N∑
i=1

ui ∈ Z. (6.29)

Expression (6.28), although originally defined for purely imaginary modular parameters
τ and σ, can be extended to the upper-half complex plane τ, σ ∈ H, and complex ∆.
Analytic continuation of chemical potentials introduces phases in (6.21), which in prin-
ciple allow for obstructions to Bose/Fermi cancellations. The Cardy-like limit is de-
fined as a generalization of the standard hyperbolic limit of the index [284, 304], or
high-temperature Cardy limit, where an appropriate scaling behavior is assigned to the
analytically continued chemical potentials of the theory, so to preserve the aforemen-
tioned cancellations [53, 144]. Typically, one defines a complexified inverse temperature
parameter β, such that

τ =
iβb

2π
, σ =

iβb−1

2π
, (6.30)

where b can be identified with the squashing parameter of the S3 in the underlying
S1 × S3 geometry. While usually b is a real positive number, also complex values are
allowed. The non-collinearity of τ and σ in this last case is understood as a twisting of
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the S3 on the S1 as discussed in [134, 149, 159]. Then, the Cardy-like limit is defined first
by choosing a scaling behavior for the flavor chemical potentials. Such scaling is con-
stituted of a constant fixed term, crucial for preventing Bose/Fermi cancellations, and a
linear part in β. Then, the limit sends the complexified inverse temperature β to zero.
Within this framework the index (6.21) can be interpreted as the supersymmetric parti-
tion function of the theory3 on S1 × S3 background, with appropriate twisted boundary
conditions for the fields, corresponding to the fugacities refinements. We make the con-
nection with the underlying geometry explicit by parametrizing the fugacities as

τ := rω1, σ := rω2, r ∈ R, ω1, ω2 ∈ H. (6.31)

The definition (6.31) explicitly singles out the r parameter, identified with the radius of
the S1 in the S1 × S3 background on which the theory is defined, and the ω1, ω2 squash-
ing parameters for the (possibly squashed) S3. Then, the Cardy-like limit is understood
geometrically as a dimensional reduction of the Euclidean theory along the thermal cir-
cle.

6.3.2 The Cardy-like Limit of the 4d Index

In order to compute Cardy-like limit of the 4d N = 4 SYM index we parametrize the
flavor chemical potentials as

∆a = ∆̃a + r(∆̂aω1 + ∆̌aω2) ≡ ∆̃a + r∆̄a ∆̃a ∈ R/Z, ∆̂a, ∆̌a ∈ R. (6.32)

Then, the index can be expanded asymptotically as r is sent to zero and expression (6.28)
can be evaluated through a saddle point approach at fixed N . In doing so, the large N
limit behavior can be inferred extracting a dominant saddle configuration, associated to
the black hole solution in the dual gravitational theory [144].
In order to evaluate (6.28) in the Cardy-like limit, we rewrite the index in terms of an
effective action for the matrix model

I =
1

N !

∫ N−1∏
i=1

dui e
S4d(u,∆,τ,σ), (6.33)

where

S4d(u,∆, τ, σ) =(N − 1)

3∑
a=1

log Γ̃(∆a) +

3∑
a=1

N∑
i̸=j

log Γ̃(uij +∆a)+

+

N∑
i<j

log θ0(uij) +

N∑
i<j

log θ0(−uij)+ (6.34)

3The difference between the two corresponds to a supersymmetric Casimir energy term [62, 63, 78]. Being
proportional to the radius of the S1, such contribution can be neglected in a Cardy-like limit evaluation, where
a small radius limit is taken from a geometric perspective, dimensionally reducing the theory on the three-
sphere.
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+(N − 1)

(
log(p; p)∞ + log(q; q)∞

)
,

where the special function θ0 is given by

θ0(u;ω) := (e2πiu; e2πiω)∞ (e2πiωe−2πiu; e2πiω)∞ . (6.35)

and we employed (A.11) in appendix 7.1. The index reduces to a sum of contributions
from multiple saddles

I =
∑
u∗

Ilead(u
∗,∆, τ, σ)Zsub, Zsub :=

1

N !

∫ N−1∏
i=1

dδuiIsub(δu) (6.36)

in which we can isolate a leading part, at O(r−2), dependent only on ∆ and the de-
tails of the holonomy saddle u∗, and a subleading term, ∼ O(r0), Isub(δu) emerging as
an effective potential for the matrix model perturbed near u∗. As discussed above, the
Cardy-like limit reproduces the dimensional reduction of the theory as the thermal S1 is
sent to zero. For generic non-zero ∆̃ the whole KK tower of modes for the matter fields
becomes massive and gets lifted as r → 0, while a zero-mode survives in the vector mul-
tiplet and a gapped 3d pure CS gauge theory emerges. When the size of the S3 is much
larger than the size of the S1, correlators at two different points on S3 are exponentially
suppressed and in the limit r → 0 the leading order description of the theory is captured
only by CS contact terms [134]. In the language of localization the contribution from
such contact terms are encoded in Ilead in (6.36). The sub-leading contribution Zsub en-
codes the three-sphere partition function for the topological SU(N)±N theory emerging
in the reduction.
The saddle points configurations satisfy the saddle point equations

∂S4d

∂ui

!
= 0 i = 1, . . . , N − 1. (6.37)

While in principle one needs to solve the saddle point equations derived from (6.34), it is
more convenient to compute the leading order saddle-point equations from the leading-
order effective action, as for r → 0 the saddles will converge to the leading order ones as
discussed in [201].
Employing modular properties of the elliptic gamma functions, Jacobi functions and q-
Pochhammer symbols presented in appendix 7.1, we can derive the complete expansion
of the effective action in r from (6.34) up to exponentially suppressed terms. The leading
order term ∼ O(r−2) receives contributions only from matter fields

Slead = − πi

3τσ

(N − 1)

3∑
a=1

B3 ({∆a}) +

3∑
a=1

N∑
i ̸=j

B3 ({uij +∆a})

 , (6.38)

where we define {x} = {x̃}+ rx̄ ≡ x̃− ⌊x̃⌋+ rx̄ for any x with x̃ ̸= 0. A set of solutions
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to the saddle point equations

∂S4d

∂ui
=

3∑
a=1

N∑
j=1

(
B2({uij +∆a}) − B2({−uij +∆a})

+B2({−uNj +∆a}) − B2({uNj +∆a})
)
= 0 (6.39)

is the so-called family of C-center solutions [54, 126], organized accordingly to the pres-
ence of a discrete one-form symmetry, namely the center symmetry ZN , and its sub-
groups [54, 134]

uj =
m

N
+

⌊
j−1
N/C

⌋
− C−1

2

C
j = 1, . . . , N, (6.40)

where m = 0, . . . NC − 1 and C a divisor of N .
In the following we will be interested only in the C = 1 case, corresponding to the
saddle point reproducing the black hole entropy. For C = 1, we have N holonomy
configurations with all the holonomies packed at ui = m

N for fixed m = 0, . . . , N − 1,
contributing the same to the index in (6.28). The logN degeneracy arising from these
saddles in the entropy function (∼ log I) is due to the index being insensitive to the
presence of global properties of the gauge group, namely it is unable to detect the action
of the ZN center symmetry, mapping different saddles into each other. Expanding the
effective action near vanishing holonomies with ansatz

ui = rλi, ui ∈
[
−1

2
,
1

2

)
(6.41)

the gauge terms and Pochhammer symbols combines to produce the measure for a three-
sphere partition function in the reduction

I =
(p; p)N−1

∞ (q; q)N−1
∞

N !

∫ N−1∏
i=1

dui
∏
i<j

θ0(uij)θ0(−uij) . . . ∼
r→0

∼ e−
πi(ω1+ω2)(N2−1)

12rω1ω2

N !

∫ N−1∏
i=1

dλi√
−ω1ω2

1∏
i<j Γh(λij)Γh(−λij)

. . . (6.42)

where the dots stand for the matter content, whose contribution depends on the details
of the reduction. Parameterizing the complex chemical potentials ∆a as in equation
(6.32) the matter terms contribute as

exp

2πi

(N − 1)

3∑
a=1

Q ({∆a}) +

3∑
a=1

N∑
i ̸=j

Q ({rλij +∆a})

+O
(
e−

1
r

) (6.43)

which can be expanded for small r, generating a leading term ∼ r−2 related to central
charges a, c of the theory and a quadratic Chern-Simons term in the holonomies of order
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O(1) in r

exp

2πi

(N2 − 1)

3∑
a=1

Q ({∆a}) + r2

(
3∑
a=1

Q′′ ({∆a})

)
N∑
i<j

(λi − λj)2
+ . . .

,
(6.44)

where Q′′(x) denotes the second derivative of Q(x) with respects to its argument and
the dots stands for negligible terms in the Cardy-like limit at most of linear order in r.
By virtue of the reality of the adjoint representation, the generation of an FI term linear
in the gauge holonomies is prevented.
Upon employing the constraint

3∑
a=1

{∆a} = τ + σ +
3 + n0

2
, n0 = ±1, (6.45)

which follows from the constraint (6.25), and the definition of Q({∆a})

Q({∆a}) =−
B3({∆a})

6στ
+ B2({∆a})

(σ + τ)

4στ
− B1({∆a})

(
(σ + τ)2 + στ

)
12στ

+
σ

24
+

τ

24
, (6.46)

we get

exp

(
− πi(N2 − 1)

r2ω1ω2

3∏
a=1

(
{∆a} −

n0 + 1

2

)
− πin0N

ω1ω2

N∑
i=1

λ2i

+
πi(ω1 + ω2)(N

2 − 1)

12rω1ω2
− πin0(N

2 − 1)(ω2
1 + ω2

2 + 3ω1ω2)

12ω1ω2
. . .

)
, (6.47)

All in all, the index becomes

I =exp

(
−πi(N

2 − 1)

στ

3∏
a=1

(
{∆a} −

n0 + 1

2

)
− πin0(N

2 − 1)(ω2
1 + ω2

2 + 3ω1ω2)

12ω1ω2

)

× 1

N !

∫ N−1∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i∏

i<j Γh(λij)Γh(−λij)
, (6.48)

consistently with [57], where the domain of integration of each λi = ui

r runs over (−∞,+∞)

as S1 shrinks to 0.
The partition function for a pure CS theory on a squashed three-sphere background can
be evaluated exactly in terms of the constrained U(N) CS partition function

1

N !

∫
dΛ

∫ N∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i+2πiΛ

∑N
j=1 λj∏

i<j Γh(λij)Γh(−λij)
(6.49)



Probing Black-Holes with Surface Defects from Their Field Theory Duals 171

giving

ZS
3

SU(N)n0N
= ZS

3

U(N)n0N

√
−in0 = e

πin0(N2−1)(ω2
1+ω

2
2+3ω1ω2)

12ω1ω2 . (6.50)

Therefore, taking into account theN degeneracy of the 1-center saddles due to the action
of the ZN -center symmetry, the final contribution to the index is

I = N exp

(
−πi(N

2 − 1)

στ

3∏
a=1

(
{∆a} −

n0 + 1

2

)
+O(r)

)
. (6.51)

6.3.3 Adding the Defect

The insertion of a maximal Gukov-Witten defect amounts, in the SCI, to couple the 2d
theory with the 2d model (6.20) as described in Section 6.1. The Cartan generators of
the half-BPS algebra can be identified with the ones in 2d and by comparing (6.13) with
(6.21). The dictionary between the fugacities is the following [139]

σ = τ2d, τ =
τ2d
2
− uC , ∆1 =

τ2d
2

+ 2χ− uC , ∆2 =
τ2d
2

+ z − 2χ, (6.52)

where σ, τ,∆1,∆2 are the usual fugacities for N = 4. In a Cardy-like limit approach
for the evaluation of the index we notice that the insertion of such a defect modifies the
original effective action with an order O

(
1
r

)
term

I =
1

N !

N∑
i=1

∫ N−1∏
j=1

duje
S4d(u,∆,τ,σ)+S2d,i(u,∆,τ,σ), (6.53)

where

S2d,i(u,∆, τ, σ) =

N∑
j ̸=i

log θ0(−uij −∆2 + σ;σ)

log θ0(−uij +∆1 − τ ;σ)
+

log θ0(uij +∆3;σ)

log θ0(uij ;σ)
, (6.54)

giving rise to subleading corrections to the contribution of the 4d theory and crucially
leaving the saddle-point equations (6.39) unaffected. Therefore, we can still identify the
combined black hole/probe D3-brane system in the gravitational theory with the holon-
omy saddle, associated to the sole black hole solution in the unperturbed 4d theory.
This is perfectly consistent with the holographic dual picture, in which a probe regime
for the backreaction of the D3-brane on the black hole background is considered. In
this regime, the backreaction effects are negligible and the insertion of a probe D3-brane
does not spoil the underlying black hole geometry. More generally, this can be extended
to regime of charges beyond the black hole one, where other gravitational saddles are
expected to provide a dominant contribution to the gravitational path integral. When
the unperturbed dual 4d theory is considered, their behavior is described by the other
C−center solutions to the saddle points equations or equivalently, in a Bethe-Ansatz ap-
proach for the evaluation of the index, by the contributions arising from the Hong-Liu
solutions to the Bethe-Ansatz equations [221, 227]. The insertion of a probe D3-brane to
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such gravitational solutions does not spoil the background geometry and the identifica-
tion between C-center saddle points, in the dual theory, and the combined gravitational
system still holds. In section 6.4 we will discuss how the probe regime manifests in the
Bethe-Ansatz approach.
Let us evaluate the effective action (6.54) in the Cardy-like limit near the vanishing
holonomies configuration defined in (6.41). By employing the asymptotic expansion
for θ0(u;σ), listed in Appendix 7.1, we get

S2d,i ∼+
πi(N − 1)

(
−2(τ + σ){∆1}+ σ

∑3
a=1{∆a}+ τ

)
σ

+
πi(N − 1)

(
2{∆1}({∆1} − 1)−

∑3
a=1{∆a}({∆a} − 1)

)
σ

+
πi(N − 1)τ(τ + σ)

σ
−

2πi(N − 1)
(∑3

a=1{∆a} − 1− τ − σ
)

σ

N∑
j ̸=i

uij
N − 1

−
∑
j ̸=i

(
log
(
1− e− 2πi

σ uij

)(
1− e− 2πi

σ (1−uij)
)

+ log
(
1− e−

2πi
σ (σ−uij+1−{∆2})

)(
1− e−

2πi
σ (σ−uij+{∆2})

)
− log

(
1− e−

2πi
σ ({∆1}−uij−τ)

)(
1− e−

2πi
σ (1−{∆1}−uij−τ)

)
+ log

(
1− e−

2πi
σ (uij{∆3})

)(
1− e−

2πi
σ (1−uij−{∆3})

))
. (6.55)

For general values of ∆a = ∆̃a + r∆̄a all the logarithmic terms but one are suppressed
in the Cardy-like limit, assuming ∆̃a ̸= 0. Upon constraining the chemical potentials
according to eq. (6.25) and employing the SU(N) constraint (6.29) we can rewrite the
effective action as

S2d,i =
2πi(N − 1)

σ

3∏
a=2

({∆a} − n) + πin(N − 1)− 2πinN
λi
ω2

−
∑
j ̸=i

log

(
1− e−2πi

λij
ω2

)
, (6.56)

where we defined n = 1+n0

2 .
Before moving on, we would like to compare our result with the one in the recent paper
[128]. In that paper the authors derived the Cardy-like expansion of the 2d system by
introducing a regulator in the asymptotic expansion of θ0(uij ;σ) in terms of polyloga-
rithms

log θ0(uij ;σ) =
1

2πiσ

∞∑
r=0

(−1)r (2πiσ)
r

r!

(
Br(1− zij)Li2−r(e2πiε) +Br(zij)Li2−r(e

−2πiε)
)
,

(6.57)
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so to have a well-defined expression during the manipulations. As far as the leading
behavior of the 2d system is concerned, this is a perfectly fine choice, as the regulator
does not spoil the leading O

(
1
r

)
terms in the effective action and indeed we find perfect

agreement between their and our result, up to this order. The effect of the regulator
only shows up at finite order in r, altering subleading corrections arising from the 2d
model and thus, possibly preventing a clear understanding of corrections to the large N
limit and an EFT interpretation of the Cardy-like limit approach. The net effect of the
regulator is to suppress the logarithmic finite contribution arising from the asymptotic
expansion of log θ0(uij ;σ). To properly retrieve subleading effects in this approach, one
would need to properly implement the regulator also in the 2d theory and include extra
O(σ0) effects arising from the vector multiplet of the 2d matrix model, before sending it
to zero.
As long as a probe regime for the backreaction of the D3-brane is considered in the dual
theory, we expect the contribution arising from the reduction of the 2d defect not being
able to alter the effective 3d theory arising from the reduction of the sole 2d N = 4 SYM.
In the language of localization this translates into obtaining a matrix model for the gauge
holonomies, expanded near the saddle point, associated to a pure CS partition function
as in (6.48). As a consequence, subleading corrections to the index in the probe limit
from the 2d system can arise only from the expansion ∆ = ∆̃ + r∆̄ in

2πi(N − 1)

σ

3∏
a=2

({∆a} − n), (6.58)

as we will explicitly show below. Plugging (6.56) into (6.53) we get

I =N exp

(
− πi(N2 − 1)

στ

3∏
a=1

({∆a} − n) +
2πi(N − 1)

σ

3∏
a=2

({∆a} − n)

− πin0(N
2 − 1)(ω2

1 + ω2
2 + 3ω1ω2)

12ω1ω2

)

× 1

N !

∫
dΛ

∫ N∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i+2πiΛ

∑N
j=1 λj∏

i<j Γh(λij)Γh(−λij)

N∑
i=1

e−2πinN
λi
ω2

+πin(N−1)∏N
j ̸=i

(
1− e−2πi

λij
ω2

) .
(6.59)

We see that the defect deforms the original CS partition function with an extra term.
However, this deformation is only apparent. In fact, let us consider

N∑
i=1

e−2πinN
λi
ω2

+πin(N−1)∏N
j ̸=i

(
1− e−2πi

λij
ω2

) (6.60)
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and define zj = e−2πi
λj
ω2 . Focusing first on the case n = 0, eq. (6.60) can be rewritten as

N∑
i=1

N∏
j ̸=i

zj
(zj − zi)

=

 N∑
i=1

(−1)N−i
N∏
j ̸=i

zj
∏

1≤k<l≤N
k,l ̸=i

(zk − zl)


 ∏

1≤i<j≤N

(zi − zj)

−1

.

(6.61)
The last product is simply the Vandermonde determinant up to a sign due to the reorder-
ing of all the columns, while the first parenthesis can be rewritten in terms of a sum of
monomials of degree N(N − 1)/2 of the form

N∑
i=1

(−1)N−i
N∏
j ̸=i

zj
∏

1≤k<l≤N
k,l ̸=i

(zk − zl) =
N∑
i=1

(−1)N−i
∑

σ∈SN−1

sign(σ)

N−1∏
k=1

zN−i
σ(Ii

k)
, (6.62)

where Ii = {1, 2, . . . , i− 1, i+1, . . . , N} and Iik is the k-th element of such set. Written in
this way, expression (6.62) is simply the Laplace expansion of the Vandermonde determi-
nant with an extra sign due to the very same reordering of columns already mentioned
in the denominator. Similarly, for n = 1 eq. (6.60) can be rewritten as, constraining∏N
j=1 zj = 1,

eπi(N−1)
N∑
i=1

zN−1
i∏N

j ̸=i (zj − zi)
= 1. (6.63)

where we used the SU(N) constraint
∏N
j=1 zj = 1. Then, the final expression for the

index of the 4d-2d combined system in the Cardy-like limit is

I = N exp

(
−πi(N

2 − 1)

στ

3∏
a=1

({∆a} − n) +
2πi(N − 1)

σ

3∏
a=2

({∆a} − n)

)
. (6.64)

In section 6.4 we will see that this result perfectly agrees with the Bethe-Ansatz evalua-
tion of the index in the case of collinear angular momenta τ = σ.

6.3.4 EFT Interpretation

In [139] an EFT interpretation, along the lines of [55, 134], was given for the case of equal
charges at leading order in N . Such an interpretation uses the U(1) gauge theory for-
mulation of the defect to reconstruct its contribution to the entropy function in terms of
2d anomalies. At sub-leading order, in the absence of the defect, a purely topological
gapped CS gauge theory emerges for the massless modes in the Kaluza-Klein reduc-
tion [55, 134]. This contirbution arises in the Cardy-like limit as a 3d supersymmetric
partition function on the squashed S3 [25, 26, 201]. In order to complete this EFT in-
terpretation in presence of the surface defect, it is necessary to include its effect in the
3d topological theory. Here we have proved that the CS partition function (6.49) is left
unchanged by the addition of the surface defect. In the following we will give an EFT
interpratiotion of this result.
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The reduction of a GW defect wrapping the temporal S1 produces a line defect in the
effective 3d pure CS theory. Let us discuss this feature by temporarily neglecting the de-
nominator

∏N
j ̸=i(zj − zi) in (6.63), coming from the contribution − log θ0(uij ;σ) in (6.54).

We see that, when n = 1, the index receives the following sub-leading contribution

eπi(N−1)

N !

∫
dΛ

∫ N∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i+2πiΛ

∑N
j=1 λj∏

i<j Γh(λij)Γh(−λij)

(
N∑
i=1

e−2πiN
λi
ω2

)
(6.65)

which defines an N -wounded anti-fundamental Wilson loop insertion in the partition
function of a pure CS theory on a squashed three-sphere with (analytically-continued)
squashing parameters ω1, ω2. More precisely, for purely imaginary squashing parame-
ters ω1 = ib and ω2 = ib−1, we have(

N∑
i=1

e−2πNb−1λi

)
, (6.66)

which defines the insertion of a the Wilson loop

Wγ(λ) = TrR exp

(
λ

∮
|ẋ|ds

)
, (6.67)

with lenght ∮
ds = 2πNb−1. (6.68)

Defining the ellipsoid metric on S3 as

ds2 = b2(dx20 + dx21) + b̃−2(dx22 + dx23), (6.69)

with

x0 = cos θ cosϕ, x1 = cos θ sinϕ, x2 = sin θ cosχ, x3 = sin θ sinχ, (6.70)

equation (6.66) describes a 1/2 BPS N -wounded Wilson loop wrapping the 1-cycle at
fixed χ on the T 2 in S3, parametrized by χ, ϕ coordinates at θ = π/2, as discussed in
[302]. The appearance of an exactly N -wounded Wilson loop from the reduction of a
Gukov-Witten surface is crucial for a couple of reasons. Firstly, in a pure CS theory at
level-N only the expectation values of pN -wounded (anti-)fundamental Wilson loops,
with p ∈ Z, are non-vanishing. This can be seen in the case of collinear angular momenta,
for which τ = σ and b = 1. In this case the insertion of a pN -wounded Wilson loop in
the partition function of a pure CS theory gives

eiπ(N−1)Z
SU(N)±N

W−N
= NZ

SU(N)±N

CS . (6.71)

A derivation of this result is presented in Appendix 7.2. Secondly, we expect a symmetry
between the n = 0 case, where the Wilson loop is not present, and the n = 1 case. In
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fact, the 4d index cannot detect global properties of the gauge groups and thus it is in-
sensitive with respect to the action of the ZN center symmetry. In addition, the insertion
of a maximal Gukov-Witten defect introduces sub-leading corrections and thus it cannot
alter this property, as discussed before for the saddle-point equations. Therefore, only an
N−wounded Wilson loop is consistent with the case n = 0, being uncharged under the
ZN symmetry. Let us now reintroduce and discuss the term

∏
j ̸=i(zj − zi). As discussed

before, the holographic counterpart of a maximal Gukov-Witten defect is described by a
D3-brane in the probe limit. For this reason we expect the contribution of the defect not
being able to alter the EFT emerging from the reduction of the theory along the thermal
S1. This manifests in the presence of

− log θ0(uij ;σ) (6.72)

in the 2d model describing the defect, which can be interpreted as a counter-term sup-
pressing the effects of the Wilson loop emerging in the effective 3d pure CS theory.
It would be interesting to study the fate of the counter-term for other GW defects in
regimes where backreaction effects of the probe D3-brane are not necessarily negligible.

6.4 Bethe Ansatz Approach

Motivated by the results just obtained, in this section we provide a derivation of the
index in presence of the maximal GW defect using the BA approach. This technique was
originally used in [89], following the derivation of [152], in order to provide a derivation
of the black-hole entropy at large N beyond the Cardy-like regime. The result has been
shown to be in perfect agreement with the one found by saddle-point approximation in
the Cardy-like limit [54, 201]. We show that the agreement survives also in the presence
of the maximal GW surface defect.

6.4.1 The Bethe-Ansatz Formula

Here we review the BA formula [88] in the context of 4d N = 4 SYM theory [89], for
equal angular momenta

τ = σ ≡ ω. (6.73)

We start by rewriting the SCI (6.28) in a more convenient way for the forthcoming dis-
cussion

I = κN

∮
R
dN−1uZ4d(u;ω,∆) , (6.74)

where the integral is taken over the region

R =
{
(u1, . . . , uN−1) ∈ CN−1 | Reui ∈ [0, 1] , Imui = 0 ,∀ i = 1, . . . , N − 1

}
(6.75)

and the gauge holonomies are constrained by (6.29). Then the prefactor κN is given by

κN =
1

N !

(
(e2πiω; e2πiω)2∞ Γ̃(∆1;ω, ω) Γ̃(∆2;ω, ω)

Γ̃(∆1 +∆2;ω, ω)

)N−1

, (6.76)
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with the usual definitions of the q-Pochhammer symbol (6.27) and of the elliptic gamma
function (6.26). The integrand in (6.74)

Z4d(u;ω,∆) =

N∏
i=1

N∏
i̸=j=1

Γ̃(uij +∆1;ω, ω) Γ̃(uij +∆2;ω, ω)

Γ̃(uij +∆1 +∆2;ω, ω) Γ̃(uij ;ω, ω)
. (6.77)

It is important to stress that, in order to have a plethystic expansion of the elliptic func-
tions, we need to restrict to a certain region of chemical potentials [88]

B = {ω,∆ ∈ C | 0 < Im∆ < 2 Imω} , (6.78)

with ∆ = ∆1, ∆2, ∆1 +∆2. Then, once we have computed the index, we can eventually
analytically continue the result outside B.
The BA operators Qi are defined as

Qi(u;ω,∆) := e2πi(λ+3
∑

j uij)
N∏
j=1

θ0(uji +∆1;ω) θ0(uji +∆2;ω) θ0(uji −∆1 −∆2;ω)

θ0(uij +∆1;ω) θ0(uij +∆2;ω) θ0(uij −∆1 −∆2;ω)
,

(6.79)
where i = 1, . . . , N and the function θ0 is defined in (6.35). These operators, written for
U(N) gauge symmetry, are restricted to the case of SU(N) by the action of the ”Lagrange
multiplier” λ. A crucial property of Qi is that they shift the integrand in (6.74) as

Z4d(u− δiω) =
Qi
QN
Z4d(u) , ∀ i = 1, . . . , N − 1 , (6.80)

where
u− δiω = (u1, . . . , ui − ω, . . . , uN−1, uN + ω) . (6.81)

Moreover, these operators are doubly periodic, i.e. they are invariant under the shifts

ui 7→ ui +m+ nω , ∀m,n ∈ Z , ∀ i = 1, . . . , N − 1 . (6.82)

As we mentioned above, we can use (6.80) to rewrite the integral representation (6.74) as

I = κN

∮
C
dN−1u

Z4d(u;ω,∆)∏N
i=1 (1−Qi(u;ω,∆))

, (6.83)

where now we are integrating over the contour C encircling the region

A =
{
u ∈ CN−1|Reui ∈ [0, 1] ,−Imω < Imui < 0,∀ i=1, . . . , N−1

}
. (6.84)

At this point we can apply the residue theorem and recognize in the zeros of the de-
nominator the only poles that really contribute. In fact, a priori we should also consider
those poles that come from Z4d. However, it turns out that, for each pole coming from
the gamma functions inside Z4d, either there is a zero of the denominator of some Qi
with higher multiplicity (thus canceling the pole), or such pole is outside A in (6.84)
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and thus cannot contribute. Then the poles are obtained by the solutions of the set of
trascendental equations

Qi(u;ω,∆) = 1 , ∀ i = 1, . . . , N , (6.85)

the so called Bethe Ansatz Equations (BAEs).
We are almost ready to write the BA formula but first we need to clarify two aspects.
Firstly, due to the double periodicity of the operatorsQi, we can solve the BAEs onN−1

copies of the complex torus with modular parameter ω. This means that the solutions
can be grouped into a finite number of equivalence classes [ûi] such that

ûi ∼ ûi + 1 ∼ ûi + ω , ∀ i = 1, . . . , N ,

N∑
i=1

ûi = 0 mod (Z+ ωZ ) . (6.86)

Secondly, as discussed in the Appendix C of [88], among all the solutions of the BAEs,
there is the subset of all those solutions that are fixed by a non-trivial element of the Weyl
group of SU(N). It turns out that the integrand function Z4d is such that the contribu-
tions from this subset sum up to zero and thus can be discarded. These two clarifications
bring us to define the set

MBAE := {[û] ∈ A | Qi([û];ω,∆) = 1 , w · [û] ̸= [û] , ∀ i = 1, . . . , N , ∀w ∈ SN} (6.87)

and finally the BA formula is given by

I = κN
∑

û∈MBAE

Z4d(û;ω,∆)H(û;ω,∆)−1 , (6.88)

where H−1 is the inverse of a Jacobian due to the change of variables in the integral

H(û;ω,∆) = det

(
1

2πi

∂(Q1, . . . , QN )

∂(u1, . . . , uN−1, λ)

∣∣∣∣
û

)
. (6.89)

Unfortunately the full set of solutions of the BAEs (6.85) has not been found yet. How-
ever, a subset of solutions is known [89, 221, 227]. Within this subset, one solution, also
known as basic solution,

ûi = ū− ω

N
i , with ū such that

N∑
i=1

ûi = 0 mod (Z+ ωZ) , (6.90)

reproduces the leading contribution to the index whose logarithm matches with the en-
tropy function of the dual 5d rotating black hole solution in holography. This result was
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first obtained in [89] and then improved in [201]

I
∣∣
basic = NN !κN Z4dH

−1
∣∣
basic =

= exp

(
− πi
ω2

N2
3∏
a=1

( {∆a}ω − n ) + logN +O(N0)

)
,

(6.91)

where n = 1+n0

2 , n0 = ±1, the function { · }ω is defined as

{∆}ω := ∆ +m such that m ∈ Z and 0 > Im
∆+m

ω
> Im

1

ω
(6.92)

and the auxiliary chemical potential ∆3 in (6.91) such that

{∆1}ω + {∆2}ω + {∆3}ω = 2ω +
3 + n0

2
. (6.93)

We added an extra pre-factor N · N ! representing the multiplicity of the basic solution,
that can be justified as follows. As we mentioned, we consider only those solutions that
are not fixed by any non-trivial element of SN , but this implies that there is a multiplicity
factor N ! related to the Weyl group action on each solution. Moreover we observe that,
since the BAEs and the index depend only on the differences uij , we can shift ū 7→ ū+i/N

into (6.90), with i = 0, . . . , N − 1, to obtain a set of N inequivalent solutions giving the
same contribution to the index. The shift is chosen in such a way that the constraint
(6.86) always holds. However, this implies that there is another multiplicity factor N
related to these shifts. This is the reason why the total multiplicity for the basic solution
is N ·N !.
Finally we can analytically continue (6.91) outside the region (6.78), so to extend the
result to any ∆∈C such that

Im
∆

ω
/∈ Z× Im

1

ω
, (6.94)

because { · }ω is not defined on these lines, denoted as Stokes lines in [89].
Before continuing to the next sub-section, we make a further comment on the matching
between the entropy function obtained from the Cardy-like limit of the 4d SCI and the
BA approach. Such matching extends beyond the functional agreement and it relates the
saddle holonomies of (6.40) with the Hong-Liu solutions [221]. A complete discussion
of such matching has been done in [54]. We have seen from the saddle-point analysis
in sub-section 6.3.3, that the holonomy saddles giving rise to the 5d black hole are not
modified in presence of the defect. Here we wonder if a counterpart of this behavior is
realized in the BA approach. In the next sub-section we will give an affirmative answer
to this question by studying the pole of the BA formula in presence of the defect.

6.4.2 The Bethe-Ansatz Formula in Presence of the Defect

The addition of the GW defect modifies the SCI as follows

I =

∫
R
dN−1u Z4d(u;ω,∆)Z2d(u;ω,∆) , (6.95)
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where the 2d contribution is given by

Z2d =

N∑
i=1

exp

 N∑
i ̸=j=1

(
log

θ0(−uij−∆2+ω;ω)

θ0(−uij+∆1−ω;ω)
+ log

θ0(uij−(∆1+∆2)+2ω;ω)

θ0(uij ;ω)

) .

(6.96)
In light of the discussion at the end of sub-section 6.4.1, we study the feasibility of the
BA approach in this new situation by inserting Z2d in (6.88) as

I ?
= κN

∑
û∈MBAE

Z4d(û;ω,∆)Z2d(û;ω,∆)H(û;ω,∆)−1 . (6.97)

The answer will turn out to be affirmative even if one has to be cautious. The proof of
the BA formula guarantees that there is no contributing pole from Z4d but a priori we
cannot be sure that this still holds when we have Z4dZ2d. In fact, the presence of poles
in Z2d within the regionA previously defined in (6.84), could potentially spoil the result.
We rewrite the region in (6.84) as

A =
{
u ∈ CN−1|Reui ∈ [0, 1] ,−Imω < Imuij < Imω,∀ i, j=1, . . . , N−1

}
, (6.98)

in order to make the next discussion more intuitive.
Recall that, according to [252], the zeros of the θ0 functions are given by

θ0(u;ω) = 0 ⇐⇒ u = m+ nω , ∀m,n ∈ Z . (6.99)

Therefore, from the definition (6.97), there is a pole whenever

(A) θ0(uij ;ω) = 0

(B) θ0(−uij +∆1;ω) = 0
⇐⇒

uij = mω ,

uij = ∆1 +mω
∀m ∈ Z . (6.100)

By rewriting
N∏
i=1

N∏
i ̸=j=1

1

Γ̃(uij ;ω, ω)
=

N∏
i=1

N∏
i ̸=j=1

θ0(uij ;ω) (6.101)

in Z4d, we see that each pole of type (A) is cancelled by the corresponding zero in Z4d.
For poles of type(B), we start by noticing that, since ∆1 ∈ B (6.78), only those poles with
m = 0,−1,−2 can lie inside the region A. Secondly, we recall that inside Qj there is a
term of the form

1

θ0(uji +∆1;ω)
, (6.102)

hence its denominator is zero whenever

uij = ∆1 + nω , ∀n ∈ Z . (6.103)

However, some of these zeros were formerly used to take care of the corresponding poles
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coming from the gamma function in Z4d. In fact,

Γ̃(uji +∆1;ω, ω) =

∞∏
ℓ=0

(
1− e2πi(ℓ+2)ωe2πi(uij−∆1)

1− e2πiℓωe−2πi(uij−∆1)

)ℓ+1

(6.104)

has a pole of multiplicity ℓ+ 1 whenever

uij = ∆1 + ℓω , ∀ ℓ ∈ N . (6.105)

Poles with ℓ ̸= 0 are outsideA because ∆1 ∈ B of (6.78). On the other hand, the pole uij =
∆1 lies insideA, thus we need the corresponding zero of the denominator of (6.102) with
n = 0 to cancel it. Therefore, on one hand we can use the zeros of the denominator of
Qj with n = −1,−2 to cancel the corresponding poles in Z2d with m = −1,−2. On the
other, we lack a further zero to cancel the pole with m = 0.
This is not the end of the story yet. In the proof of the BA formula in absence of the
defect, we chose to restrict the integral to the domain B in order to have a plethystic
expansion of the elliptic functions, and only at the end of computation we extended the
resulting index outside this domain by analytic continuation. In the same fashion, here
we can first restrict the integration on a smaller domain for ∆1,

B ′ = {∆1 ∈ C | Imω < Im∆1 < 2 Imω} , (6.106)

such that the pole of Z2d with m = 0 pops out of A. This allow us to apply the BA
formula because Z2d will not bring new poles contributing to the integral. Finally, we
will extend the result outside B ′ by analytic continuation, when possible.

6.4.3 Contribution of the Basic Solution

We are now ready to evaluate the index (6.96) on the basic solution of the BAEs (6.90)
in presence of the GW defect. Such computation aims to generalize the result of [139]
which is restricted to the case of equal chemical potentials

∆1 = ∆2 = ∆3 =
2ω − 1

3
. (6.107)

Here we will consider the case of arbitrary ω and ∆1,2,3, with the constraint (6.93). As a
starting point, we compute the following sum

N∑
i̸=j=1

log θ0(±ûij + v;ω) (6.108)

Firstly, by using the modular transformations

θ0(u;ω) = eπiB(u;ω)θ0

(
u

ω
;− 1

ω

)
, B(u;ω) = −u

2

ω
− u

ω
+ u− ω

6
− 1

6ω
+

1

2
(6.109)
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we obtain

(6.108) = πi

N∑
i ̸=j=1

B (±ûij+v;ω) +
N∑

i ̸=j=1

log θ0

(
±ûij+v

ω
;− 1

ω

)
≡ ϕ (v, ω) + φ (v, ω) .

(6.110)
Secondly, focusing on φ(v, ω) of the sum above and recalling the definitions (6.27), (6.35),
we get the following expression

φ(v, ω) =

N∑
i ̸=j=1

∞∑
m=0

log

(
1− w̃ h̃m

(
z̃i
z̃j

)±1
)(

1− w̃−1 hm+1

(
z̃j
z̃i

)±1
)
, (6.111)

where, for compactness, we have defined

z̃j ≡ e
2πi
ω ûj , w̃a ≡ e

2πi
ω v , h̃ ≡ e−

2πi
ω . (6.112)

By the Taylor expansion of the logarithm, we obtain

φ(v, ω) = −
N∑

i ̸=j=1

∞∑
m=0

∞∑
n=1

1

n

(
w̃n h̃mn

(
z̃i
z̃j

)±n

+ w̃−n h̃(m+1)n

(
z̃j
z̃i

)±n
)
. (6.113)

Now we evaluate explicitly the following sums on the basic solution (6.90)

An ≡
N∑

i ̸=j=1

(
z̃i
z̃j

)n
, Bn ≡

N∑
i ̸=j=1

(
z̃j
z̃i

)n
, (6.114)

which amount to

An = Bn =

{
−1 n ̸= 0 modN

N − 1 n = 0 modN .
(6.115)

By summing over m, we can reorganize φ(v, ω) in a simpler form

φ(v, ω) =

∞∑
n=1

1

n

w̃n + w̃−n h̃n

1− h̃n
−

∞∑
n=1

1

n

w̃Nn + w̃−Nn h̃Nn

1− h̃Nn
(6.116)

where the first term is convergent if we take

|h̃| < |w̃| < 1 ⇐⇒ Im− 1

ω
> Im

v

ω
> 0 , (6.117)

while the second term, within the region (6.117), vanishes for large N .
The first three terms of Z2d, depending on ∆1,∆2,∆1 + ∆2 respectively, have the same
form of (6.108) and thus we use the result (6.116) to compute them. More precisely, we
first apply the modular transformations (6.109) and then, by the quasi-periodicity,

θ0

(
u

ω
;− 1

ω

)
= eπiS(u;ω)θ0

(
u

ω
− 1

ω
;− 1

ω

)
, S(u;ω) = 1 +

2u

ω
, (6.118)
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•
−1

•ω

Re∆

Im∆

Figure 6.3: The colored region represents the portion of the ∆-complex plane where ∆1,∆2,∆1 +
∆2 live in order to have a convergent plethystic expansion. The dashed lines are defined in (6.94).

we shift by −1/ω the arguments of the two θ0 in the numerator of Z2d, that depend on
∆2,∆1 +∆2 respectively. This further step guarantees the same domain of convergence
for each of these three terms. Hence these terms of Z2d become

1st : +πi

N∑
i ̸=j=1

(B(−ûij −∆2 + ω;ω) + S(−ûij −∆2;ω)) +O
(
N0
)
,

2nd : +πi

N∑
i ̸=j=1

(B(ûij − (∆1 +∆2) + 2ω;ω) + S(ûij − (∆1 +∆2);ω)) +O
(
N0
)
,

3rd : −πi
N∑

i ̸=j=1

B(−ûij +∆1 − ω;ω) +O
(
N0
)
, (6.119)

provided that the chemical potentials are taken in the domain of convergence

∆1, ∆2, ∆1 +∆2 ∈ D ≡
{
∆ ∈ C : Im− 1

ω
> Im

∆

ω
> 0

}
, (6.120)

which is shown in Figure 6.3. However, because of the quasi-periodicity of θ0, the 2d
defect integrand is invariant under the shifts ∆a 7→ ∆a + n, for any integer n. This
means that, if we introduce the function [ · ]ω , defined as

[∆]ω := ∆ + n such that n ∈ Z and Im− 1

ω
> Im

∆+ n

ω
> 0 , (6.121)

for any ∆∈C such that

Im
∆

ω
/∈ Z× Im

1

ω
, (6.122)

we can extend the result to the whole complex plane by analytic continuation, with the
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exception of the lines (6.122), and get

1st : +πi

N∑
i ̸=j=1

(B(−ûij − [∆2]ω + ω;ω) + S(−ûij − [∆2]ω;ω)) +O
(
N0
)
,

2nd : +πi

N∑
i ̸=j=1

(B(ûij − [∆1 +∆2]ω + 2ω;ω) + S(ûij − [∆1 +∆2]ω;ω)) +O
(
N0
)
,

3rd : −πi
N∑

i ̸=j=1

B(−ûij + [∆1]ω − ω;ω) +O
(
N0
)
, (6.123)

We still have to compute the fourth term of Z2d which requires a different approach

4th : −
N∑

i ̸=j=1

∞∑
m=0

log

(
1− h̃m

(
z̃i
z̃j

))(
1− h̃m+1

(
z̃j
z̃i

))
=

=−
N∑

i ̸=j=1

log

(
1−

(
z̃i
z̃j

))
+ 2

N∑
i̸=j=1

∞∑
m=1

log

(
1− h̃m

(
z̃i
z̃j

))
.

(6.124)

The second term in (6.124), in analogy with the previous computation, once evaluated
on the basic solution, is given by

2

N∑
i ̸=j=1

∞∑
m=1

log

(
1− h̃m

(
z̃i
z̃j

))
=

∞∑
n=1

1

n

h̃n

1− h̃n
−

∞∑
n=1

1

n

h̃Nn

1− h̃Nn
= O

(
N0
)
, (6.125)

at large N and |h̃| < 1. For the first term in (6.124), notice that, since

xN − 1 =

N∏
k=1

(
x− e2πi

k
N

)
, (6.126)

by factorizing x− 1, we have

xN−1 + · · ·+ x+ 1 =

N−1∏
k=1

(
x− e2πi

k
N

)
, (6.127)

that, for x = 1, becomes

N =

N−1∏
k=1

(
1− e2πi

k
N

)
(6.128)

and finally we conclude that the contribution we are looking for amounts to

4th : − logN +O(N0) . (6.129)
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Collecting our results (6.123) and (6.129), we obtain

Z2d|basic =

N∑
i=1

exp
(
Ψi([∆1]ω, [∆2]ω, [∆1 +∆2]ω)− logN +O

(
N0
))
, (6.130)

where we introduced the function

Ψi([∆1]ω, [∆2]ω, [∆1 +∆2]ω) =

= πiN (−3[∆1]ω+[∆2]ω+3[∆1+∆2]ω)−
2πi

ω
N ([∆1]ω+[∆2]ω−[∆1+∆2]ω)

N∑
i ̸=j=1

ûij+

+
πi

ω
N ([∆1]ω−[∆2]ω−[∆1+∆2]ω) +

πi

ω
N
(
[∆1]

2
ω−[∆2]

2
ω−[∆1+∆2]

2
ω

)
.

(6.131)
Here we can distinguish two cases:

[∆1 +∆2]ω =

{
[∆1]ω + [∆2]ω for Im− 1

ω > Im
[∆1]ω+[∆2]ω

ω > 0

[∆1]ω + [∆2]ω + 1 for Im− 2
ω > Im

[∆1]ω+[∆2]ω
ω > Im− 1

ω

(6.132)

or equivalently, in a more compact form,

[∆1 +∆2]ω = [∆1]ω + [∆2]ω +
1− n0

2
where n0 :=

{
+1 I

−1 II .
(6.133)

We introduce the auxiliary chemical potential ∆3 constrained as in (6.25) with the further
assumption (6.73) and, because of the properties of [ · ]ω ,

[∆ + n]ω = [∆]ω , [∆ + ω]ω = [∆]ω + ω , [−∆]ω = −[∆]ω − 1 , (6.134)

the constraint becomes

[∆1]ω + [∆2]ω + [∆3]ω = 2ω − 3− n0
2

. (6.135)

In terms of these new chemical potentials the function Ψi becomes

Ψi =
2πi

ω
N ([∆2]ω +m) ([∆3]ω +m) +

2πi

ω
Nm

 N∑
i ̸=j=1

ûij
N − 1

− ω

2

 , m =
1− n0

2
.

(6.136)
Here one could think that, in case II there is an extra term, suggesting a different behavior
of the D3-brane backreaction. However, once we evaluate such extra term on the basic
solution (6.90), and we sum over j, it is irrelevant. This makes the symmetry between
the two cases become manifest. This result is the BA counterpart of what we obtained
by computing the subleading term in the Cardy-like limit.



186 6.5 Discussion and Conclusions

We conclude that

Z2d|basic = exp

(
2πi

ω
N

3∏
a=2

( [∆a]ω +m ) +O
(
N0
))

. (6.137)

In order to compare the result with the 2d term (6.91), we rewrite [ · ]ω in terms of { · }ω
as

[∆]ω = {∆}ω − 1 , (6.138)

the constraint (6.136) reduces again to (6.93) and the 2d index contribution becomes

Z2d|basic = exp

(
2πi

ω
N

3∏
a=2

( {∆a}ω − n ) +O
(
N0
))

, n =
1 + n0

2
. (6.139)

By combining this result with the 2d term (6.91), we write our final result for the defect
superconformal index

log I|basic = −
πi

ω2
N2

3∏
a=1

( {∆a}ω − n ) +
2πi

ω
N

3∏
a=2

( {∆a}ω − n ) + logN +O
(
N0
)
.

(6.140)
This result is in agreement with the one obtained in (6.64) in the limit of small ω.

6.5 Discussion and Conclusions

In this Chapter we have studied a setup corresponding to a 5d rotating BH in presence
of surface defects with maximal supersymmetry. From the holographic perspective the
system corresponds to a stack of D3-branes in AdS5 × S5 type IIB supergravity with the
addition of a probe D3, extending across both time and the radial direction, while being
wrapped around one compact direction in AdS5 and another on the five-sphere. We have
evaluated the SCI of the corresponding dual field theory, consisting in a 4d-2d system,
namely SU(N) N = 4 SYM coupled to a maximal Gukov-Witten surface defect. We
have used two distinct methodologies to evaluated the index: firstly, by considering the
Cardy-like limit, and secondly by applying the BA approach matching the two results
at large-N for equal angualar momenta. Such regimes correspond to the large N limit
for equal and small angular velocities. In this case we have extracted the sub-leading
logarithmic corrections to the index, that are expected to capture the leading order effect
of the backreaction of the probe D3-brane in the dual gravitational picture. Furthermore,
a three-dimensional EFT emerges from the calculation: the effective picture corresponds
to a sum over the anomalies of the 4d and 2d system in addition to a pure SU(N)±N
topological theory.
There are many open questions and lines of research left. It would be interesting to study
the coupling with other GW operators. So far only the coupling of the four-dimensional
theory with a maximal GW operator has been extensively studied. Nevertheless, the
possibility of coupling SU(N) N = 4 SYM to GW surface defects corresponding to other
Levi sub-gropus has been discussed in [139]. It would be interesting to have an explicit



analysis of such Levi subgroups for the GW defects and to understand how this is re-
alized at the level of the SCI by working out the localization procedure of the coupled
4d-2d system along the lines of what we have done here.
Another possible extension consists in working out the maximally supersymmetric case
for real gauge groups and their connection with the S-duality orbits of SYM. Although
the defect is generally defined by prescribing boundary conditions for the vector field, a
useful approach to include such in the SCI is to consider it as a coupling of a 2d theory to
the four-dimensional one. The standard prescription used here for the SU(N) case could
be extended by considering other Lie algebras corresponding to USp(2N) and SO(N)

gauge groups. From the Cardy-like limit of the 4d-2d system SCI it would require to
study then the saddles, similarly to what was done in [46] for the pure 4d system. It
would also be interesting to study the fate of S-duality for the USp(2N) and SO(2N +1)

gauge groups in the coupled system.
Another generalization of the analysis consists in understanding the behavior of the cou-
pled system around different holonomy saddles than the one treated here. Such saddles
admit a holographic interpretation in terms of wrapped D3-brane solutions [7]. Futher-
more, an EFT interpretation in terms of orbifold partition functions has been discussed
in [55]. One may wonder the fate of the 4d-2d coupled system and the role played by
the circle reduction of the defect in this case.
While on the Cardy side we have obtained the result for different angular momenta, on
the Bethe side we restricted to the case of σ = τ . It would be important to extend the BA
analysis to the case of σ ̸= τ . Indeed, the BA approach is well-defined also in this more
general setup [88] and, when we add a defect, the analysis of sub-section 6.4.2 can be
generalized, providing a BA formula for the defect SCI. However, the case of different
angular momenta is still an open problem even in absence of defects [13, 86]. In fact,
the contribution of the basic solution itself requires the evaluation of extra terms that are
quite hard to compute. In [86] some of these terms are obtained, and they do not alter
the result at leading order. The recent analysis of [13] has revealed that some other terms
are O

(
N2
)
, thus they cannot be discarded in a large-N limit. Moreover, the cancellation

among the extra terms is argued by focusing on the SU(2) case. However, even if these
quantities become relevant for large N , they are always negligible for large angular mo-
menta. Therefore, restricting to the comparison with the Cardy-like approach, one could
estimate these terms in a double limit of large N and large angular momenta, instead
of computing them explicitly. Such terms are then discarded, upon ensuring that their
recombination is negligible at leading order in the evaluation of the index. Following
this strategy one could generalize, at least in this double limit, the result obtained here
for the defect SCI to the case of different angular momenta.
A last line of research consists in expanding on the three-dimensional EFT interpretation
arising from the circle reduction of the parent four-dimensional theory. Our analysis
suggests the emergence of an N -wound anti-fundamental Wilson loop from the defect.
We expect that a complete analysis of the backreaction of the probe D3 will require also
an explicit construction of an effective 3d-1d system.
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CHAPTER 7

Appendix to Chapter 6

7.1 Special Functions and Asymptotics Expansions

In this appendix we list general properties and the asymptotic expansions of the special
functions used in this work.
The q-Pochhammer symbol is defined for complex z, q with |q| < 1 by

(z; q)∞ :=

∞∏
j=0

(
1− zqj

)
. (A.1)

We can derive an asymptotic expansion for the q-Pochhammer symbol (q; q)∞ by rewrit-
ing it in terms of the Dedekind Eta function

η(τ) := e
πiτ
12

∞∏
n=1

(1− e2niπτ ), (A.2)

and employing its modular properties

(q; q)∞ = e−
πiτ
12 η(τ) ∼

r→0
− πi
12

(
τ +

1

τ

)
− 1

2
log(−iτ). (A.3)

Similarly θ0(u; τ) is defined as

θ0(u; τ) := (e2πiu; e2πiτ )∞ (e2πiτe−2πiu; e2πiω)∞. (A.4)

It satisfies the quasi-double periodicity property

θ0(u+m+ nτ ; τ) = (−1)ne−2πinue−πin(n−1)τθ0(u; τ), m, n ∈ Z (A.5)

and the inversion formula

θ0(−u; τ) = −e2πiuθ0(u; τ). (A.6)
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In addition, we remind the relation between θ0(u; τ) and the Jacobi theta function θ1(u; τ):

θ1(u; τ) = ieπiτ/4−πiu(q; q)∞θ0(u; τ). (A.7)

The elliptic gamma function is defined as

Γ(z; p, q) :=

∞∏
m=0

∞∏
n=0

1− pm+1qn+1/z

1− pmqnz
, Γ̃(u) := Γ(e2πiu; e2πiτ , e2πiσ). (A.8)

Similarly to θ0(u, τ), also elliptic gamma function satisfies an inversion formula

Γ̃(u; τ, σ) = Γ̃(σ + τ − u; τ, σ)−1, (A.9)

and a quasi double-periodicity relation

Γ̃(u; τ, σ) = θ0(u; τ)
−1Γ̃(u+ σ; τ, σ) = θ0(u;σ)

−1Γ̃(u+ τ ; τ, σ). (A.10)

Using (A.9) and (A.10) together with (A.5) and (A.6) one obtains∑
i ̸=j

log Γ̃(uij ; τ, σ) = −
∑
i<j

(log θ0(uij ; τ) + log θ0(−uij ;σ)) . (A.11)

Exploiting the modular properties of θ0(u; τ) one derives the asymptotic expansion for
small τ

log θ0(u; τ) =
iπ

τ
{u}τ (1− {u}τ ) + iπ{u}τ −

iπ

6τ

(
1 + 3τ + τ2

)
+

+ log
((

1− e−
2πi
τ {u}τ

)(
1− e−

2πi
τ (1−{u}τ )

))
+O

(
e−

2π sin arg(τ)
|τ|

)
,

(A.12)

where
{u}τ ≡ {ũ}+ τ ū, u ≡ ũ+ τ ū, ũ, ū ∈ R (A.13)

and {ũ} = ũ− ⌊u⌋. For small τ ̸= σ, such definition is generalized to

{x} = {x̃}+ rx̄ ≡ x̃− ⌊x̃⌋+ rx̄ (A.14)

for any xwith x̃ ̸= 0. To recover an asymptotic expansion for the elliptic gamma function
one can start from the infinite product formula

Γ̃(u; τ, σ) = e2πiQ(u;τ,σ)
∞∏

n=−∞
e
−sign(n) πi

2τσ

(
(u+n

r − τ+σ
2 )

2− τ2+σ2

12

)
Γh

(
u+ n

r
;ω1, ω2

)
,

(A.15)
where Γh(u;ω1, ω2) is the hyperbolic gamma function. As r approaches zero the infinite
tower of KK modes associated with the hyperbolic gamma functions gets lifted, when
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u ̸∈ Z, and we get
log Γ̃(u; τ, σ) = 2πiQ({u}) +O(e−1/r) (A.16)

with

Q({u}) = −B3({u})
6στ

+ B2({u})
(σ + τ)

4στ
− B1({u})

(
(σ + τ)2 + στ

)
12στ

+
σ

24
+

τ

24
, (A.17)

and the Bernoulli polynomials

B3(u) = u3 − 3

2
u2 +

u

2
, B2(u) = u2 − u+

1

6
, B1(u) = u− 1

2
. (A.18)

7.2 Wilson Loop in Pure CS

In this appendix we want to evaluate the partition function of a SU(N)n0N pure CS
theory with an (anti-)fundamental N -wounded Wilson loop insertion, where n0 = ±1.
We start by first recalling the result for the three-sphere partition function of a pure 3d

CS theory. The squashed three-sphere partition function of a pure U(N)n0N CS theory is

1

N !

∫ N∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i∏

i<j Γh(λij)Γh(−λij)
. (A.19)

We can constrain the holonomies with a Lagrange multiplier to derive the partition func-
tion for the case of SU(N) gauge group:

1

N !

∫
dΛ

∫ N∏
i=1

dλi√
−ω1ω2

e−
πin0N
ω1ω2

∑N
i=1 λ

2
i+2πiΛ

∑N
j=1 λj∏

i<j Γh(λij)Γh(−λij)
. (A.20)

Employing the identity

1

Γh(x)Γh(−x)
= −4 sin

(
πx

ω1

)
sin

(
πx

ω2

)
(A.21)

and specializing to the case ω1 = ω2 we get

ZS
3

SU(N)n0N
= e

5πin0(N2−1)
12 . (A.22)

Let us introduce a Wilson loop operator in the CS theory. The supersymmetric Wilson
loop is defined as

Wγ(σ) = TrR P exp

{∮
γ

iAµẋ
µ + σ|ẋ|dτ

}
. (A.23)
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The localization locus for a gauge theory on S3 is defined by the equations{
Fµν = 0

D = −σ ≡ −σ0.
(A.24)

Thus, an n-wounded Wilson loop insertion in the functional integral modifies the matrix
model arising from localization with a term

Wγ(σ0) = TrR exp

{
σ0

∮
ds

}
= TrR exp{2πnσ0}. (A.25)

Let us compute the partition function of a k-level CS-theory with an n-wounded Wilson
loop in the (anti-)fundamental representation of U(N). Starting from (A.19) and using
the Weyl denominator formula

∏
1≤i<j≤N

2 sinh

(
xi − xj

2

)
=
∑
σ

(−1)σ
∏
j

e((N+1)/2−σ(j))xj , (A.26)

where the sum runs over the permutations SN , we get

ZW =
1

N !

∫ N∏
j=1

dλje
−iπkλ2

j

∑
σ1,σ2

(−1)ε(σ1)+ε(σ2)

N∏
j=1

e2π(N+1−j−σ1(j)−σ2(j))λj

(
N∑
i=1

e2πnλi

) (A.27)

Since
(∑N

i=1 e
2πnλi

)
is symmetric under exchange of λi with λj we can freely relabel

variables as before to get rid of one sum over permutations, without spoiling the result.
We get

ZU(N)
W =

N∑
i=1

∑
σ∈SN

(−1)ε(σ)
∫ (

dλi e
−ikπλ2

i e2π(N+1−i−σ(i))λi

)
∫  N∏

j ̸=i

dλj e
−ikπλ2

j e2π(N+1−j−σ(j))λj

 =

=(ik)−N/2
N∑
i=1

∑
σ∈SN

(−1)ε(σ)
N∏
j=1

e−
iπ
k (N+1+nδi,j−j−σ(j))2

(A.28)

Expanding the square

N∑
j=1

(N + 1− j + nδi, j − σ(j))2 =
∑

(x2j − 2xjσ(j) + j2), (A.29)

where xj = N + 1− j + nδi,j , we isolate a term independent on σ(j) and a term xjσ(j),
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which can be rearranged with the Weyl denominator formula after being combined with
the sum over σ.
We get

ZU(N)
W =(ik)−N/2

N∑
i=1

e−
iπ
k

∑
j(x

2
j+j

2)
∑
σ∈SN

(−1)ε(σ)e
2πi
k

∑
j xjσ(j) =

=(ik)−N/2
N∑
i=1

e−
πi
k

∑
j(x

2
j+j

2)−(N+1)xj
∏
i<j

2 sinh

(
xi − xj

2

)
=

=(ik)−N/2e−
πi
6k (N(N2−1)+6n(N+1+n))(−i)N(N−1)/2

N∑
j=1

e
2πi
k jn

∏
m<l

2 sin
(π
k
(l −m+ n(δj,m − δj,l))

)
(A.30)

∏
m<l

2 sin
(π
k
(l −m+ n(δj,m − δj,l))

)
=

=
∏

m<l,m,l ̸=j

2 sin
(π
k
(l −m)

) j−1∏
m=1

2 sin
(π
k
(j −m− n)

) N∏
l=j+1

2 sin
(π
k
(l − j + n)

)
=

=
∏
m<l

2 sin
(π
k
(l −m)

) j−1∏
m=1

sin
(
π
k (j −m− n)

)
sin
(
π
k (j −m)

) N∏
m=j+1

sin
(
π
k (m− j + n)

)
sin
(
π
k (m− j)

) =

=
∏
m<l

2 sin
(π
k
(l −m)

) N∏
m ̸=j

sin
(
π
k (m− j + n)

)
sin
(
π
k (m− j)

)
(A.31)

Then, the final result is

ZU(N)k
Wn

=(ik)−N/2e−
πi
6k (N(N2−1)+6n(N+1+n))(−i)N(N−1)/2

∏
m<l

2 sin
(π
k
(l −m)

) N∑
j=1

e
2πi
k jn

N∏
m̸=j

sin
(
π
k (m− j + n)

)
sin
(
π
k (m− j)

) (A.32)

Let us consider the gapped case for the pure CS theory k = N (the case k = −N goes
along the same line). Then, (A.32) is zero unless the wounding of the Wilson loop is
n = pN ,

ZU(N)N
WpN

=(N)−N/2e−
πi
6 ((N

2−1)+6p(N(p+1)+1))e−iπN
2/4

(−1)N−1N
∏
m<l

2 sin
( π
N

(l −m)
) (A.33)

Notice that
∏
m<l 2 sin

(
π
N (l −m)

)
= NN/2 and we get

ZU(N)N
WpN

= (−1)N−1+p(N(p+1)+1)NZU(N)
CS . (A.34)
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When p = ±1 we have
ZU(N)N
W±N

= (−1)NNZU(N)N
CS . (A.35)

Ultimately we specialize to SU(N) by introducing the Lagrange multiplier Λ as in (A.20),
and we obtain

ZSU(N)k
Wn

= ZU(N)k
Wn

e−
iπn2

kN

√
ik

N
. (A.36)

We are interested in the case n = −N and k = N :

ZSU(N)N
W−N

= (−1)N+1NZSU(N)N
CS . (A.37)
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supervisor dovrebbe avere, è proprio questa.
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